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Abstract

Rotational post-hoc transformations have traditionally played a key role in enhancing the in-
terpretability of factor analysis. Regularization methods also serve to achieve this goal by pri-
oritizing sparse loading matrices. In this work, we bridge these two paradigms with a unifying
Bayesian framework. Our approach deploys intermediate factor rotations throughout the learning
process, greatly enhancing the effectiveness of sparsity inducing priors. These automatic rotations
to sparsity are embedded within a PXL-EM algorithm, a Bayesian variant of parameter-expanded
EM for posterior mode detection. By iterating between soft-thresholding of small factor load-
ings and transformations of the factor basis, we obtain (a) dramatic accelerations, (b) robustness
against poor initializations and (c) better oriented sparse solutions. To avoid the pre-specification
of the factor cardinality, we extend the loading matrix to have infinitely many columns with the
Indian Buffet Process (IBP) prior. The factor dimensionality is learned from the posterior, which
is shown to concentrate on sparse matrices. Our deployment of PXL-EM performs a dynamic
posterior exploration, outputting a solution path indexed by a sequence of spike-and-slab priors.
For accurate recovery of the factor loadings, we deploy the Spike-and-Slab LASSO prior, a two-
component refinement of the Laplace prior (Ročková, 2015). A companion criterion, motivated
as an integral lower bound, is provided to effectively select the best recovery. The potential of
the proposed procedure is demonstrated on both simulated and real high-dimensional data, which
would render posterior simulation impractical.

1 Bayesian Factor Analysis Revisited

Latent factor models aim to find regularities in the variation among multiple responses, and relate

these to a set of hidden causes. This is typically done within a regression framework through a linear

superposition of unobserved factors. The traditional setup for factor analysis consists of an n × G
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matrix Y = [y1, . . . ,yn]′ of n independent G-dimensional vector observations. For a fixed factor

dimension K, the generic factor model is of the form

f(yi | ωi,B,Σ)
ind∼ NG(Bωi,Σ), ωi ∼ NK(0, IK), (1.1)

for 1 ≤ i ≤ n, where Σ = diag{σ2
j}Gj=1 is a diagonal matrix of unknown positive scalars, ωi ∈ RK

is the ith realization of the unobserved latent factors, and B ∈ RG×K is the matrix of factor loadings

that weight the contributions of the individual factors. Marginally, f(yi | B,Σ) = NG(0,BB′ +

Σ), 1 ≤ i ≤ n, a decomposition which uses at most G× (K + 1) parameters instead of G(G+ 1)/2

parameters in the unconstrained covariance matrix. Note that we have omitted an intercept term,

assuming throughout that the responses have been centered.

Fundamentally a multivariate regression with unobserved regressors, factor analysis is made more

more challenging by the uncertainty surrounding the factor dimensionality K and the orientation

of the regressors. A persistent difficulty associated with the factor model (1.1) has been that B is

unidentified. In particular, any orthogonal transformation of the loading matrix and latent factorsBωi

= (BP )(P ′ωi) yields exactly the same distribution for Y . Although identifiability is not necessary

for prediction or estimation of the marginal covariance matrix (Bhattacharya and Dunson, 2011),

non-sparse orientations diminish the potential for interpretability, our principal focus here.

Traditional approaches to obtaining interpretable loading patterns have entailed post-hoc rotations

of the original solution. For instance, the varimax post-processing step (Kaiser, 1958) finds a rota-

tion P that minimizes a complexity criterion and yields new loadings that are either very small (near

zero) or large. As an alternative, regularization methods prioritize matrices with exact zeroes via a

penalty/sparsity prior (Witten et al., 2009; Carvalho et al., 2008). The main thrust of this contribution

is to cross-fertilize these two paradigms within one unified framework. In our approach, model rota-

tions are embedded within the learning process, greatly enhancing the effectiveness of regularization

and providing an opportunity to search for a factor basis which best supports sparsity, when it in fact

exists. Going further, our approach does not require pre-specification of the factor cardinality K. As

with similar factor analyzers (Knowles and Ghahramani, 2011; Bhattacharya and Dunson, 2011), here
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the loading matrixB is extended to include infinitely many columns.

Our approach begins with a prior on the individual elements in B = {βjk}G,∞j,k=1 that induces

posterior zeroes with high-probability. Traditionally, this entails some variant of a spike-and-slab prior

that naturally segregates the important coefficients from the ignorable (West, 2003; Carvalho et al.,

2008; Rai and Daumé, 2008; Knowles and Ghahramani, 2011; Frühwirth-Schnatter and Lopes, 2009).

A particularly appealing spike-and-slab variant has been the mixture of a point mass spike and an

absolutely continuous slab distribution which, unfortunately, poses serious computational challenges

in high-dimensional data.

We address this challenge by developing a tractable inferential procedure that performs determin-

istic rather than stochastic posterior exploration. At the heart of our approach is a feasible contin-

uous relaxation of the point-mass spike-and-slab mixture, the Spike-and-Slab LASSO (SSL) prior

of Ročková (2015). This prior transforms the obstinate combinatorial search problem into one of

optimization in continuous systems, permitting the use of EM algorithms (Dempster et al., 1977), a

strategy we pursue here.

The search for promising sparse factor orientations is greatly enhanced with data augmentation

by expanding the likelihood with an auxiliary rotation matrix. Exploiting the invariance of the factor

model, we propose a PXL-EM (parameter expanded likelihood EM) algorithm, a variant of the PX-

EM algorithm of (Liu et al., 1998) and the one-step late PX-EM of van Dyk and Tang (2003) for

Bayesian factor analysis. PXL-EM automatically rotates the loading matrix as a part of the estimation

process, gearing the EM trajectory along the orbits of equal likelihood. The PXL-EM algorithm is far

more robust against poor initializations, converging dramatically faster than the parent EM algorithm.

The SSL prior is coupled with the Indian Buffet Process (IBP) prior, which provides an opportu-

nity to learn about the ambient factor dimensionality. Confirming its potential for this purpose, we

provide a tail bound on the expected posterior factor dimensionality, showing that it reflects the true

levels of underlying sparsity. In over-parametrized models with many redundant factors, inference

about the factor cardinality can be hampered by the phenomenon of factor splitting, i.e. the smearing
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of factor loadings across multiple correlated factors. Such factor splitting is dramatically reduced

with our approach, because our IBP construction prioritizes lower indexed loadings and the PXL-EM

rotates towards independent factors.

A variety of further steps are proposed to enhance the effectiveness of our approach. To facilitate

the search for higher posterior modes we implement a dynamic posterior exploration with a sequential

reinitialization of PXL-EM along a ladder of increasing spike penalties. For selection among iden-

tified posterior modes, we recommend an evaluation criterion motivated as an integral lower bound

to a posterior probability of the implied sparsity pattern. Finally, we introduce an optional varimax

rotation step within PXL-EM, to provide further robustification against local convergence issues.

