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University of Chicago Booth School of Business

http://faculty.chicagobooth.edu/veronika.rockova/



The menu for today

X Dimension Reduction (DR) Revisited

X Unsupervised Data Analysis

X Factor Analysis (FA) and Latent Variables

X Principal Components Analysis (PCA)

X Principal Component Regression (PCR)

X Partial Least Squares (PLS)

2



Today is all about Dimension Reduction (more than normal)

The setting: we have a high-dimensional matrix of data X.

We’d like to reduce this to a few ‘important’ factors.

We’ll do this by building a simple linear model for X and

use this model to represent X in a lower dimensional space.

Factor modeling is a super useful framework, whether you get a

deep understanding or just learn how they work in practice. We’ll

cover a variety of ways to understand.
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Dimension Reduction Revisited

So far, we’ve thought about clustering data points (rows of X).

However, we can also cluster the features (columns of X), or both.

Dimension reduction (DR): the task of transforming our data set

to one with less features/rows.

A new feature/factor can can be some linear or nonlinear

combination.

With factor models, we want to capture the main structure in the

data with fewer and more informative features.

DR is often the first step in the analysis, followed by, e.g.,

visualization, clustering, regression, classification.
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Factor Models are parsimonious models for X

A factor model is regression for multivariate X = [x1 . . . xp].

E[xij ] = ϕj1vi1 + . . .+ ϕjKviK , i = 1..n,

V = [v1, . . . , vK ] are unobserved lower-dimensional regressors that

capture the essence of X.

For example

single factor: E[xi ] = ϕvi
two factors: E[xi ] = ϕ1vi1 +ϕ2vi2

The ϕjk coefficients are called ‘loadings’ or ‘rotations’.

They are just coefficients for regression of xi onto vi .
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Factor Models

The basic underlying model is multivariate regression

E[xij ] = ϕj1vi1 + . . .+ ϕjKviK , i = 1..n, j = 1..p (1)

X V

Φ

Ε

p

n =

K p

+

 V = {vij}n,Ki,j=1 = [v1, . . . , vK ]: latent factors (unobserved regressors)

 Φ = {ϕjk}p,Kj,k=1 = [ϕ1, . . . ,ϕK ]: factor loadings (regression

coefficients)

 E Gaussian errors
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Factor Models: E[xi ] = ϕ1vi1 + . . .+ϕKviK

Each observation has K factors v1 . . . vK . Since usually K < p,

these factors are a lower dimension simplification of x.

Each factor vik is a univariate variable, and vi = [vi1 . . . viK ].

The loadings are p-dimensional, and they translate from the simple

(length-K ) factor vi to the complex (length-p) xi .

You can either treat the factors as unknown (PCA) (supervised

learning) or use y to build them (PLS) (semi-supervised learning).
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Geo-Genes Example: two interpretable PC’s.

Novembre et al, Nature 456 (2008)

The x for each individual is a giant vector of SNPs. They’ve

reduced it into two factors that explain most of the variation.

Turns out that location in this 2-D space looks geographical.
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Mixture vs Factor models

Factor models imply mixed membership.

You don’t have to be in one component,

but can be a mix of shared latent factors.

For example, for protein consumption

Greece could be similar to Italy in some

dimensions, closer to Turkey in others.

So topic models were

actually factor models!
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Topic Models: factors for text

Recall our topic model: E[xi ] = ωi1θ1 + . . . ωiKθK .

The topic model is a factor model

xi ∼ MN(ωi1θ1 + . . .+ ωiKθK ,mi )

⇒ E[xi/mi ] = ωi1θ1 + . . .+ ωiKθK ,

so that ωik is like vik and θk is like ϕk .

The basic interpretation is exactly the same as in PCA:

ω is a low-dimension version of x
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How can we compute FA?

For given K , the goal is to find loadings Φ so that the deviance is

small.

/ We do not know factors V and we do not know loadings Φ

/Chicken-and-Egg problem

But!

(1) If we knew Φ:

we can estimate V

(2) If we knew V:

we can estimate Φ

Solution: iterate between (1) and (2)

This strategy relates to the EM algorithm, one of the workhorses

of statistical computing.
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Principal Component Analysis (PCA)

Factor models are related to principal components analysis

Factor Analysis (FA): is a real model for data.

Principal Components Analysis (PCA): is a model-free

dimension reduction method.

PCA: finding a low-dimensional representation of data that

captures as much information as possible.

