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Model Decisions and Model Building

Out-of-Sample vs In-Sample performance

Stepwise strategies

Regularization and the LASSO

OOS experiments and Cross Validation

Information Criteria

I AIC and the corrected AICc

I BIC
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Variable Selection as Model Selection

Suppose we observe y , an outcome of interest, and x = (x1, . . . , xp)′

a set of potential explanatory variables or predictors.

The variable selection problem:

To find the “best” subset of x ’s for predicting y

Particularly of interest when p is large and x1, . . . , xp is thought to

contain many redundant or irrelevant variables.

Given a set of covariates x , the model is always E[y |x] = f (x′β).

I Gaussian (linear): y |x ∼ N(x′β, σ2).

I Binomial (logistic): P(y = 1|x) = ex′β/(1 + ex′β).
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Some basic facts about linear models...

Estimation of β: Maximize Likelihood ⇐⇒ Minimize Deviance

Likelihood LHD(β) is

P(data |β) = P(y1|x1,β)× P(y2|x2,β) · · · × P(yn|xn,β).

Deviance dev(β) is proportional to − log LHD(β).

β̂ denotes the maximum likelihood estimator of β (the most likely

value of β to have generated the data)

Goodness-of-fit (GOF) is summarized by

R2 = 1− dev(β̂)

dev(β = 0)
.
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The R2 we really care about is Out-Of-Sample (OOS) R2.

The difference between in and out of sample R2 is what data are

used to fit β̂ and what the deviances are calculated on.

Example: Linear Regression

For In-Sample (IS) R2, we have data [x1, y1] . . . [xn, yn] and you

use this data to fit β̂. The deviance is then

dev(β̂) =
n∑

i=1

(yi − x′i β̂)2.

For Out-Of-Sample (OOS) R2, observations 1...n are still used to

fit β̂ but the deviance is now calculated over new observations, say

dev(β̂) =
n+m∑
i=n+1

(yi − x′i β̂)2.
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Example: Semiconductor Manufacturing Processes

Very complicated operation

Little margin for error.

Hundreds of diagnostics

Useful or debilitating?

We want to focus reporting and

better predict failures.

xi is a vector of 200 input signals, yi is binary PASS/FAIL

There are 100/1477 failures in the dataset.

Logistic regression for failure of chip i is

pi = P(faili |xi ) = eα+x′iβ/(1 + eα+x′iβ)
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Semiconductor FDR Control

The full model has R2 = 0.56 (based on binomial deviance).

The p-values for these 200 coefficients:
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Some are clustered at zero, the rest sprawl out to one.

FDR of q = 0.1 yields α = 0.0122 p-value rejection cut-off.

Implies 25 ‘significant’, of which approx 22-23 are true signals.

7



Semiconductors Continued

A cut model, using only these 25 signals, has R2
cut = 0.18.

This is much smaller than the full model’s R2
full = 0.56.

In-Sample (IS) R2

/ R2 always increases with more covariates.

The larger the model, the more freedom to fit given data.

But how well does each model predict new (unseen) data?

/ We can’t use In-Sample R2 for model comparisons.

An Out-Of-Sample (OOS) R2

(1) split the data into 10 random subsets (‘folds’).

(2) repeat 10 times: fit model β̂ using only 9/10 of data,

and record R2 on the left-out subset.

, These OOS R2 give us a sense of how well each model can

predict data it has not yet seen.
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OOS experiment for semiconductor failure

We gain predictive accuracy by dropping variables.

full cut
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Cut model has mean OOS R2 of 0.09, about 1/2 in-sample R2.

The full model is much worse and, more importantly, more variable!

Attention: Why negative R2?
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OOS experimentation

/ In-Sample R2 can be misleadingly optimistic.

Using OOS experiments to choose the best model is called cross

validation. It will be a big part of our big data lives.

Selection of ‘the best’ model is at the core of all big data.

But before getting to selection, we first need strategies to

come up with a good set of candidate

models to choose from.

HOW?
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FDR as a selection tool?

A heretical way to think about ‘q’: a tuning parameter?

Maybe we grab models for q = 0.1, 0.2, . . . and compare?

Problems with testing/FDR:

/ FDR theory requires independence between tests.

/ In multiple regression, multicollinearity causes problems.