The paper is structured as follows. Section 2 introduces our hierarchical prior formulation and

shows some properties of the posterior. Section 3 develops the construction of our PXL-EM al-

gorithm. Section 4 describes the dynamic posterior exploration strategy for PXL-EM deployment.

Section 5 derives and illustrates our criterion for factor model comparison. Section 6 illustrates the

potential of varimax robustification. Sections 7 presents an applications of our approach on real

high-dimensional data. Section 8 concludes with a discussion. Further developments and proofs are

provided in the Supplemental material.

2 Infinite Factor Model with the Indian Buffet Process

The cornerstone of our Bayesian approach is a hierarchically structured prior on infinite-dimensional

loading matrices, based on the Spike-and-Slab LASSO (SSL) prior of Ročková (2015). Independently

for each loading βjk, we consider a two-point mixture of Laplace components: a slab component with

a common penalty λ1, and a spike component with a penalty λ0k that is potentially unique to the kth

factor. More formally,

π(βjk | γjk, λ0k, λ1) = (1− γjk)ψ(βjk | λ0k) + γjkψ(βjk | λ1), (2.1)

where ψ(β | λ) = λ
2

exp{−λ|β|} is a Laplace prior with mean 0 and variance 2/λ2 and λ0k >> λ1 >

0, k = 1, . . .∞. The prior (2.1) will be further denoted as SSL(λ0k, λ1). The SSL priors form a
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continuum between a single Laplace (LASSO) prior, obtained with λ0k = λ1, and the point-mass

mixture prior, obtained as a limiting case when λ0k →∞.

Coupled with a prior on γjk, SSL(λ0k, λ1) generates a spike-and-slab posterior that performs

“selective shrinkage” (Ishwaran and Rao, 2005; Ročková, 2015). Posterior modes under the SSL prior

are adaptively thresholded, smaller values shrunk to exact zeroes. This is in sharp contrast to spike-

and-slab priors with a Gaussian spike (George and McCulloch, 1993; Ročková and George, 2014),

whose non-sparse posterior modes must be thresholded for variable selection. The exact sparsity here

is crucial for anchoring on interpretable factor orientations and alleviating identifiability issues.

For a prior over the feature allocation matrix Γ = {γjk}G,∞j,k=1, we adopt the Indian Buffet Pro-

cess (IBP) prior (Griffiths and Ghahramani, 2005), which defines an exchangeable distribution over

equivalence classes2 [Γ] of infinite-dimensional binary matrices. Formally, the IBP with an intensity

parameter α > 0 arises from the beta-Bernoulli prior

π(γjk|θk)
ind∼ Bernoulli(θk), (2.2)

π(θk)
ind∼ B

( α
K
, 1
)

by integrating out the θk’s and by taking the limit K →∞ (Griffiths and Ghahramani, 2005). Due to

its flexibility, the IBP prior has been used in various factor analytic contexts (Knowles and Ghahra-

mani, 2011; Rai and Daumé, 2008; Paisley and Carin, 2009). Our IBP deployment differs from these

existing procedures in two important aspects. First, we couple IBP with a continuous spike-and-slab

prior rather than the point-mass mixture (compared with Knowles and Ghahramani (2011); Rai and

Daumé (2008)). Second, the IBP process is imposed here on the matrix of factor loadings rather than

on the matrix of latent factors (compared with Paisley et al. (2012)).

Whereas posterior simulation with the IBP is facilitated by margining over θk in (2.2) (Knowles

and Ghahramani, 2011; Rai and Daumé, 2008), we instead proceed conditionally on a particular

ordering of the θk’s. As with similar deterministic algorithms for sparse latent allocation models

2Each equivalence class [Γ] contains all matrices Γ with the same left-ordered form, obtained by ordering the columns

from left to right by their binary numbers.
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(Paisley and Carin, 2009), our EM algorithms capitalize on the stick-breaking representation of the

IBP derived by Teh et al. (2007).

Theorem 2.1. (Teh et al., 2007)) Let θ(1) > θ(2) > ... > θ(K) be a decreasing ordering of θ =

(θ1, . . . , θK)′, where each θk
iid∼ B

(
α
K
, 1
)
. In the limit as K → ∞, the θ(k)’s obey the following

stick-breaking law: θ(k) =
∏k

l=1 νl, where νl
iid∼ B(α, 1).

Remark 2.1. The implicit ordering θ(1) > θ(2) > ... > θ(K) induces a soft identifiability constraint

against the permutational invariance of the factor model.

To sum up, our hierarchical prior on infinite factor loading matrices B ∈ RG×∞, further referred

to as SSL-IBP({λ0k};λ1;α), is as follows:

π(βjk | γjk) ∼ SSL(λ0k, λ1), γjk | θ(k) ∼ Bernoulli[θ(k)], θ(k) =
k∏
l=1

νl, νl
iid∼ B(α, 1). (2.3)

Note that the inclusion of loadings associated with the kth factor is governed by the kth largest inclu-

sion probability θ(k). According to Theorem 2.1, these θ(k) decay exponentially with k, hampering the

activation of binary indicators γjk when k is large, and thereby controlling the growth of the ambient

factor dimensionality. Thus, the most prominent features are associated with small column indices k.

The prior specification is completed with a prior on diagonal elements of Σ. We assume indepen-

dent inverse gamma priors

σ2
1, . . . , σ

2
G

iid∼ IG(η/2, ηξ/2) (2.4)

with the relatively noninfluential choice η = 1 and ξ = 1.

The stick-breaking representation in Theorem 2.1 suggests a natural truncated approximation to

the IBP under which θ(k) = 0 for all k > K?. By choosing K? suitably large, and also assuming

βjk = 0 for all k > K?, this approximation will play a key role in the implementation of our EM

algorithms. The issue remains how to select the order of truncation K?.

The truncated loading matrix BK?

yields a marginal covariance matrix ΛK? = BK?

BK?′
+ Σ,

which can be made arbitrarily close to Λ by considering K? large enough. Measuring the closeness
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of such approximation in the sup-norm metric d∞(Λ,ΛK?

) = max1≤j,m≤G |Λjk − Λ?
mk|, we show

(Lemma G1 in Supplemental material) that P[d∞(Λ,ΛK?

) ≤ ε] > 1 − ε for K? sufficiently large.

Whereas these considerations are based solely on the prior distribution, in the next section we provide

practical guidance for choosing K? based on the posterior distribution.

2.1 Learning about Factor Dimensionality

In this section, we investigate the ability of the posterior distribution to identify the factor dimension-

ality, taking into account the rotational invariance of the likelihood. To begin, we show that the IBP

prior concentrates on sparse matrices.

Note that the SSL-IBP prior puts zero mass on factor loading matrices with exact zeros. In such

contexts, Pati et al. (2014) and Ročková (2015) deploy a generalized notion of sparsity, regarding

coefficients below a certain threshold as negligible. For our continuous SSL-IBP prior, we proceed

similarly with the threshold δ(λ1, λ0, θ) = 1
λ0−λ1 log

[
λ0(1−θ)
λ1θ

]
, the intersection point between the

θ-weighted spike-and-slab LASSO densities with penalties (λ0, λ1).