Linear dimension reduction: looking for straight lines in the feature

space along which the data exhibit an interesting trend.

We interpret “interesting” as having high variance (information).
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PCA: projections into latent space

Another way to think about principal components (factors) is

through projections, in our 2D example:

PCA equivalent to finding the line that fits through x1 and x2, and

seeing where each observation lands (projects) on the line.

We’ve projected from 2D onto a 1D axis.
13



Fitting Principal Components via Least Squares

PCA looks for high-variance projections from multivariate x (i.e.,

the long direction) and finds the least squares fit.
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Components are ordered by variance of the fitted projection.
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PCA: Principal Components Analysis

PCA tries to find ϕ’s and v’s with a different argument.

Unlike with FA, there is no model. Principal component directions

obtained by rotating coordinates.

To find the first principal component, we look for a linear

combination of the original features x1, . . . , xp that maximizes

variance (information).

The 1st principal component direction for observation i is

vi1 = x′iϕ1 = ϕ11xi1 + · · ·+ ϕ1pxip

where ϕ11, . . . , ϕ1p are obtained as a solution to

maximize

{
1

n

n∑
i=1

v2i1

}
where

p∑
j=1

ϕ2
1j = 1
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PCA: Principal Components Analysis

The kth principal component direction for observation i is

vik = x′iϕk = ϕk1xi1 + · · ·+ ϕkpxip (2)

where ϕk1, . . . , ϕkp are obtained as a solution to

maximize

{
1

n

n∑
i=1

v2ik

}
where

p∑
j=1

ϕ2
kj = 1

and where vk is orthogonal to v1, . . . , vk−1.

Another way to write equations (2) altogether for k = 1, . . . ,K is

vi = x′iΦ.

This is a projection from x into a low-dimensional feature space.

Φ = [ϕ1, . . . ,ϕK ] are called rotations.
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FA versus PCA

In FA, we are fitting

E[xi ] = ϕ1vi1 + . . .+ϕKviK = Φvi .

In PCA, we are fitting

xi = ϕ1vi1 + . . .+ϕKviK = Φvi .

Because the principal component directions are orthogonal, we

have Φ′Φ = I (identity matrix). This implies

v′i = x′iΦ

Thus, factors and principal components are related.
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How many principal components do we need?

Choose smallest K needed to explain a sizeable amount of

variation.

Total variance present in the data

TV =

p∑
j=1

var(xj) =

p∑
j=1

1

n

(
n∑

i=1

x2ij

)

Variance explained by kth principal component is

d2
k = var(zk) =

1

n

n∑
i=1

z2ik

Proportion of explained variance (PEV) with K principal

components

PEV (K ) =

∑K
k=1 d

2
k

TV

PEV (K ) should be large
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Principal Components in R

The best command to do PC is mypca=prcomp(x, scale=TRUE).

I There are other options.

I Since we’re combining least squares, it is once again good to

scale all the xj ’s to have unit variance.

I plot(mypca) will produce a simple screeplot.

This finds the rotations ϕ1 . . .ϕp, also called ‘loadings’.

Use predict to access the principal components:

predict(mypca)[,1:2] gives the first two.

predict(mypca, newdata=newX) gives z for new data.

Both of these function just multiply x′Φ for input vector x.

NB: x is first scaled by the SDs used in mypca if scale=TRUE.
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Understanding Principal Components

Suppose that each principal component/ factor represents a diet

Each diet is a weighted combination of proteins.

(1) Principal component score vik :

for i th country and kth component (diet) represents

how much protein is consumed in i th country under kth diet

We can interpret each vik as a ‘diet factor’: a way of eating.

(2) Rotation φkj :

for kth component (diet) and j th protein represents

gives the weight of j th protein in kth diet

and thus encodes the foods associated with diet k
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Interpreting the rotations/loadings

Sometimes we can find a meaningful structure from the PCA

output.

Note that if you fit prcomp with scale=TRUE, the rotation

matrix is on the scale of standard deviations:

ϕjk is units of direction zk gained for a 1 sd increase in xj .

Rotations (ϕk) for the first two food factors:

> t(round(pcfood$rotation[,1:2],2))

R.Meat W.Meat Eggs Milk Fish Cereal Starch Nuts Fr.Veg

PC1 -0.30 -0.31 -0.43 -0.38 -0.14 0.44 -0.30 0.42 0.11

PC2 -0.06 -0.24 -0.04 -0.18 0.65 -0.23 0.35 0.14 0.54

PC1 is high nut/grain, low meat/dairy.

