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Clustering

XSupervised versus unsupervised data analysis

XModel-based clustering: mixture models

XK-means algorithm

XHierarchical clustering

XTopic models for text analysis
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Supervision

You’ve seen lots of models for [y | x] (and [y | d , x], etc).

Today is about models for x.

The goal in everything we do has been Dimension Reduction.

DR: move from high dimensional x to low-D summaries.

Dimension reduction can be supervised or unsupervised.

Supervised: Regression and classification

HD x is projected through β into 1D ŷ

Outside info (y) supervises how you simplify x.

Unsupervised: Mixture and Factor Models

x is modeled as built from a small number of components.

You’re finding the simplest representation of x alone.

We always want the same things: low deviance, without overfit.
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What is clustering? And why?

Clustering: dividing up data into groups (clusters), so that points

inside each group are more “similar” to each other than to points

outside the group.

Why cluster? Two main uses

 Summary: (DR) deriving a reduced representation of data

 Discovery: looking for new insights into the data structure

Clustering can also help with predictions. However,

clustering should not be confused with classification!

 In classification, we have data for which the groups are

known and we try to learn what differentiates them to assign

future labels.

 In clustering, we have data for which the group labels are

unknown and try to learn the groups themselves as well as

what differentiates them.
4



Clustering: unsupervised dimension reduction

Group observations into similar ‘clusters’, and understand the rules

behind this clustering.

 Demographic Clusters: Soccer moms, NASCAR dads.

 Consumption Clusters: Jazz listeners, classic rock fans.

Collaborative Filtering

Group individuals into clusters, and model average behavior

for each.

Market Segmentation

 Industry Clusters: Competitor groups, supply chains.

Clustering is largely an exploratory technique:

(1) model-based methods (mixture models)

(2) “heuristic” methods (hierarchical clustering)

Sometimes, it is useful to have clusters organized in a

hierarchy.
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The K -means Mixture Model

The fundamental model of clustering is a mixture:

observations are random draws from K populations,

each with different average characteristics.

Suppose you have K possible means for each observed xi :

E[xi | ki ] = µki , where ki ∈ {1 . . .K}

e.g., if ki = 1, xi is from cluster 1: E[xi1] = µ11 ... E[xip] = µ1p.

Each mean µj has an associated probability or “weight” in the

mixture.

For new x with unknown k,

E[x] = P(k = 1)µ1 + . . .+ P(k = K )µK

DR: Given µk ’s, you discuss data in terms of K different types,

rather than trying to imagine all possible values for each x.
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Mixture Model: without knowing membership ‘k’

5 10 15 20 25 30 35

probability density function

x

The marginal density has multiple modes; one for each µk .
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Mixture Model: breaking into K components

5 10 15 20 25 30 35

probability density function

x

Here, we have K = 4 different cluster centers. Should it be 5?
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K -means: Chicken-egg problem

For given K , the goal is to find clusters so that the within-cluster

variability is small.

/ We do not know cluster memberships ki and we do not know

centroids (K-means) µk

/Chicken-and-Egg problem

But!

(1) If we knew ki : we can

easily estimate µk
(2) If we knew µk : we can

easily estimate ki

Solution: iterate between (1) and (2)

This strategy relates to the EM algorithm, one of the workhorses

of statistical computing.
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K -means

K -means algorithm clusters data by fitting a mixture model.

Suppose data x1 . . . xn comes from K clusters.

Chicken: If you know membership ki for each xi , then estimate

µ̂k =
1

nk

∑
i :ki=k

xi

where {i : ki = k} are the nk observations in group k .

Egg: If you know means µk , find k = k1 . . . kn to minimize the

sum-of-squares ∑
k=1

∑
i :ki=k

(xi − µ̂k)2

Mixture deviance: sums of squares within each cluster.
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Give K -means the xi ’s, and it gives you back the ki ’s

X1

X
2

In words: K -means

(1) Label each point based on the closest

centroid (mean)

(2) Replace each centroid by the average of

the points in the cluster

The algorithm starts at random µk ’s,

and changes ki ’s until the sum

of squares stops improving.

Solution depends on start location.

Try multiple, take the best answer.

Choosing K : For most applications, everything is descriptive.

So try a few and use clusters that make sense to you.
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K -means example

Here Xi = (Xi1,Xi2), n = 300, and K = 3
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K -means example, multiple runs

Here Xi = (Xi1,Xi2)′, n = 250, and K = 4, the points are not as

well-separated
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These are results of result of running the K -means algorithm with

different initial centers (chosen randomly over the range of the

Xi ’s). We choose the second collection of centers because it yields

the smallest within-cluster variation (mixture deviance)
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kmeans(x, centers, nstart)

Clusters x (numeric!) into centers groups using nstart starts.