Definition 2.1. Given a loading matrix3 B, define the “effective factor dimensionality" K(B) as the

largest column index K such that |βjk| < δ(λ1, λ0k, θ(k)) for k > K and j = 1, . . . , G.

The SSL-IBP prior induces an implicit prior distribution on the effective factor dimensionality. In

the next theorem, we show that this prior rewards sparse matrices in the sense that it is exponentially

decaying. The proof is presented in Section G.1 of the Supplemental material.

Theorem 2.2. Let BG×∞ be distributed according to the SSL-IBP({λ0k}, λ1, α) with an intensity

parameter α = c/G and λ1 < e−2, where 0 < c < G. Then for a suitable constant D > 0, we have

P[K(B) > K] < D e−K log(1+G/c). (2.5)

Exponentially decaying priors on the dimensionality are essential for obtaining optimally behav-

ing posteriors in sparse situations. In finite sparse factor analysis, such priors were deployed by Pati

3assumed to be left-ordered
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et al. (2014) to obtain rate-optimal posterior concentration around any true covariance matrix in spec-

tral norm, when the dimension G = Gn can be much larger than the sample size n.

We now proceed to show the property (2.5) penetrates through the data into the posterior. Let us

first introduce some additional notation and assumptions. We assume that (G,K0) increase with n

and thereby supply the index n. Let B0n = [β1
0,β

2
0, . . . ] be the (Gn ×∞) true loading matrix with

K0n < Gn nonzero columns (ordered to be the leftmost ones) and σ0j, 1 ≤ j ≤ G, the true residual

variances. Furthermore, assume that each of the K0n active columns satisfies ||βk0||0 ≤ Snk < Gn/2,

1 ≤ k ≤ K0n. Let sminn denote the smallest eigenvalue of Λ0n, the true covariance matrix. Let

||B0n||2 ≡ ||[β1
0, . . . ,β

K0n
0 ]||2 be the spectral norm of the sub-matrix of nonzero the columns ofB0n.

We assume the following: (A) n < Gn and n log
√
n < log(Gn+1)

∑
k Snk; (B)

√∑
k Snk/s

min
n →

∞ and
√∑

k Snk/n/s
min
n → 0; (C) ||B0n||2 < mink

√
Snk; and (D) σ2

01 = · · · = σ2
0G = 1. The as-

sumption (A) limits our considerations to high-dimensional scenarios. In addition, the growth of n

should be reasonably slow relative to Gn. The assumption (B)4 requires that the number of estimable

parameters grows slower than n. The assumption (C) is an analog of the assumption (A3) of Pati et

al. (2014) and holds in any case with probability at least 1 − e−C K0 . The assumption (D) avoids the

“singleton" identifiability issue and can be relaxed (Pati et al. (2014)).

The following theorem states that, just like the prior, the posterior also concentrates on sparse

matrices. Namely, the average posterior probability that K(B) “overshoots" the true dimensionality

K0n by a multiple of a true sparsity level goes to zero. The proof is presented in Section G.2 of the

Supplemental material.

Theorem 2.3. Assume model (1.1), where the true loading matrix B0n has K0n nonzero leftmost

columns. For 1 ≤ k ≤ K0n assume
∑Gn

j=1 I(βjk 6= 0) = Snk and Snk/Gn < 1/2. Assume B ∼

SSL-IBP ({λ0k};λ1;α) with α = c/Gn, λ1 < e−2 and λ0k ≥ dG2
nk

3n/Snk, where 0 < d and 0 < c <

G. Assume (A)− (D). Denote by S̄n = 1
K0n

∑K0n

k=1 Snk, then

EB0P
[
K(B) > C K0nS̄n | Y (n)

]
−−−→
n→∞

0. (2.6)

4Under (D), smin
n converges to 1 a.s. as n→∞, whenB0n are iid with mean 0 and variance 1 and Gn > K0n.
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for some C > 0.

Note that K0nS̄n is the actual number of nonzero components in B0. Thus, the tail bound (2.6)

reflects the ability of the posterior to identify the ambient sparsity level. However, it also acknowl-

edges the uncertainty about how the nonzero values are distributed among the columns of B. This

uncertainty is due to the rotational invariance of the likelihood. In the absence of knowledge about

K0nS̄n, one would deploy as many columns as are needed to obtain at least one vacant factor (zero

loading column). Such an empirical strategy may require gradually increasing the number of columns

in repeated runs, or adapting the computational procedure to add extra columns throughout the calcu-

lation. This strategy is justified by Theorem 2.3, which shows that only a finite number of columns is

needed in the presence of sparsity. If scientific context is available about the likely number of factors,

one might like to tune the complexity parameter α of the IBP prior so that it reflects this knowledge.

2.2 Identifiability Considerations

There are two sources of indeterminacy in traditional factor analysis: rotational ambiguity of the

likelihood and lack of information when estimating over-parametrized models.

The rotational invariance of the likelihood manifests itself through a multimodal posterior. This

source of indeterminacy is ameliorated with the SSL prior, which anchors on sparse representations.

This prior promotes factor orientations with many zero loadings by creating ridge-lines of posterior

probability along coordinate axes, radically reducing posterior multimodality and exposing sparse

models. Posterior simulation typically requires identifiability constraints on the allocation of the zero

elements of B, such as lower-triangular forms (Geweke and Zhou, 1996) and their generalizations

(Frühwirth-Schnatter and Lopes, 2009), to prevent the aggregation of probability mass from multiple

modes. Such restrictive constraints are not needed in our mode detection approach. Rather than

impose constraints up front, our approach uses the data to find zero allocation patterns. Given such

an allocation, it can be verified whether the non-zero loadings are conditionally identifiable (up to

column permutations and column sign changes). If not identifiable, the interpretation of such an

over-parameterized model may be problematic. In any case, interpretation will only be meaningful in
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relation to the scientific context of the problem at hand.

To avoid the lack of identifiability that would occur between a singleton factor loading (a single

nonzero loading parameter in a factor) and its idiosyncratic variance, we restrict estimated B̂ to

matrices with at least two nonzero factor loadings per factor (Frühwirth-Schnatter and Lopes, 2009).

The contribution of the singleton can be absorbed by the residual variance parameter. A practical

implementation of this constraint is described in Section 5. Finally, we check to make sure that number

of free parameters does not exceed the number of parameters inBB′+ Σ, which is G(G+ 1)/2. For

suitably sparse B̂, this condition will be met.

