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[5] Classification

XK -nearest neighbors and group membership.

XBinary classification: from probabilities to decisions.

XMisclassification, sensitivity and specificity.

XMultinomial logistic regression: fit and probabilities.

XDistributed multinomial regression (DMR) and distributed

computing.
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Classification

Just as in linear regression, we have a set of training observations

(x1, y1), . . . , (xn, yn).

But now yi are qualitative rather than quantitative, i.e. yi is

membership in a category {1, 2, ...,M}.

The classification problem:

given new xnewi what is the class label ŷ(xnewi )?

The quality of classifier can be assessed by its misclassification risk,

i.e. probability of falsely classifying a new observation

P (Ynew 6= ŷ(xnew ))

This quantity is unknown but can be estimated by a proportion of

wrong labels in a validation dataset. Good classifiers yield small

risk.
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Bayes Classifier

There is actually a theoretically optimal classifier, the Bayes

classifier, which minimizes the misclassification risk.

The idea is to assign each observation to the most likely class,

given its predictor values, i.e. choose the class j ∈ {1, . . . ,M} for

which

P(Y = j | x)

is the largest.

/ Unfortunately P(Y = j | x) is not known. Bayes classifier is

unattainable gold standard. , But! We can estimate it!
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Classifiers

, There are many ways to estimate P(Y = j | x) from the

training data.

We can go parametric:

 Assume that P(Y = j | x,β) is a specific function of unknown

parameters β and learn those.

Sounds familiar? Logistic regression...

We can go non-parametric:

 We estimate P(Y = j | x) directly without estimating any

parameters.

K-nearest Neighbors (KNN)
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Nearest Neighbors

The idea is to estimate P(Y = j | xnew ) locally by looking at the

labels of similar observations that we already saw.

K-NN: what is the most common class around x?

(1) Take K -nearest neighbors xi1 . . . xiK of xnew in the training

data

‘Nearness’ is in euclidean distance:
√∑p

j=1(xnew j − xik j)
2.

(2) Estimate

P(Y = j | xnew ) =
1

K

K∑
k=1

I(yik = j)

(3) Select the class with highest P(Y = j | xnew )(Bayes classifier).

Since we’re calculating distances on X, scale Matters!

We’ll use R’s scale function to divide each xj by sd(xj)

The new units of distance are in standard deviations.
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Nearest Neighbors
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glass

The relative vote counts provide a very

crude estimate of probability.
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Sensitive to neighborhood size (think about extremes: 1 or n).
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Nearest Neighbors: Decision Boundaries
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 Larger K leads to higher training error (proportion of in-sample

misclassification rate)

 Smaller K leads to higher flexibility (overfitting and poor

out-of-sample misclassification rate)
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Glass Analysis

Statistics in forensic sciences

Classifying shards of glass

Refractive index, plus oxide %

Na, Mg, Al, Si, K, Ca, Ba, Fe.

6 possible glass types

WinF: float glass window

WinNF: non-float window

Veh: vehicle window

Con: container (bottles)

Tabl: tableware

Head: vehicle headlamp
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Glass Data: characteristic by type
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Some covariates are clear discriminators (Ba for headlamps, Mg for

windows) while others are more subtle (Refractive Ind).
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Nearest neighbors in R

Load the class package which includes function knn.

train and test are covariate matrices, cl holds known y ’s.

You set k to specify how many neighbors get to vote.

Specify prob=TRUE to get neighbor vote proportions.

knn(train=xobserved, test=xnew, cl=y, k=3)

nn1 <- knn(train=x[ti,], test=x[-ti,], cl=y[ti], k=1)

nn5 <- knn(train=x[ti,], test=x[-ti,], cl=y[ti], k=5)

data.frame(ynew,nn1,nn5)

ynew nn1 nn5

WinF WinF WinF

Con Con Head

Tabl WinNF WinNF
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KNN classification in the RI×Mg plane.
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Open circles are observations and closed are predictions.

The number of neighbors matters!
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KNN: Pros and Cons

, KNN’s are simple

, KNN’s naturally handle multiple categories (M > 2)

, KNN’s will outperform linear classifiers when the decision

boundary is non-linear

/ Computing neighbors can be costly for large n and p.

/ KNN’s do not perform variable selection.

/ Choosing K can be tricky. Cross-validation works, but is

unstable: new data ⇒ new K .

/ And the classification is very sensitive to K .

/ All you get is a classification, with only rough local probabilities.

Without good probabilities we cannot assess uncertainty.
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Binary Classification

Many decisions can be reduced to binary classification: yi ∈ {0, 1}.

KNN’s were an example of a non-parametric classification method.

A useful parametric alternative for two categories is the logistic

regression.

Compared to KNN’s

, Logistic regression yields parametric decision boundaries (linear,

quadratic depending on our regression equation)  it is principled

but it can be flexible

, Logistic regression is a ‘global’ method, i.e. it uses all the

training data to estimate probabilities, not just neighbors  the

probability estimates are more stable

, Logistic regression can do variable selection! (yay!)
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Credit Classification

Credit scoring is a classic problem of classification.