Given two highly correlated x ’s, you can get big p-values where

neither variable is significant. In addition, p-values based on the

full model can only be obtained when p < n.

/ In one-at-a-time regression (p models with only one x variable),

bringing together variables that are useful individually does not

mean that they will be useful collectively.
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Forward stepwise regression

With p predictors, there are 2p models to choose from.

(Semiconductor example: 2200 ≈ 1.6× 1060)

/ We cannot enumerate them all.

Forward stepwise: a heuristic model search procedure

(1) start with a simple ‘null’ model (β = 0),

(2) incrementally update fit (one-variable at a time) to allow for

slightly more complexity.

Better than backwards methods

I The ‘full’ model can be expensive or tough to fit, while the

null model is usually available in closed form.

I Jitter the data and the full model can change dramatically

(because it is overfit). The null model is always the same.

Stepwise approaches are myopic: they find the best solution locally

at each step, without much thought about global solution.
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Naive forward stepwise regression

The step() function in R executes a common stepwise routine:

(1) Fit all univariate models. Choose that with highest (IS) R2

and put that variable – say x(1) – in your model.

(2) Fit all bivariate models including x(1) (y ∼ β(1)x(1) + βjxj),

and add xj from one with highest IS R2 to your model.

...

? When to stop?

When adding a variable does not improve the model much.

You stop when some model selection rule (e.g. AIC) is lower for

the current model than for any of the models that add one

variable. We will talk about model selection rules later.
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Forward stepwise regression in R

Easiest way to step(): run null and full regressions.

null = glm(y ~ 1, data=D)

full = glm(y ~ ., data=D)

fwd = step(null, scope=formula(full), dir="forward")

scope is the biggest possible model.

Iterate for interactions: fwd2 = step(fwd, scope=.^2, ...

Example: semiconductors...
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Variable selection options so far...

Subset Selection (SS): Enumerate all candidate models by

applying maximum likelihood estimation (MLE) for each subset of

coefficients, with the rest set to zero.

/ SS is impossible for p as small as 50!

Forward Stepwise is a faster heuristic.

/ step() is still very slow (e.g., 1.5 min for tiny semiconductors)

A related subtle (but massively important) issue is stability.

With small n (relative to p), MLEs have high sampling variability:

they change a lot from one dataset to another. So which MLE

model is ‘best’ changes a lot.

/ Predictions based upon the ‘best’ model will have high variance

 big expected errors.
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Regularization

The general idea behind regularization:

impose restrictions on the MLE estimates such that they are

suitably disciplined (stable and purposeful).

Variable selection achieved with estimation rather than model

comparisons/testing!

What do we mean by ‘suitable restrictions’?

I We would like our estimates β̂ to be less variable,

I We would like our estimates β̂ to yield better prediction,

I We would like our estimates β̂ to have exact zeros.

We will penalize solutions β̂ that are not desirable. Ultimately, we

are departing from optimality to stabilize the system (bias-variance

tradeoff).
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Regularization continued

Using all predictors x1, . . . , xp, the maximum likelihood estimator

β̂MLE minimizes deviance:

β̂MLE = arg min
β

{
−2

n
log LHD(β)

}
.

β̂MLE can only be obtained when p < n, it can be unstable and it

cannot achieve exact zeros. /

The penalized maximum likelihood estimator β̂PMLE minimizes

deviance plus a penalty:

β̂PMLE = arg min
β

{
−2

n
log LHD(β) + pen(β)

}
.

Penalty incurs cost when choosing solutions that are far from our

preferences  β̂PMLE is ultimately biased.
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Decision theory: Cost in Estimation

Decision theory is about how to behave optimally under

uncertainty. It is based on the idea that choices have costs.

Estimation and hypothesis testing: what are the costs?

Estimation:

Deviance is the cost of distance between data and the model.

Recall:
∑

i (yi − ŷi )
2 or −

∑
i yi log(p̂i )− (1− yi ) log(1− p̂i ).

Testing:

Since β̂j = 0 is safe, it should cost us to decide otherwise.

⇒ The cost of β̂ is deviance plus a penalty away from zero.