3 The Parameter Expanded Likehood EM (PXL-EM)

3.1 The Vanilla EM Algorithm

As a stepping stone towards the PXL-EM development, we first lay out a vanilla EM algorithm,

leveraging the resemblance between factor analysis and multivariate regression. A sparse variant of

the EM algorithm for probabilistic principal components (Tipping and Bishop, 1999), we capitalize

on the ideas behind EMVS (Ročková and George, 2014), a fast method for posterior model mode

detection under spike-and-slab priors in linear regression. To simplify notation, the truncated approx-

imation BK?

will now be denoted by B, for some pre-specified K?. Similarly, Γ = {γjk}G,K
?

j,k=1 and

θ will be the finite vector of ordered inclusion probabilities θ = (θ(1), . . . , θ(K?))
′ and λ0k = λ0 for

k = 1, . . . , K?.

Letting ∆ = (B,Σ,θ), the goal of the EM algorithm is to find parameter values ∆̂ which

are most likely (a posteriori) to have generated the data, i.e. ∆̂ = arg max∆ log π(∆ | Y ). This

is achieved indirectly by iteratively maximizing the expected logarithm of the augmented poste-

rior, treating both the hidden factors Ω = [ω1, . . . ,ωn]′ and Γ as missing data. Given an ini-

tialization ∆(0), the (m + 1)st step of the algorithm outputs ∆(m+1) = arg max∆Q (∆), where

Q (∆) = EΓ,Ω | Y ,∆(m) [log π (∆,Γ,Ω | Y )] ,with EΓ,Ω | Y ,∆(m)(·) denoting the conditional expecta-

tion given the observed data and current parameter estimates at the mth iteration. The E-step is
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obtained with simple and fast closed form updates. The M-step boils down to solving a series of inde-

pendent LASSO regressions, for which fast implementations exist. The IBP stick breaking fractions

are updated with a non-linear program. For a detailed development of the EM algorithm with the

derivation of the E-step and the M-step, we refer the reader to the Supplemental material A. A brief

description of the calculations is presented in Table 1, where the EM algorithm is obtained as a special

case by settingA = IK? .

3.2 Rotational Ambiguity and Parameter Expansion

The rotational invariance of the likelihood inevitably renders the posterior multimodal, hampering

posterior simulation and (global) mode detection. In particular, the EM algorithm outlined in the

previous section is vulnerable to entrapment at local modes in the vicinity of initialization. The lo-

cal convergence issue is exacerbated by strong ties between the loadings and latent factors. Such

couplings cement the initial factor orientation, which may be suboptimal, and affects the speed of

convergence by zigzagging update trajectories. These issues can be alleviated with additional aug-

mentation in the parameter space that can dramatically accelerate the convergence (Liu et al., 1998;

van Dyk and Meng, 2010, 2001; Liu and Wu, 1999; Lewandowski et al., 1999). By embedding the

complete data model within a larger model with extra parameters, we derive a variant of a parameter

expanded EM algorithm (PX-EM by Liu et al. (1998)). This enhancement performs an “automatic

rotation to sparsity", gearing the algorithm towards orientations which best match the prior assump-

tions of independent latent components and sparse loadings. A key to our approach is to employ

the parameter expansion only on the likelihood portion of the posterior, while using the SSL prior to

guide the algorithm towards sparse factor orientations. Thus, we refer to our variant as parameter-

expanded-likelihood EM (PXL-EM).

Our PXL-EM algorithm is obtained with the following parameter expanded version of (1.1)

yi | ωi,B,Σ,A
ind∼ NG(BA−1L ωi,Σ), ωi |A ∼ NK(0,A), A ∼ π(A) (3.1)

for 1 ≤ i ≤ n, where AL denotes the lower Cholesky factor of A, the newly introduced parameter.
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Algorithm: PXL-EM Algorithm for Automatic Rotations to Sparsity
InitializeB = B(0),Σ = Σ(0),θ = θ(0)

Repeat the following steps until convergence
The E-Step

E1: Latent features 〈Ω〉′ = MB′Σ−1Y ′ whereM =
(
B′Σ−1B + IK?

)−1
E2: Latent indicators 〈γjk〉 =

[
1 + λ0

λ1

1−θ(k)
θ(k)

e−|βjk|(λ0−λ1)
]−1

1 ≤ j ≤ G, 1 ≤ k ≤ K?

The M-Step

Set Ỹ =

(
Y

0K
?×K?

)
and Ω̃ =

(
〈Ω〉√
nML

)
For j = 1, . . . , G

M1: Loadings β?j = arg maxβ

{
−||ỹj − Ω̃β||2 − 2σ2j

∑K?

k=1 |βk|λjk
}
,

M2: Variances σ2j = 1
n+1(||ỹj − Ω̃β?j ||2 + 1)

M3: Rotation Matrix A = 1
n〈Ω〉

′〈Ω〉+M
M4: Weights θ = arg maxθQ2(θ) as described in Section A2 (Supplemental material)

The Rotation Step
R: Rotation B = B?AL

Legend: ML is a lower Cholesky factor ofM , 〈X〉 = E[X |B,Σ,θ,Y ], Ỹ = [ỹ1, . . . , ỹG],B? = [β?
1, . . . ,β

?
G]′

Table 1: PXL-EM algorithm for sparse Bayesian factor analysis, EM algorithm obtained withA = IK?

This expansion was used for traditional factor analysis by Liu et al. (1998). The observed-data like-

lihood here is invariant under the parametrizations indexed by A. This is evident from the marginal

distribution f(yi |B,Σ,A) = NG(0,BB′+Σ), 1 ≤ i ≤ n, which does not depend onA. Although

A is indeterminate from the observed data, it can be identified with the complete data. Note that the

original factor model is preserved at the null valueA0 = IK .

To exploit the invariance of the parameter expanded likelihood, we impose the SSL prior (2.3) on

B? = BA−1L rather than onB. That is,

β?jk | γjk
ind∼ SSL(λ0k, λ1), γjk | θ(k)

ind∼ Bernoulli[θ(k)], θ(k) =
k∏
l=1

νl, νl
iid∼ B(α, 1), (3.2)

where the β?jk’s are the transformed elements of B?. This yields an implicit prior on B that depends

on AL and therefore is not transformation invariant, a crucial property for anchoring sparse factor

orientations. The original factor loadings B can be recovered from (B?,A) through the reduction

functionB = B?AL. The prior (2.4) on Σ remains unchanged.

Just as the vanilla EM algorithm, PXL-EM also targets (local) maxima of the posterior π(∆ | Y )

(implied by (1.1) and (2.1)), but does so in a very different way. PXL-EM proceeds indirectly in
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terms of the parameter expanded posterior π(∆? | Y ) indexed by ∆? = (B?,Σ,θ,A) and implied

by (3.1) and (3.2). By iteratively optimizing the conditional expectation of the augmented log pos-

terior log πX(∆?,Ω,Γ | Y ), PXL-EM yields a path of ∆? updates through the expanded parameter

space. This sequence corresponds to a trajectory in the original parameter space through the reduction

function B = B?AL. Importantly, the E-step of PXL-EM is taken with respect to the conditional

distribution of Ω and Γ under the original model governed by B and A0, rather than under the ex-

panded model governed by B∗ and A. Thus, the updated A is not carried forward throughout the

iterations. Instead, each E-step is anchored on A = A0. As is elaborated on in Section 3.6, A = A0

upon convergence and thus the PXL-EM trajectory converges to local modes of the original posterior

π(∆ | Y ).