Take borrower/loan characteristics and previous defaults,

use these to predict performance of potential new loans.

Bond-rating is a multi-class extension of the problem.

Consider the German loan/default data in credit.csv.

I Borrower and loan characteristics: job, installments, etc.

I Pretty messy data, needs a bit of a clean...

15



Choice Sampling

A caution on retrospective sampling
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Conditioning helps here, but won’t always solve everything...
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German Credit Lasso

Create a numeric x and run lasso logistic regression.
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> sum(coef(credscore)!=0) 13 # cv.1se

> sum(coef(credscore, s="min")!=0) 21 # cv.min

> sum(coef(credscore$gamlr)!=0) 21 # AICc
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Decision making

There are two ways to be wrong in a binary problem.

False positive: predict ŷ = 1 when y = 0. (classify as

defaulters when they are not)

False negative: predict ŷ = 0 when y = 1.( classify as

non-defaulters when they in fact are)

Both mistakes are bad, but sometimes one of them can be much

worse  the cost can be asymmetric!

Logistic regression gives us an estimate P(ynew = 1 | xnew , β̂).

The Bayes decision rule is based purely on probabilities: classify as

a defaulter when P(ynew = 1 | xnew , β̂) > 0.5.

However! Rather than minimizing mis-classification risk, one might

like to minimize cost.
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Using probabilities to make decisions

To make optimal decisions, you need to take into account

probabilities as well as costs.

Say that, on average, for every 1$ loaned you make

25¢ in interest if it is repayed but lose 1$ if they default.

This gives the following action-profit matrix

no loan loan

payer 0 0.25

defaulter 0 -1

Suppose you estimate p for the probability of default.

Expected profit from lending is greater than zero if

(1− p)
1

4
− p > 0 ⇔ 1

4
>

5

4
p ⇔ p < 1/5

So, from this simple matrix you should lend

whenever probability of default is less than 0.2 (not 0.5!).
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FP and FN Rates

Any classification cutoff (e.g., our p = 1/5 rule, built from an

expected profit/loss analysis) has some basic properties.

False Positive Rate: # misclassified as pos / # classified pos.

False Negative Rate: # misclassified as neg / # classified neg.

In-Sample rates for our p = 1/5 rule:

## false positive rate

> sum( (pred>rule)[default==0] )/sum(pred>rule)

[1] 0.6704289

## false negative rate

> sum( (pred<rule)[default==1] )/sum(pred<rule)

[1] 0.07017544

For comparison, a p = 1
2 cut-off gives FPR=0.27, FNR=0.28.
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Sensitivity and Specificity

Two more common classification rates are

sensitivity: proportion of true y = 1 classified as such.

specificity: proportion of true y = 0 classified as such.

A rule is sensitive if it predicts 1 for most y = 1 observations, and

specific if it predicts 0 for most y = 0 observations.

> mean( (pred>1/5)[default==1] )# sensitivity

[1] 0.9733333

> mean( (pred<1/5)[default==0] )# specificity

[1] 0.1514286

Contrast with FP + FN, where you are dividing by total classified a

certian way. Here you divide by true totals.

Our rule is sensitive, not specific, because we lose more

with defaults than we gain from a payer.
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The ROC curve: sensitivity vs 1-specificity
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From signal processing: Receiver Operating Characteristic.

A tight fit has the curve forced into the top-left corner.
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3 Discriminant Analysis

Discriminant Analysis (DA) assumes classification probabilities

P(Y = j | x) =
pjπj(x)∑M

k=1 pk πk(x)

where πj(x) is a model for the j th category and pj is a prior class

probability

Two useful choices: πj(·) is Gaussian

(1) LDA: mean µj and common variance Σ.

 Linear decision boundary

(2) QDA: mean µj and group-specific variance Σj .

 Quadratic decision boundary
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3 Linear Discriminant Analysis: K=2

Linear decision boundary
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Multinomial Logistic Regression

, Probabilities are the basis for good cost-benefit classification.

Similarly as in logistic regression (M=2), can get class probabilities

P(Y = j | x) for more than two categories (M>2)?

Yes!  Multinomial Logistic Regression

We need M models (for each category)

P(Y = 1 | x) ∝ f (x′β1)

P(Y = 2 | x ∝)f (x′β2)

. . .

P(Y = M | x) ∝ f (x′βM).

 We need to find regression coefficients βk for each class.

 We need to make sure that
∑M

j=1 P(Y = j | x) = 1
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Multinomial Logistic Regression

Extend logistic regression via the multinomial logit:

P(Yi = k | xi ) = pik =
ex′iβk∑M
j=1 e

x′iβj

Note separate coefficients for each class: βk .