> grp = kmeans(x=mydata, centers=3, nstart=10)

K-means clustering with 3 clusters of sizes 28, 31, 31

Cluster means:

x y

1 1.0691704 -0.99099545

2 -0.2309448 -0.04499839

3 0.4987361 1.01209098

Clustering vector:

[1] 2 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

[39] 1 1 3 3 3 3 3 3 3 3 3 3 2 2 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

Within cluster sum of squares by cluster:

[1] 12.332683 4.911522 3.142067

(between_SS / total_SS = 80.5 %)

grp$cluster holds cluster assignments for each observation.
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Scaling for K -means

The algorithm minimizes total [squared] distance from center,

summed across all dimensions of x.

Scale matters: if you replace xj with 2xj , that dimension

counts twice as much in determining distance from center

(and will have more influence on cluster membership).

Standard solution is to standardize:

cluster on scaled x̃ij =
xij − x̄j
sd(xj)

Then the centers µjk are interpreted as

standard deviations from marginal average.
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Clustering Europe by Food

Protein consumption by country,

in grams per person per day for

Red and White Meat

Eggs, Milk, Fish

Cereals, Starch, Nuts

Fruit and Vegetables

See protein.R.
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3-means clustering on Red vs White meat consumption
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Consumption is in units of standard deviation from the mean.
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7-means clustering on all nine protein types
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Plotting the red vs white plane, but clustering on all variables.
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Wine Clustering

Today is all about food!

As a bigger data example, wine.csv contains data on 11 chemical

properties of vino verde wine from northern Portugal.

We have chemistry for 6500 bottles (1600 red, 4900 white), along

with average quality rating (out of 10) by ‘expert’ tasters.

If you fit a 2-mean mixture, you get what you might expect

> tapply(wine$color,km$cluster,table)

$‘1‘ $‘2‘
red white red white

24 4830 1575 68

The two clusters are red vs white wine.
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In 2D slices of x, we see clear red v white discrimination.
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Point border is true color, body is cluster membership.
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Choosing K

1st order advice: most often clustering is an exploration exercise,

so choose the K that makes the most sense to you.

But, we can apply data-based model building here:

1. Enumerate models for K1 < K2 . . . < KM .

2. Use a selection tool to choose the best model for new x.

Step one is easy. Step two is tougher.

For example, for CV you’d want to have high OOS Pki (xi ).

But you don’t know ki ! This is a latent variable.

There’s no ground truth like y to compare against.
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AIC and BIC for K-means

We can use IC to select K .

I Deviance is the within sum of squares (slide 10) (analog of

SSE in regression).

I df is the number of µkj : K × p. (where p is dimension of x)

Then our usual AICc and BIC formulas apply.

I’ve added these in kIC.R for your convenience.

Beware: the assumptions behind both AICc and BIC calculation

are only roughly true for K -means.

These tools are lower quality here than in regression.

You’re often better off just using descriptive intuition.
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BIC and AICc for wine K -means

0 50 100 150 200

20
00
0

40
00
0

70
00
0

K

IC

BIC likes K ≈ 50, AICc likes 130.

Both are way more complicated than useful.
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Cluster Regression

Once use of unsupervised clustering is

to throw the results into a supervised regression model.

For example, we can use the wine cluster memberships as a factor

variable to predict wine quality (this is equivalent to just predicting

quality with the average for each cluster).

If the dominant sources of variation in x are related to y ,

this can be a good way to work. Otherwise its not.

The clusters all have around the same average quality

> tapply(wine$quality,kfit[[k]]$cluster,mean)

5.4 6.0 5.0 5.4 5.4 6.6 5.7 5.4 6.3 5.5

6.1 5.8 5.7 6.3 6.3 6.1 5.2 6.5 5.9 5.5

5.3 6.1 6.2 5.4 5.1 5.9 5.5 5.9 5.5 5.3

so the strategy wouldn’t work here.
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Comparison with Regression

This isn’t the same as there being no predictive power in x.

Regression onto chemical properties gets us

an OOS R2 of around 29% when predicting quality.
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CV−LASSO plot: regression of quality on X

It’s just that wine ‘quality’ has a weak signal, and most of the

variation in x is driven by other factors (e.g., grape color).
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Re-visiting the K -means model

In minimizing sums-of-squares, K -means targets the model

Pk(x) =
∏
j

N(xj | µkj , σ2)

⇒ independence across dimensions (no multicollinearity) and

uniform variance (same σ for all j , which is why scale matters).

, Despite being a silly model, this tends to do a decent job

of clustering when x consists of continuous variables.

/ It does a worse job for x made up of dummies or counts.
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From K -means to hierarchical clustering

Recall two properties of K -means clustering:

1. It fits exactly K clusters (as specified)

2. Final clustering assignment depends on the chosen initial

cluster centers

Hierarchical clustering is an alternative that does not rely on any

underlying model

 Hierarchical clustering produces a sequence of nested cluster

memberships.