PC2 is Iberian
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Understanding the principal components

How many do we need? What do the factors contribute?

> summary(pcfood)

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 2.0016 1.2787 1.0620 0.9771 0.68106

Proportion of Variance 0.4452 0.1817 0.1253 0.1061 0.05154

Cumulative Proportion 0.4452 0.6268 0.7521 0.8582 0.90976

The summary tells us what cumulative proportion of variation

is explained by the factors 1...K .

Each PC’s contribution to this is decreasing with its variance.
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Screeplot: show variance for each principal component.
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PC with high var(zk) are useful to differentiate observations.

The directions are uninteresting once variance levels out, and After

a subjective threshold, we consider the PC “just noise”.

Screeplots are heavily used. Here, it actually looks like only the

first really matters.
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Principal components in European protein consumption
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Overlaying k-means clustering from Week 7, we see that

the nation-groups are far apart in the first 4 PC directions.

Like in any other purely unsupervised model, the goal is

exploration and intuition. So use a K that makes sense to you.
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Congress and Roll Call Voting

Votes in which names and positions

are recorded are called ‘roll calls’.

The site voteview.com archives vote records

and the R package pscl has tools for this data.

445 members in the US House (the 111th)

1647 votes: nea = -1, yea=+1, missing = 0.

This leads to a large matrix of observations that can

probably be reduced to simple factors (party).
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Vote components in the 111th house

The model is E[xi ] = vi1ϕ1 + vi2ϕ2 + . . .

Each PC is vik = xiϕk =
∑

j xijϕkj
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Huge drop in variance from 1st to 2nd and 2nd to 3rd PC.

Poli-Sci holds that PC1 is usually enough to explain congress.

2nd component has been important twice: 1860’s and 1960’s.
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Top two PC directions in the 111th house
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Republicans in red and Democrats in blue:

I Clear separation on the first principal component.

I The second component looks orthogonal to party.
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Interpreting the principal components

## Far right (very conservative)

> sort(votepc[,1])

BROUN (R GA-10) FLAKE (R AZ-6) HENSARLIN (R TX-5)

-39.3739409 -38.2506713 -37.5870597

## Far left (very liberal)

> sort(votepc[,1], decreasing=TRUE)

EDWARDS (D MD-4) PRICE (D NC-4) MATSUI (D CA-5)

25.2915083 25.1591151 25.1248117

## social issues? immigration? no clear pattern

> sort(votepc[,2])

SOLIS (D CA-32) GILLIBRAND (D NY-20) PELOSI (D CA-8)

-88.31350926 -87.58871687 -86.53585568

STUTZMAN (R IN-3) REED (R NY-29) GRAVES (R GA-9)

-85.59217310 -85.53636319 -76.49658108

PC1 is easy to read, PC2 is ambiguous (is it even meaningful?)
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High PC1-loading votes are ideological battles.

These tend to have informative voting across party lines.

1st Principle Component Vote-Loadings
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A vote for Republican amendments to ‘Affordable Health Care for America’

strongly indicates a negative PC1 (more conservative), while

a vote for TARP indicates a positive PC1 (more progressive).
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Look at the largest loadings in ϕ2 to discern an interpretation.

> loadings[order(abs(loadings[,2]), decreasing=TRUE)[1:5],2]

Vote.1146 Vote.658 Vote.1090 Vote.1104 Vote.1149

0.05605862 0.05461947 0.05300806 0.05168382 0.05155729

These votes all correspond to near-unanimous symbolic action.

For example, 429 legislators voted for resolution 1146:

‘Supporting the goals and ideals of a Cold War Veterans Day’

If you didn’t vote for this, you weren’t in the house.

Mystery Solved: the second PC is just attendance!

> sort(rowSums(votes==0), decreasing=TRUE)

SOLIS (D CA-32) GILLIBRAND (D NY-20) REED (R NY-29)

1628 1619 1562

STUTZMAN (R IN-3) PELOSI (D CA-8) GRAVES (R GA-9)

1557 1541 1340
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PCR: Principal Component Regression

The concept is very simple: instead of regressing onto x, use a

lower dimension set of principal components v as covariates.

This works well for a few reasons:

I PCA reduces dimension, which is always good.

I Higher variance covariates are good in regression,

and we choose the top PCs to have highest variance.

I The PCs are independent: no multicollinearity.