Denote by ki the class of i th observation yi . Then, the likelihood is

LHD(β1, . . . ,βM) ∝
n∏

i=1

piki

and the deviance is

Dev(β1, . . . ,βM) ∝ −2
n∑

i=1

log piki .
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Multinomial Logistic Regression

, Once we have a model, we can do variable selection in each of

the M regressions.

We can use the LASSO penalty: penalized deviance minimization.

min

−2

n

n∑
i=1

log piki + λ

M∑
k=1

p∑
j=1

|βkj |


We can also have λk : different penalty for each class.

We can find out which predictors in xi are relevant discriminators

of each of the M classes.
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Fit the model in glmnet with family="multinomial".
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A separate path plot for every class.

See glass.R for coefficients, prediction, and other details.
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We can do OOS experiments on multinomial deviance.
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And use this to choose λ (one shared for all classes here).
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The ‘fit plot’ for multinomials: p̂iki , prob of true class, on ki .
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Veh, Con, Tabls have low fitted probabilities, but they are

generally more rare in this sample (width of box is ∝ count).
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MN classification via decision costs

Suppose a simple cost matrix has

WinF WinNF Veh Con Tabl Head

k̂ =Head 9 9 9 9 9 0

k̂ 6=Head 0 0 0 0 0 1

e.g. a court case where Head is evidence for the prosecution

(innocent until proven guilty, and such).

Then expected cost of k̂ 6= Head is greater than k̂ = Head if

phead > 9(1− phead) ⇔ phead > 0.9

If you don’t have asymmetric costs,

just use a maximum probability rule: k̂ = argmaxk p̂k .

You can get this in R with apply(probs,1,which.max).
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Interpreting the MN logit

We’re estimating a function that sums to one across classes.

But now there are K categories, instead of just two.

The log-odds interpretation now compares between classes:

log

(
pa
pb

)
= log

(
ex′βa

ex′βb

)
= x[βa − βb].

For example, with a one unit increase in Mg:

# odds of non-float over float drop by 33%

exp(B["Mg","WinNF"]-B["Mg","WinF"])

0.6633846

# odds of non-float over Con increase by 67%

exp(B["Mg","WinNF"]-B["Mg","Con"])

1.675311
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An alternative version of MN logit

You might have noticed: multinomial regression can be slow /...

This is because everything needs to be done K times!

And each pik depends on βk as well as all the other βj ’s:

pik = ex′βk/
∑

j e
x′βj .

Let yik be 0/1 random variable where yik = 1 when Yi = k.

It turns out that multinomial logistic regression is very similar to

P(Yi = k | xi ) = E[yik |xi ] = exp(x′iβk).

That is, K independent log regressions for each class k .

The full regression is yik ∼ Poisson(exp[x′iβk ]), which is the glm

for ‘count response’. Deviance is ∝
∑n

i=1 exp(x′iβk)− yi (x′iβk).
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Distributed Multinomial Regression

Since each yik ∼ Poisson(ex′iβk ) regression is independent,

wouldn’t it be faster to do these all at the same time? Yes!

dmr function in the distrom library does just this.

In particular, dmr minimizes

n∑
i=1

[exp(x′iβk)− yik(x′iβk)] + λk
∑
j

|βjk |

along a path of λk in parallel for every response class k.

We then use AICc to get a different λ̂k for each k .

You can use β̂1 . . . β̂K as if they are for a multinomial logit.

The intercepts differ from glmnet’s, but that’s a wash anyways.
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DMR

dmr is a faster way to fit multinomial logit in parallel.

It’s based on gamlr, so the syntax will be familiar.

dmr(cl, covars, counts, ...)

I covars is x.

I counts is y. Can be a factor variable.

I ... are arguments to gamlr.

I cl is a parallel socket cluster.

It takes coef and predict as you’re used to.

The returned dmr object is actually a list of K gamlr objects, and

you can call plot, etc, on each of these too if you want.
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“ to compute in parallel ”

do many calculations at the same time on different processors.

Supercomputers have long used parallelism for massive speed.

Since 2000’s, it has become standard to have many processor

‘cores’ on consumer machines. Even my phone has 4.

You can take advantage of this without even knowing.

I Your OS runs applications on different cores.

I Videos run on processing units with 1000s of tiny cores.

And numeric software can be set up to use multiple processors.

e.g., if you build R ‘from source’, you can set this up.
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Parallel Computing in R

R’s parallel library lets you take advantage of many cores.

It works by organizing clusters of processors.

To get a cluster of cores do cl <- makeCluster(4)

You can do detectCores() to see how many you have.

If you’re on a unix machine (mac/linux), you can ask for

makeCluster(4,type="FORK") and it will often be faster.

After building cl, just pass it to dmr and you’re off to the [parallel]

races. Use stopCluster(cl) when you’re done.

Note: this requires your computer is setup for parallelization. This

should be true, but if not you can run dmr with cl=NULL.
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DMR for glass data
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The vertical lines show AICc selection: note it moves!

Note that glmnet cv.min rule chose log λ̂ ≈ 5.
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