 No need to choose initial starting positions and the number of

clusters.

 Data points that are similar will end up in the same cluster.

There are different ways to measure similarity.

At one end, all points are in their own cluster, at the other end, all

points are in one cluster
27



Agglomerative vs divisive

Two types of hierarchical clustering algorithms

Agglomerative (i.e., bottom-up):

 Start with all points in their own group

 Until there is only one cluster, repeatedly: merge the two

groups that have the smallest dissimilarity

Divisive (i.e., top-down):

 Start with all points in one cluster

 Until all points are in their own cluster, repeatedly: split the

group into two resulting in the biggest dissimilarity

Agglomerative strategies are simpler, we’ll focus on them.

28



Simple example

Given these data points, an agglomerative algorithm might decide

on a clustering sequence as follows:
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Step 1: {1}, {2}, {3}, {4}, {5}, {6}, {7};
Step 2: {1}, {2, 3}, {4}, {5}, {6}, {7};
Step 3: {1, 7}, {2, 3}, {4}, {5}, {6};
Step 4: {1, 7}, {2, 3}, {4, 5}, {6};
Step 5: {1, 7}, {2, 3, 6}, {4, 5};
Step 6: {1, 7}, {2, 3, 4, 5, 6};
Step 7: {1, 2, 3, 4, 5, 6, 7}.
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We can also represent the sequence of clustering assignments as a

dendrogram:
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Note that cutting the dendrogram horizontally partitions the data

points into clusters
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What’s a dendrogram?

Dendrogram: convenient graphic to display a hierarchical sequence

of clustering assignments. This is simply a tree where:

I Each node represents a group

I Each leaf node is a singleton (i.e., a group containing a single

data point)

I Root node is the group containing the whole data set

I Each internal node has two children nodes, representing the

the groups that were merged to form it

Remember: the choice of similarity measure determines how we

merge groups of points
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Hierarchical Clustering of Europe by Food
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Restaurant reviews from we8there.com

2640 bigrams from 6166 reviews (average of 90 words) with 5-star

overall, atmosphere, food, service, and value ratings.

Great Service: Waffle House #1258, Bossier City LA

I normally would not revue a Waffle House but this one deserves it. The

workers, Amanda, Amy, Cherry, James and J.D. were the most pleasant crew I

have seen. While it was only lunch, B.L.T. and chili, it was great. The best

thing was the 50’s rock and roll music, not to loud not to soft. This is a rare

exception to what we all think a Waffle House is. Keep up the good work.

[ 5: 5555 ]

Terrible Service: Sartin’s Seafood, Nassau Bay TX

Had a very rude waitress and the manager wasn’t nice either. [ 1: 1115 ]

33



Clustering Text

Often, low-D structure underlies text

I happy/sad, document purpose, topic subject.

The x for text are counts of text tokens.

A token can be a word, bigram (pair of words), etc.

We can try to transform x to look like something K -means would

work with (i.e., something that looks built out of normals).

we8there.R fits K -means to standardized token proportions

xij/mi , where mi =
∑

i xij are the document totals.

Looking at the big µ̂jk (i.e., phrases j with big proportions in

cluster k), it comes up with some decent interpretable factors.
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Topic Models

Although it ‘kinda works’, K -means for text is far from ideal.

Instead, use a mixture of Pk that are appropriate for count data.

A multinomial mixture:

I For each word, you pick a ‘topic’ K .

I This topic has probability θkj on each word j .

I You draw a random word according to θk

After doing this over and over for each word in your document,

you’ve got proportion ωi1 from topic 1, ωi2 from topic 2, etc.

The full vector of words for document xi then has distribution

E
[

xi
mi

]
= ωi1θ1 + . . .+ ωiKθK

a multinomial with probabilities
∑

k ωikθk and total mi =
∑

j xij .
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Topic Models: clustering for text

Each document (xi ) is drawn from a multinomial with probabilities

that are a mixture of topics.

xi ∼ MN(ωi1θ1 + . . .+ ωiKθK ,mi )

θ’s: word weights: probabilities of words inside each of the K

topics ∑p
j=1 θkj = 1

e.g., a hotdog topic has high probability on mustard, relish, ....

ωi ’s: doc weights: probabilities of topics inside each document∑K
k=1 ωik = 1

e.g., a hotdog stand review has big ωki on the hotdog topic.

This is subtly different from K -means: instead of each document i

being from a cluster, now each word is from a different topic and

the document is a mixture of topics.
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Fitting topic models in R

maptpx package has a topics function; see ?topics.

tpc <- topics(x,K=10,tol=10) # 10 topic model

Fitting a topic model is computationally very difficult.

Just like in K -means, we need only roughly estimate θ̂k (analogous

to µk) to get a decent clustering.