The 2-stage algorithm is straightforward. For example,

mypca = prcomp(X, scale=TRUE)

z = predict(mypca)[,1:K]

reg = glm(y~., data=as.data.frame(z))

For new data, znew = predict(mypca,xnew)[,1:K]

pred = predict(reg,as.data.frame(znew)).
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Data from NBC on response to TV pilots

6241 views and 20 questions for 40 shows

Primary goal is predicting engagement.

Classic measures of broadcast marketability are Ratings.

GRP: gross ratings points; estimated total viewership.

TRP: targeted ratings points; viewership in specific categories.

Projected Engagement: a more subtle measure of audience.

After watching a show, viewer is quized on order and detail.

This measures their engagement with the show (and ads!).
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Predicting TV Engagement with PCR

Engagement matters for GRP, and also in adjusted GRP/PE.
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Given the survey responses and eventual projected engagement

(PE), can we find a low-D model for predicting engagement from

survey response in pilot focus groups?
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NBC Pilot-Survey PCA
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> round(PCApilot$rotation[,1:3],1)

PC1 PC2 PC3

Q1_Excited -0.3 0.1 -0.1

Q1_Happy -0.1 0.2 -0.5

Q1_Engaged -0.3 0.0 0.0

Q1_Annoyed 0.2 0.3 0.1

Q1_Indifferent 0.2 0.4 0.1

Q2_Funny 0.1 0.2 -0.5

Q2_Confusing -0.1 0.3 0.2

Q2_Predictable 0.2 0.3 0.0

Q2_Entertaining -0.3 -0.1 -0.3

Q2_Original -0.3 0.1 -0.2

Q2_Boring 0.2 0.4 0.1

Q2_Dramatic -0.2 0.0 0.4

Q2_Suspenseful -0.3 0.0 0.3

Huge drop after the first PC, but a few could be influential.

How do questions load? Maybe these are three genres...
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NBC Pilot-Survey Principal Components
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We first aggregated responses by show, then fit PC.
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Choosing the number of factors

Like in K -means, this is tough without supervision.

For PCR, though, we can just use the usual tools.

There are two ways to do this

1. Regress onto factors 1 through K for a few K , and choose the

model with lowest IC or CV error.

2. Lasso all p factors with λ selected via IC or CV.

Both are fine.
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Factor selection for NBC pilot survey
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AICc building one-at-a-time chooses K = 7,

but the curve is all over the place.

CV lasso chooses the first three plus a couple others.
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Factor Models vs Variable Selection

Both are good tools; you can mix and match as needed.

What to use often comes down to preference and experience.

PCA/PCR is nice in social science because you

get latent structure (e.g., the ‘partisan factor’).

But sometimes this is imaginary, so be careful.

Sparse vs Dense regression models

More conceptually, lasso finds a sparse model (many βj = 0),

whereas PCR assumes all the x ’s matter but only through the

information they provide on a few simple factors.

Both do dimension reduction!

Which is best will depend upon the application.
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EXTRA: supervised factors

An issue we discussed with clustering is relevant here too:

Factor model regression (e.g., PCR) will only work if the

dominant directions of variation in x are related to y .

Is there a way to force factors v to be relevant to both x and y?

Yes, and its a nice Big Data technique.

PLS (Partial Least Squares):

finds directions that help explain both x and y .
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Partial Least Squares

How can we come up with a set of linear combinations v1, . . . , vK
of features x1, . . . , xp that are best for predicting y?

(1) Regress y onto each xj and store the regression slope ϕj .

(2) Set the first component as a weighted average of x′js with

weights ϕj , i.e.

v1 = x′ϕ

(3) Adjust xj ’s by regressing each xj ’s on v1 to get residuals

r1, . . . , rp.

These residuals capture what has not yet been explained by v1.

For the second direction v2, we proceed with steps (1) and (2)

using the residuals to obtain v2.

For the third direction v3, we regress each x1, . . . , xp on both v1
and v2 and get residuals etc.
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Example: Gas Data
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When you buy gas,

it has an octane (quality) rating.

This is measured through failure

testing on a model engine.

More frequent testing is possible through

NIR sensors:

I Near infrared Spectroscopy measures

reflectance at wave-lengths (1700

here)

longer than visible light.

I It is useful for determining

chemical composition
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Gas Data PLS(4) Fit

textir has a pls function, along with summary, plot, etc.

Get predictions with, e.g., predict(gaspls, nir)

gaspls <- pls(X=nir, y=octane, K=4)
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Note: pls(1) is just marginal regression

42