The prior π(A) influences the orientation of the augmented feature matrix upon convergence.

Whereas proper prior distributions π(A) can be implemented within our framework, and may be a

fruitful avenue for future research, here we use π(A) ∝ 1. This improper prior has an “orthogo-

nalization property" which can be exploited for more efficient calculations (Section 3.4). In contrast

to marginal augmentation (Liu and Wu, 1999; Meng and van Dyk, 1999), where an improper work-

ing prior may cause instability in posterior simulation, here it is more innocuous. This is because

PXL-EM does not use the updateA for the next E-step.

The PXL M-step usesA to guide the trajectory, which can be very different from the vanilla EM.

Recall thatA indexes continuous transformations yielding the same marginal likelihood. Adding this

extra dimension, each mode of the original posterior π(∆ |Y ) corresponds to a curve in the expanded

posterior π(∆? | Y ), indexed by A. These ridge-lines of accumulated probability, or orbits of equal

likelihood, serve as a bridges connecting remote posterior modes. Due to the thresholding ability

of the SSL prior, promising modes are located at the intersection of the orbits with coordinate axes.

Obtaining A and subsequently performing the reduction step B = B?AL, the PXL-EM trajectory is

geared along the orbits, taking larger steps over posterior valleys to conquer multimodality.

More formally, the PXL-EM traverses the expanded parameter space and generates a trajectory
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{∆?(1),∆?(2), . . .}, where ∆?(m) = (B?(m),Σ(m),θ(m),A(m)). This trajectory corresponds to a se-

quence {∆(1),∆(2), . . .} in the reduced parameter space, where ∆(m) = (B(m),Σ(m),θ(m)) and

B(m) = B?(m)A
(m)
L . Beginning with the initialization ∆(0), every step of the PXL-EM algorithm out-

puts an update ∆?(m+1) = arg max∆? QX(∆?), whereQX(∆?) = EΩ,Γ | Y ,∆(m),A0
log π(∆?,Ω,Γ|Y ).

Each such computation is facilitated by the separability of QX with respect to (B?,Σ), θ and A, a

consequence of the hierarchical structure of the Bayesian model. Thus we can write

QX(∆?) = CX +Q1(B
?,Σ) +Q2(θ) +QX

3 (A). (3.3)

The functions Q1(·) and Q2(·) (defined in (A.2) and (A.8) in the Supplemental material) appear in

the objective function of the vanilla EM algorithm, suggesting that the M-step will be analogous. In

addition, PXL-EM includes an extra term

QX
3 (A) = −1

2

n∑
i=1

tr[A−1EΩ |∆(m),A0
(ωiω

′
i)]−

n

2
log |A| (3.4)

for obtaining a suitable transformation matrixA.

3.3 The PXL E-step

The exact calculation of the E-step is presented in Table 1, involving the update of first and second

moments of the latent factors ωi and the expectation of binary indicators γij . These expectations

are taken with respect to the conditional distribution of Ω and Γ under the original model governed

by ∆(m) and A0. Formally, the calculations are the same as for the plain EM algorithm, derived in

Section A.1 in the Supplemental material. However, the update B(m) = B?(m)A
(m)
L is now used

instead of B?(m) throughout. The implications of this substitution are discussed in the following

intentionally simple example, which conveys the intuition of entries in A as penalties that encourage

featurizations with fewer more informative factors. This example highlights the scaling aspect of the

transformation induced byAL, assumingAL is diagonal.

Example 3.1. (Diagonal A) We show that for A = diag{α1, . . . , αK}, each αk plays a role of a

penalty parameter, determining the size of new features as well as the amount of shrinkage. This is
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seen from the E-step, which (a) creates new features, (b) determines penalties for variable selection,

(c) creates a smoothing penalty matrix Cov (ωi|B,Σ). Here is how insertingB= B?AL affects these

three steps. For simplicity, assume Σ = IK ,B?′B? = IK and θ = (0.5, . . . , 0.5)′. From (E1) in Table

1, the new latent features are EΩ | Y ,B(Ω′) = A−1L (IK+A−1)−1B?′Y ′ = diag
{ √

αk

1+αk

}
B?′Y ′. Recall

that αk = 1 corresponds to no parameter expansion. The function f(α) =
√
α

1+α
steeply increases up to

its maximum at α = 1 and then slowly decreases. Before the convergence (which corresponds to αk ≈

1), PXL-EM performs shrinkage of features, which is more dramatic if αk is close to zero. Regarding

the second moments of the latent factors, the coordinates with higher variances αk are penalized

less. This is seen from Cov (ωi | B,Σ)= (A′LAL + IK)−1 = diag{1/(1 + αk)}. The conditional

mixing weights EΓ |B,θ(γjk) =
[
1 + λ0

λ1
exp

(
−|β?jk|αk(λ0 − λ1)

)]−1
increase exponentially with αk.

Higher variances αk > 1 increase the inclusion probability as compared to no parameter expansion

αk = 1. Thus, the loadings of the newly created features associated with larger αk are more likely to

be selected.

Another example presented in the Supplemental material B illustrates the rotational aspect ofAL,

when it is non-diagonal. The off-diagonal elements are seen to perform linear aggregation. This

example also highlights the benefits of the lower-triangular structure ofAL.

3.4 The PXL M-step

Conditionally on the imputed latent data, the M-step is then performed by maximizing QX(∆?) over

∆? in the augmented space. These steps are described in Table 1. The updates of (B?(m+1),Σ(m+1))

and θ(m+1) can be obtained as in the vanilla EM algorithm (Section A.2 in the Supplemental material).

PXL-EM requires one additional update A(m+1), obtained by maximizing (3.4). This is a very fast

simple operation,

A(m+1) = max
A=A′,A≥0

QX
3 (A) =

1

n

n∑
i=1

EΩ | Y ,∆(m),A0
(ωiω

′
i) =

1

n
〈Ω′Ω〉 =

1

n
〈Ω〉′〈Ω〉+M . (3.5)

The new coefficient updates in the reduced parameter space can be then obtained by the following

step B(m+1) = B?(m+1)A
(m+1)
L , a “rotation" along an orbit of equal likelihood. This step is missing
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from the vanilla EM algorithm, which assumes throughout thatA = A0 = IK? . The consequences of

this rotation are explored below.

Remark 3.1. Although AL is not strictly a rotation matrix in the sense of being orthonormal, we

refer to its action of changing the factor model orientation as the “rotation by AL”. From the polar

decomposition of AL = UP , transformation by AL is the composition of a rotation represented by

the orthogonal matrix U = AL(A′LAL)−1/2, and a dilation represented by the symmetric matrix P .