So Big Data implementations use approximate (stochastic)

deviance minimization.

Plenty of other packages out there; note that topic modeling is

also called LDA (latent Dirichlet allocation) if you’re exploring.
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Selecting the number of topics

Choosing K here is same as in K -means: this is exploratory

analysis, so just choose what you want for story-telling.

But, you can use BIC: if you give topics a vector for K, it

incrementally grows and stops when the BIC keeps increasing.

It reports log Bayes Factor, which is like -BIC.

The model returned is that for K with lowest BIC (highest BF).

Log Bayes factor and estimated dispersion:

5 10 15 20

logBF 76020.73 90041.99 7651.02 -62745.37

Disp 7.19 5.06 4.02 3.43

Here, max BF selects K = 10 (don’t worry about ‘dispersion’).

38



Interpreting topics

We build interpretation by looking at ‘top’ words for each topic.

You can order by lift

summary(tpcs)

Top 5 phrases by topic-over-null term lift (and usage %):

[1] food great, great food, veri good, food veri, veri nice (13.7)

[2] over minut, ask manag, flag down, speak manag, arriv after (11.6)

Sometimes straight word probabilities are more intuitive

rownames(tpcs$theta)[order(tpcs$theta[,1], decreasing=TRUE)[1:10]]

veri good great food food great great place veri nice

wait staff good food food excel great servic place eat

rownames(tpcs$theta)[order(tpcs$theta[,2], decreasing=TRUE)[1:10]]

go back came out tast like never go brought out

wait minut take order minut later come out drink order

Here, topic 1 looks ‘good’ and 2 looks ‘bad’.
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Wordles!

You can use the wordcloud library to efficiently visualize.

wordcloud(row.names(theta), freq=theta[,2], min.freq=0.004)

Topic 1 Topic 2

chines restaur
eat here

favorit restaur

servic alway

servic good

can wait

fin
e 

di
ne time food

restaur one

chines food

thai food

great experi

never bad
high recommend

one best

price reason

sever time

well worth

go back

definit return

fri rice
can eat

restaur area

time never

wait go
servic excel veri much

menu item

onc week

enjoy food

sushi chef

eaten here

food absolut

sushi bar

fo
od

 a
m

az

too mani
minut later
last time

do
n 

kn
ow

even though

go
 b

ac
k

made reserv
veri disappoint

place order

tast like

di
dn

 e
ve

n

poor servic

cr
ed

it 
ca

rd

year old

one person
onli one

In the language of wordles, freq controls word size.

I’ve made word size proportional to the in-topic probability.
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Topic Regression

Just like with K -means, we can relate topics to other

variables in a second-stage low-D regression.

Here, the topics looked motivated by quality.

Perhaps they’ll be useful in predicting review rating?

stars <- we8thereRatings[,"Overall"]

tpcreg <- gamlr(tpcs$omega, stars)

# Effect stars from 10% increase in topic use

drop(coef(tpcreg))*0.1

intercept 1 2 3 4

0.414 0.075 -0.386 0.068 0.042

5 6 7 8 9 10

0.000 0.076 0.121 0.000 -0.134 -0.049

So, e.g., you drop an expected -.4 star for if an extra 10% of the

review comes from topic 2 here (our negative topic from above).
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Comparison regressing stars on bigram proportions xij/mi .
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The topic model does better than regression onto words!
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Round up on unsupervised clustering

It is largely an exploratory analysis technique.

Don’t be too fancy in your rules to choose K , because all that

matters is that the model tells an intuitive story.

You can use clustering results as inputs for low-D regressions.

This is great if the dominant sources of variation in x are

related to y (especially if you have more xi ’s than yi ’s).

But it’s useless if y is not connected main drivers behind x ,

as is common in big data!
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Speech in the 109th Congress

textir contains congress109 data: counts for 1k phrases used

by each of 529 members of the 109th US congress.

Load it with data(congress109). See ?congress109.

The counts are in congress109Counts.

We also have congress109Ideology, a data.frame containing

some information about each speaker.

The includes some partisan metrics:

I party (Republican, Democrat, or Independent)

I repshare: share of constituents voting for Bush in 2004.

I Common Scores [cs1,cs2]: basically, the first two principal

components of roll-call votes (next week!).

44



Homework due next week: congressional speech

[1] Fit K -means to speech text for K in 5,10,15,20,25.

Use BIC to choose the K and interpret the selected model.

[2] Fit a topic model for the speech counts. Use Bayes factors to

choose the number of topics, and interpret your chosen model.

[3] Connect the unsupervised clusters to partisanship.

I tabulate party membership by K -means cluster.

Are there any non-partisan topics?

I fit topic regressions for each of party and repshare.

Compare to regression onto phrase percentages:

x<-100*congress109Counts/rowSums(congress109Counts)

No starter script; look at we8there.R and wine.R.
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