Cost: adding too many parameters in the model  
sparsity-promoting penalties

Coefficients vary too much (time series)  
smoothness-promoting penalties
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Regularized Regression

Sparsity-inducing penalization:

β̂PMLE = arg min
β

−2

n
log LHD(β) + λ

p∑
j=1

pen(βj)

 ,

where λ > 0 is the penalty weight and pen(βj) is a cost (penalty)

for coefficient βj .

pen(βj) will be lowest at βj = 0 and we pay more for |βj | > 0.

Some penalty options:
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Penalization can yield automatic variable selection

The minimum of a smooth + spiky function can be at the spike.

-1.0 0.0 1.0 2.0

0
1

2
3

4

β̂

de
vi
an
ce

-1.0 0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

β̂
pe
na
lty

-1.0 0.0 1.0 2.0

1
2

3
4

5
6

β̂

de
vi

an
ce

 +
 p

en
al

ty

The PMLE estimator is shrunk to zero  automatic variable

selection ,.

For instance, LASSO or Spike-and-Slab LASSO have this property.

The way the shrinkage is done is different.

You can think of the LASSO as the modern least squares.
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More about the LASSO

The LASSO fits β̂PMLE to minimize − 2
n log LHD(β) + λ

∑
j |βj |.

How to pick λ?

We’ll do this for a sequence of penalties λ1 > λ2... > λT .

Then we can apply model selection tools to choose best λ̂.

LASSO path estimation:

Start with big λ1 so big that β̂λ1
= 0 (null model).

For t = 2 . . .T : update β̂λt−1
to be optimal under λt < λt−1.

Since estimated β̂λt
changes smoothly along this path:

, It’s fast! Each update is easy.

, It’s stable: optimal λt may change a bit from sample to

sample, but that won’t affect the model much.

It’s a better version of forward stepwise selection.
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Path plots

The whole enterprise is easiest to understand visually.

The algorithm moves right to left.

The y -axis is β̂ (each line a different β̂j) as a function of λt .
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Example: Comscore web browser data

The previous plot is household log-online-spend regressed onto %

of time spent on various websites (each βj a different site).

Comscore (available via WRDS) records info on browsing

and purchasing behavior for annual panels of households.

Data extracted for the 1000 most heavily trafficked websites and

for 10,000 households that spent at least 1$ in 2006.

Why do we care? Predict consumption from browser history.

e.g., to control for base-level spending, say, in estimating

advertising effectiveness.
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Add-on Packages for R

Much of R’s capability comes from its packages,

little pieces of purpose-specific statistical software.

You can add-on with the install.packages menu or cmd.

I A good mirror is http://cran.rstudio.com.

I You should ‘install dependencies’ when adding packages.

I Every package has a website on cran.r-project.org.

Today we’ll be using

I gamlr: L0 to L1 penalized regression.

I Matrix: fancy sparse matrices.

Once installed, do (e.g.) library(gamlr) to use a package.
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LASSO Software

There are many packages for fitting lasso regressions in R.

glmnet is most common. gamlr is a useful alternative.

These two are very similar, and they share syntax.

Big difference is what they do beyond a simple lasso:.

glmnet does an ‘elastic net’: pen(β) = |β|+ νβ2.

gamlr does a ‘gamma lasso’: pen(β) ≈ log(ν + |β|).

Since we stick mostly to lasso, they’re nearly equivalent for us.

gamlr just makes it easier to apply some model selection rules.

Both use the Matrix library representation for sparse matrices.

25



Diversion: Simple Triplet Matrices

Often, your data will be very sparse (i.e, mostly zeros).

It is then efficient to ignore zero elements in storage.

A simple triplet matrix (STM) has three key elements:

The row ‘i’, column ‘j’, and entry value ‘x’.

Everything else in the matrix is assumed zero.

For example: −4 0

0 10

5 0

 is stored as


i = 1, 3, 2

j = 1, 1, 2

x = −4, 5, 10


The Matrix library provides STM storage and tools.

See comscore.R for how to get data into this format.
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Running a LASSO

Once you have your x and y, running a lasso is easy.

spender <- gamlr(xweb, log(yspend))

plot(spender) # nice path plot

spender$beta[c("mtv.com","zappos.com"),]

And you can do logistic lasso regression too

gamlr(x=SC[,-1], y=SC$FAIL, family="binomial")

You should make sure that y is numeric 0/1 here, not a factor.