Thus, when we refer to the “rotation” by AL, what is meant is the rotational aspect of AL, namely

the action of U .

More insight into the role of AL can be gained by recasting the PXL M-step in terms of the

original model parametersB = B?AL. From (M1) in Table 1, the PXL M-step yields

β
?(m+1)
j = arg max

β?
j

{
−||ỹj − Ω̃β?j ||2 − 2σ

(m)2
j

K?∑
k=1

|β?jk|λjk

}

for each j = 1, . . . , G. However, in terms of the original parameters B(m)′ , where β(m+1)
j =

A′Lβ
?(m+1)
j , these solutions become

β
(m+1)
j = arg max

βj

{
−||ỹj − (Ω̃A

′−1
L )βj||2 − 2σ

(m)2
j

K?∑
k=1

∣∣∣∣∣
K?∑
l≥k

(A−1L )lkβjl

∣∣∣∣∣λjk
}
. (3.6)

Thus, the rotated parameters β(m+1)
j are solutions to modified penalized regressions of ỹj on Ω̃A

′−1
L

under a series of triangular linear constraints. As seen from (3.5) and (3.6), A−1L serves to “orthogo-

nalize" the factor basis.

Because Ω̃A
′−1
L in (3.6) is orthogonal, B(m+1) can be approximated using a closed form update,

removing the need for first computingB?(m+1) and then rotating it byAL. By noting (a) LASSO has

a closed form solution in orthogonal designs, (b) the system of constraints in (4.8) is triangular with

“dominant" entries on the diagonal, we can deploy back-substitution to quickly obtain an approximate

updateB(m+1) in just one sweep. Denote by zj = A−1L Ω̃
′
yj/n and zjk+ =

∑
l>k(A

−1
L )lkβjl/(A

−1
L )kk.

Then,

β
(m+1)
jk ≈

(
|z| − σ(m)2

j λjk(A
−1
L )kk/n

)
+

sign(z)− zjk+, (3.7)
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where z = zjk + zjk+. This approximate step dramatically reduces the computational cost, as discussed

in Section C.2 in the Supplemental material, and is therefore worthwhile deploying in large problems.

Performing (3.7) instead of the proper M-step (M1) in Table 1 yields a slightly different trajectory.

However, both PXL-EM and this trajectory have the same fixed points (B̂,A0). Towards convergence

whenA ≈ A0, the approximation (3.7) is close to exact.

To sum up, the default EM algorithm proceeds by findingB(m) at the M-step, and then using this

B(m) for the next E-step. In contrast, the PXL-EM algorithm finds B?(m) at the M-step, but then

uses the value of B(m) = B?(m)A
(m)
L for the next E-step. Each transformation B(m) = B?(m)A

(m)
L

decouples the most recent updates of the latent factors and factor loadings, enabling the EM trajectory

to escape the attraction of suboptimal orientations. In this, the “rotation" induced by A(m)
L plays a

crucial role for the detection of sparse representations which are tied to the orientation of the factors.

Remark 3.2. PXL-EM performs orthonormalization of the features Ω̃ upon convergence. According

to (3.5), when PXL-EM converges to its fixed point (∆̂,A0), we obtain 1
n
〈Ω′Ω〉 = IK . Thus, PXL-EM

forces the feature matrix to be orthonormal.

3.5 Modulating the Trajectory

Our PXL-EM algorithm can be regarded as a one-step-late PX-EM (van Dyk and Tang, 2003) or

more generally as a one-step-late EM (Green, 1990). The PXL-EM differs from the traditional PX-

EM of Liu et al. (1998) by not requiring the SSL prior be invariant under transformations AL. PXL-

EM purposefully leaves only the likelihood invariant, offering (a) tremendous accelerations without

sacrificing the computational simplicity, (b) automatic rotation to sparsity and (c) robustness against

poor initializations. The price we pay is the guarantee of monotone convergence. Let (∆(m),A0)

be an update of ∆? at the mth iteration. It follows from the information inequality, that for any

∆ = (B,Σ,θ), whereB = B?AL,

log π(∆ | Y )− log π(∆(m) | Y ) ≥ QX(∆?)−QX(∆(m)) + EΓ |∆(m),A0
log

(
π(B?AL,Γ)

π(B?,Γ)

)
. (3.8)

Whereas ∆?(m+1) = arg maxQX(∆?) increases the QX function, the log prior ratio evaluated at

(B?(m+1),A(m+1)) is generally not positive. van Dyk and Tang (2003) proposed a simple adjustment
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to monotonize their one-step-late PX-EM, where the new proposal B(m+1) = B?(m+1)A
(m+1)
L is

only accepted when the value on the right hand side of (3.8) is positive. Otherwise, the vanilla EM

step is performed with B(m+1) = B?(m+1)A0. Although this adjustment guarantees the convergence

towards the nearest stationary point, poor initializations may gear the monotone trajectories towards

peripheral modes. It may therefore be beneficial to perform the first couple of iterations according to

PXL-EM to escape such initializations, not necessarily improving on the value of the objective, and

then to switch to EM or to the monotone adjustment. Monitoring the criterion (3.8) throughout the

iterations, we can track the steps in the trajectory that are guaranteed to be monotone.

Apart from monotonization, one could also divert the PXL-EM trajectory with occasional jumps

between orbits. Note that PXL-EM moves along orbits indexed by oblique rotations. One might also

consider moves along orbits indexed by orthogonal rotations such as varimax (Kaiser (1958)). One

might argue that performing a varimax rotation instead of the oblique rotation throughout the EM

computation would be equally, if not more, successful. However, the plain EM may fail to provide a

sufficiently structured intermediate input for varimax. On the other hand, PXL-EM identifies enough

structure early on in the trajectory and may benefit from further varimax rotations. The potential for

further improvement with this optional step is demonstrated in Section 7. In the next section we show

that PXL-EM is an efficient scheme, i.e. it converges fast.

3.6 Convergence Speed: EM versus PXL-EM

The speed of convergence of the EM algorithm (for MAP estimation) is defined as the smallest eigen-

value of the matrix fraction of the observed information S = I−1augIobs, where

Iobs = −∂
2 log π(∆ | Y )

∂∆∂∆′
∣∣
∆=∆̂

, Iaug = −∂
2 logQ(∆ |∆)

∂∆∂∆′

∣∣∣∣
∆=∆̂

(3.9)

and where ∆̂ = (B̂, Σ̂, θ̂) is a target posterior mode (Dempster, Laird and Rubin (1968)). The speed

matrix satisfies S = I −DM , where DM is the Jacobian of the EM mapping ∆(t+1) = M(∆(t))

evaluated at ∆̂, governing the behavior of the EM algorithm near its fixed point ∆̂. Due to the fact

that M(·) is a soft-thresholding operator on the loadings (and is hence non-differentiable at zero),
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we confine attention only to nonzero directions of B̂. This notion of convergence speed supports the

intuition: the sparser the mode, the faster the convergence5. We obtain an analog of a result of Liu

et al. (1998), showing that PXL-EM converges probably faster than EM. The proof is deferred to the

Supplemental material (Section C.1).

Theorem 3.1. Given that PXL-EM converges to (∆̂,A0), it dominates EM in terms of the speed of

convergence.

In addition to converging rapidly, PXL-EM also computes quickly. The complexity analysis is

presented in Section C.2 in the Supplemental material.

4 The Potential of PXL-EM: A Synthetic Example

4.1 Anchoring Factor Rotation

To illustrate the effectiveness of the symbiosis between factor model “rotations" and the spike-

and-slab LASSO soft-thresholding, we generated a dataset from model (1.1) with n = 100 obser-

vations, G = 1 956 responses and Ktrue = 5 factors. The true loading matrix Btrue (Figure 1 left)

has a block-diagonal pattern of nonzero elements Γtrue with overlapping response-factor allocations,

where
∑

j γ
true
jk = 500 and

∑
j γ

true
jk γtruejk+1 = 136 is the size of the overlap. We set btruejk = γtruejk and

Σtrue = IG. The implied covariance matrix is again block-diagonal (Figure 1 middle). For the EM

and PXL-EM factor model explorations, we use λ0k = λ0. We set λ1 = 0.001, λ0 = 20, α = 1/G and

K? = 20. All the entries in B(0) were sampled independently from the standard normal distribution,

Σ(0) = IG and θ(0)(k) = 0.5, k = 1, . . . , K?. We compared the EM and PXL-EM implementations

with regard to the number of iterations to convergence and the accuracy of the recovery of the load-

ing matrix. Convergence was claimed whenever d∞(B?(m+1),B?(m)) < 0.05 in the PXL-EM and

d∞(B(m+1),B(m)) < 0.05 in the EM algorithm.

The results without parameter expansion were rather disappointing. Figure 2 depicts four snap-
5Taking a sub-matrix S1 of a symmetric positive-semi definite matrix S2, the smallest eigenvalue satisfies λ1(S1) ≥

λ1(S2).
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True Factor Loadings

(a) Btrue

Theoretical Covariance Matrix

(b) BtrueB
′
true + IG

Estimated Covariance Matrix

(c) B̂B̂
′
+ diag{Σ̂}

Figure 1: The true pattern of nonzero values in the loading matrix (left), a heat-map of the theoretical covari-

ance matrixBtrueB
′
true + I5 (middle), estimated covariance matrix (right).

shots of the EM trajectory, from the initialization to the 100th iteration. The plot depicts heat-maps

of |B(m)| (a matrix of absolute values of B(m)) for m ∈ {0, 1, 10, 100}, where the blank entries

correspond to zeroes. The EM algorithm did not converge even after 100 iterations, where the re-

covered factor allocation pattern is nowhere close to the generating truth. On the other hand, param-

eter expansion fared superbly. Figure 3 shows snapshots of |B?(m)| for the PXL-EM trajectory at

m ∈ {0, 1, 10, 23}, where convergence was achieved after merely 23 iterations. Even at the first it-

eration, PXL-EM began to gravitate towards a sparser and more structured solution. At convergence,

PXL-EM recovers the true pattern of nonzero elements in the loading matrix (up to a permutation)

with merely 2 false positives and 2 false negative. In addition, we obtain a rather accurate estimate

of the marginal covariance matrix (Figure 1(c)). This estimate will be compared with the solution

obtained with the LASSO prior in the next section.

The PXL-EM is seen to be robust against poor initializations in this example. After repeating

the experiment with different random starting locations B(0) sampled element-wise from Gaussian

distributions with larger variances, PXL-EM yielded almost identical loading matrices, again with

only a few false positives and negatives. This is partly because Btrue has a regular pattern of overlap
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Initialization: B_0 Iteration 1 Iteration 10 Iteration 100

Figure 2: A trajectory of the EM algorithm, convergence not achieved even after 100 iterations
Initialization: B_0 Iteration 1 Iteration 10 Iteration 23 (Convergence)

Figure 3: A trajectory of the PXL-EM algorithm, convergence achieved after 23 iterations

and considerable sparsity. In Section 6 we consider a more challenging example, where many more

multiple competing sparse modes exist. PXL-EM may then output different, yet similar solutions.

For such scenarios, we there propose a robustification step that further mitigates the local convergence

issue. Given the vastness of the posterior with its intricate multimodality, and the arbitrariness of the

initialization, the results of this experiment are very encouraging. We now turn to the lingering issue

of tuning the penalty parameter λ0.

4.2 Dynamic Posterior Exploration

The character of the posterior landscape is regulated by the two penalty parameters λ0 >> λ1.

SSL-IBP priors with large differences (λ0 − λ1) induce posteriors with many isolated sharp spikes,

exacerbating the already severe multi-modality. In order to facilitate the search for good local maxima
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Iteration 16 (Convergence)

(a) λ0 = 5

Iteration 15 (Convergence)

(b) λ0 = 10

Iteration 14 (Convergence)

(c) λ0 = 20

Iteration 9 (Convergence)

(d) λ0 = 30

Figure 4: Recovered loading matrices of PXL-EM for different values of λ0. The first computation (λ0 = 5)

initialized atB(0) from the previous section, then reinitialized sequentially.

in the unfriendly multimodal landscape, we borrow ideas from deterministic annealing (Ueda and

Nakano, 1998; Yoshida and West, 2010), which optimizes a sequence of modified posteriors indexed

by a temperature parameter. Here, we implement a variant of this strategy, treating λ0 as an inverse

temperature parameter. At large temperatures (small values λ0), the posterior is less spiky and easier

to explore.

By keeping the slab penalty λ1 steady and gradually increasing the spike penalty λ0 over a lad-

der of values λ0 ∈ I = {λ10 < λ20 < · · · < λL0 }, we perform a “dynamic posterior exploration",

sequentially reinitializing the calculations along the solution path. Accelerated dynamic poste-

rior exploration is obtained by reinitializing only the loading matrix B, using the same Σ(0) and

θ(0) as initial values throughout the solution path. This strategy was applied on our example with

λ0 ∈ I = {5, 10, 20, 30} (Figure 4). The solution path stabilizes after a certain value λ0, where fur-

ther increase of λ0 did not impact the solution. Thus, the obtained solution for sufficiently large λ0, if

a global maximum, can be regarded as an approximation to the MAP estimator under the point-mass

prior. The stabilization of the estimated loading pattern is an indication that further increase in λ0
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Iteration 10 (Convergence)

(a) λ0 = λ1 = 5

Iteration 5 (Convergence)

(b) λ0 = λ1 = 10

Iteration 13 (Convergence)

(c) λ0 = λ1 = 20

Sparse Principal Components

(d) SPCA

Figure 5: PXL-EM with sequential reinitialization along the path using the LASSO prior.

may not be needed and the output is ready for interpretation.