Some common arguments

I verb=TRUE to get progress printout.

I nlambda: T , the length of your λ grid.

I lambda.min.ratio: λ1/λT .

See ?gamlr for details and help.
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Scale Matters

Penalization is sensitive to the scale of x1, . . . , xp.

e.g., xβ has the same effect as (2x)β/2, but |β| is twice as much

penalty as |β/2|.

It would not be ‘fair’ to penalize β′s equally if x ′s were not on the

same scale.

You can multiply βj by sd(xj) in the cost function to standardize.

That is, minimize − 2
n log LHD(β) + λ

∑
j sd(xj)|βj |.

⇒ βj ’s penalty is calculated per effect of 1SD change in xj .

gamlr and glmnet both have standardize=TRUE by default.

You only use standardize=FALSE if you have good reason.

e.g., in today’s homework. But usually standardize=TRUE.
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How much regularization?

The LASSO minimizes

−2

n
log LHD(β) + λ

p∑
j=1

|βj |.

, This ‘sparse regularization’ auto-selects the variables.

Sound too good to be true?

/ You need to choose λ.

Think of λ > 0 as a signal-to-noise filter: like squelch on a radio.

We’ll use cross validation or information criteria to choose.

Path algorithms are key to the whole framework:

? They let us quickly enumerate a set of candidate models.

? This set is stable, so selected ‘best’ is probably pretty good.
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Prediction vs Interpretability

Model selection can be used to tackle two tasks:

(1) learning about the data-generating-mechanism

(what are the contributing variables and can we interpret

them?)

(2) prediction.

None of your models will be ‘true’ for complicated HD systems.

Instead, just try to get as close to the truth as possible.

Parsimony principle: If two models do similarly well in predicting

the unseen data, choose the simpler one.

I Overly simple models will ‘underfit’ available patterns (λ too

large).

I Complicated models ‘overfit’, and make noisy predictions (λ

too small).

The goal is to find the sweet spot in the middle.
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Prediction-driven Model Selection

A recipe for model selection.

(1) Find a manageable set of candidate models

(i.e., such that fitting all models is fast).

(2) Choose amongst these candidates the one with

best predictive performance on unseen data.

X(1) is what the LASSO paths β̂λ1
, . . . , β̂λT

provide.

X(2) can be achieved with out-of-sample experimentation.

We need to estimate the prediction accuracy associated with each

model when applied on future unseen data.

Recall that predictive performance can be measured with

‘deviance’.
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Out-of-sample prediction experiments

We already saw an OOS experiment with the semiconductors.

Implicitly, we were estimating predictive deviance (via R2).

The procedure of using such experiments to do model assessments

is called Cross Validation (CV). It follows a basic algorithm:

For k = 1 . . .K ,

I Use a random subset of nk < n observations to ‘train’ the

model.

I Record the error rate for predictions from

this fitted model on the left-out observations.

We’ll usually measure ‘error rate’ as deviance. But alternatives

include MSE, misclass rate, integrated ROC, or error quantiles.

You care about both average and spread of OOS error.
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K -fold Cross Validation

One option is to just take

repeated random samples.

It is better to ‘fold’ your data.

• Sample a random ordering of the data

(important to avoid order dependence)

• Split the data into K folds: 1st 100/K%, 2nd 100/K%, etc.

• Cycle through K CV iterations with a single fold left-out.

This guarantees each observation is left-out for validation,

and lowers the sampling variance of CV model selection.

Leave-one-out CV, with K = n, is nice but takes a long time.

K = 5 to 10 is fine in most applications.
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CV LASSO

The LASSO path indexed by λ1 > λ2 > · · · > λT gives T fitted

coefficient vectors, β̂λ1
. . . β̂λT

, each yielding deviance for new

data:

− logP(ynew | Xnew , β̂λT
)

Cross-validation to select λ:

For a given set of candidate penalties λ1 . . . λT and for each of

k = 1 . . .K folds,

(1) Fit the path β̂
k

λ1
. . . β̂

k

λT
on all data except fold k .

(2) Get fitted deviance on left-out data: − logP(yk | Xk , β̂
k

λt
).

This gives us K draws of OOS deviance for each λt .

Finally, use these to choose the ‘best’ λ̂, then re-fit the model to

all of the data by minimizing − 2
n log LHD(β) + λ̂

∑
j |βj |.
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How do we choose the best λ̂?

Again, the routine is most easily understood visually.

Both selection rules are good; 1se has extra bias for simplicity.
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CV Lasso

Both gamlr and glmnet have functions to wrap this all up.

The syntax is the same; just preface with cv.

cv.spender <- cv.gamlr(xweb, log(yspend))

Then, coef(cv.spender) gives you β̂t at the ‘best’ λt

I select="min" gives λt with min average OOS deviance.

I select="1se" defines best as biggest λt with average OOS

deviance no more than 1SD away from the minimum.

1se is default, and balances prediction against false discovery.

min is purely focused on predictive performance.
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Problems with Cross Validation

/ It is time consuming: When estimation is not instant,

fitting K times can become infeasible even for K in 5-10.

/ It can be unstable (especially when n is small): imagine doing

CV on many different samples. There can be large variability on

the model chosen.

Still, some form of CV is used in most DM applications.

Also, be careful to not cheat: for example, with the FDR cut

model we’ve already used the full n observations to select the 25

strongest variables. It is not surprising they do well ‘OOS’.

The rules: never use the same data twice (for selection and

validation).
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Alternatives to CV: Information Criteria

‘Information Criteria’ (IC): measure how much information is lost

when we use our model to represent our data. They approximate

distance between a model and ‘the ideal’.

IC provide an avenue for in-sample model comparisons, by

trading off in-sample deviance and model complexity.

You can apply them by choosing the model with minimum IC.

Most common is Akaike’s AIC = Deviance + 2df .

df = ‘degrees of freedom’ used in your model fit.

For lasso and MLE, this is just the # of nonzero β̂j .

For example, the summary.glm output reports

Null deviance: 731.59 on 1476 degrees of freedom

Residual deviance: 599.04 on 1451 degrees of freedom

AIC: 651.04

and many recommend picking the model with smallest AIC. Note

the d.o.f. in R output is ‘d.o.f. left after fit’: n − df .
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AIC overfits in high dimensions

The AIC is actually estimating OOS deviance: what your deviance

would be on another independent sample of size n.

IS deviance is too small, since the model is tuned to this data.

Some deep theory shows that OOS-IS deviance ≈ 2df .

⇒ AIC ≈ OOS deviance.

Its common to claim this approx (i.e., AIC) is good for ‘big n’.

Actually, its only good for big n/df .

In Big Data, df (# parameters) can be huge. Often df ≈ n.

In this case the AIC will be a bad approximation: it overfits!
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AIC corrected: AICc

AIC approximates OOS deviance, but does a bad job for big df .

In linear regression an improved approx to OOS deviance is

AICc = Deviance + 2df
n

n − df − 1

This is the corrected AIC, or AICc.

It also works nicely in logistic regression, or for any glm.

Notice that for big n/df , AICc ≈ AIC. So always prefer AICc.
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gamlr uses AICc

It’s marked on the path plot
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And it is the default for coef.gamlr

B <- coef(spender)[-1,]

B[c(which.min(B),which.max(B))]
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-0.998143 1.294246
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Another option: Bayes IC

The BIC is Deviance + log(n)× df .

This looks just like AIC, but comes from a very different place.

BIC ≈ − logP(Mb|data), the ‘probability that model b is true’.

P(Mb|data) =
P(data,Mb)

P(data)
∝ P(data|Mb)︸ ︷︷ ︸

LHD

P(Mb)︸ ︷︷ ︸
prior

The ‘prior’ is your probability that a model is true before you saw

any data. BIC uses a ‘unit-info’ prior: N
[
β̂, 2nvar(β̂)−1

]
AICc tries to approximate OOS deviance.

BIC is trying to get at the ‘truth’.
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IC and CV on the Comscore Data
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The take home message: AICc curve looks like CV curve.

In practice, BIC works more like the 1se CV rule.

But with big n it chooses too simple models (it underfits).

43



IC and CV on the Comscore Data
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With all of these selection rules, you get a range of answers.

If you have time, do CV. But AICc is fast and stable.

If you are worried about false discovery, tend towards BIC/1se.
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