Finally, we explored what would happen if we instead used the single LASSO prior obtained with

λ0 = λ1. We performed dynamic posterior exploration with λ0 = λ1 assuming λ0 ∈ I = {5, 10, 20}

(Figure 5(a), (b), (c)). In terms of identifying the nonzero loadings, PXL-EM did reasonably well,

generating at best 45 false positives when λ0 = λ1 = 20. However, the estimate of the marginal

covariance matrix was quite poor, as seen from Figure 6 which compares estimated covariances ob-

tained with the single LASSO and the spike-and-slab LASSO priors. On this example, our PXL-EM

implementation of a LASSO-penalized likelihood method dramatically boosted the sparsity recovery

over an existing implementation of sparse principal component analysis (SPCA), which does not al-

ter the factor orientation throughout the computation. Figure 5(d) shows the output of SPCA with a

LASSO penalty (R package PMA of Witten et al. (2009)), with 20 principal components, using 10

fold cross-validation. Even after supplying the actual correct number of 5 principal components, the
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Figure 6: Estimated covariances: LASSO prior vs spike-and-slab LASSO prior

SPCA output was much farther from true sparse solution.

5 Factor Mode Evaluation

The PXL-EM algorithm, in concert with dynamic posterior exploration, rapidly elicits a sequence of

loading matrices {B̂λ0 : λ0 ∈ I} of varying factor cardinality and sparsity. Each such B̂λ0 yields

an estimate Γ̂λ0 of the feature allocation matrix Γ, where γ̂λ0ij = I(β̂λ0ij 6= 0). The matrix Γ can be

regarded as a set of constraints imposed on the factor model, restricting the placement of nonzero

values, both in B and Λ = BB′ + Σ. Each Γ̂λ0 provides an estimate of the actual factor dimension

K+, the number of free parameters and the allocation of response-factor couplings. Assuming Γ

is left-ordered (i.e. the columns sorted by their binary numbers) to guarantee uniqueness, Γ can be

thought of as a “model” index, although not a model per se.

For the purpose of comparison and selection from {Γ̂λ0 : λ0 ∈ I}, a natural and appealing

criterion is the posterior model probability π(Γ | Y ) ∝ π(Y | Γ)π(Γ).Whereas the continuous

relaxation SSL-IBP({λ0k};λ1;α) was useful for model exploration, the point-mass mixture prior

SSL-IBP(∞;λ1;α) will be more relevant for model evaluation. Unfortunately, computing the marginal

likelihood π(Y |Γ) under these priors is hampered because tractable closed forms are unavailable and
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Monte Carlo integration would be impractical. Instead, we replace π(Y | Γ)by a surrogate function,

motivated as an integral lower bound to the marginal likelihood (Minka, 2001).

Beginning with the integral representation π(Y | Γ) =
∫
Ω
π(Y ,Ω | Γ)d π(Ω), which is ana-

lytically intractable, we proceed to find an approximation to the marginal likelihood π(Y | Γ) by

lower-bounding the integrand π(Y ,Ω | Γ) ≥ gΓ(Ω,φ),∀(Ω,φ), so that GΓ(φ) =
∫
Ω
gΓ(Ω,φ)d Ω

is easily integrable. The function GΓ(φ) ≤ π(Y | Γ) then constitutes a lower bound to the marginal

likelihood for any φ. The problem of integration is thus transformed into a problem of optimization,

where we search for φ̂ = arg maxφGΓ(φ) to obtain the tightest bound. A suitable lower bound for

us is gΓ(Ω,φ) = C π(Y ,Ω,φ | Γ), where φ = (B,Σ) and C = 1/maxφ,Ω[π(B,Σ | Y ,Ω,Γ)].

This yields the closed form integral bound

GΓ(φ) = C π(B | Γ)π(Σ)(2π)−nG/2|Ψ|n/2 exp

(
−0.5

n∑
i=1

tr(Ψyiy
′
i)

)
, (5.1)

where Ψ = (BB′ + Σ)−1.

By treatingGΓ(φ) as the “complete-data” likelihood, finding φ̂ = arg maxφ
∫
Ω
π(Y ,Ω,φ|Γ)d Ω

can be carried out with the (PXL-)EM algorithm. In particular, we can directly use the steps derived

in Table 1, but now with Γ no longer treated as missing. As would be done in a confirmatory factor

analysis, the calculations are now conditional on the particular Γ of interest. These EM calculations

are in principle performed assuming λ0 =∞. As a practical matter, this will be equivalent to setting

λ0 equal to a very large number (λ0 = 1 000 in our examples). Thus, our EM procedure has two

regimes: (a) an exploration regime assuming λ0 < ∞ and treating Γ as missing to find Γ̂, (b) an

evaluation regime assuming λ0 ≈ ∞ and fixing Γ = Γ̂. The evaluation regime can be initialized at

the output values (B̂λ0 , Σ̂λ0 , θ̂λ0) from the exploratory run.

The surrogate function GΓ(φ̂) from (5.1) is fundamentally the height of the posterior mode

π(φ̂ | Y ,Γ) under the point-mass prior SSL-IBP(∞;λ1;α), assuming Γ = Γ̂. Despite being a rather

crude approximation to the posterior model probability, the function

G̃(Γ) = GΓ(φ̂)π(Γ), (5.2)
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Exploratory PXL-EM Regime Evaluation PXL-EM Regime

Figure 4: SSL prior

λ0 FDR FNR
∑

jk γ̂jk K̂+ Recovery Error λ0 Recovery Error G̃(Γ̂)

5 0.693 0 24150 20 459.209 1 000 410.333 -464171.3

10 0.629 0 11563 20 326.355 1 000 332.73 -372386.7

20 0.003 0.001 2502 5 256.417 1 000 255.054 -300774.0

30 0 0.002 2498 5 256.606 1 000 256.061 -300771.4

Figure 5: LASSO prior

λ0 FDR FNR
∑

jk γ̂jk K̂+ Recovery Error λ0 Recovery Error G̃(Γ̂)

0.1 0.693 0 36879 19 409.983 1 000 420.32 -536836.2

5 0.692 0 21873 19 365.805 1 000 398.78 -447489.0

10 0.64 0 11657 19 570.104 1 000 315.316 -373339.2

20 0.024 0 2533 5 892.244 1 000 233.419 -300933.3

Table 2: Table summarizes the quality of the reconstruction of the marginal covariance matrix Λ, namely (a)

FDR, (b) FNR, (c) the estimated number of nonzero loadings, (d) the estimated effective factor cardinality, (d)

the Frobenius norm dF (Λ̂,Λ0) (Recovery Error).

is a practical criterion that can discriminate well between candidate models.

We evaluated the criterion G̃(Γ) for all the models discovered with the PXL-EM algorithm in the

previous section (Figure 4 and Figure 5). We also assessed the quality of the reconstructed marginal

covariance matrix (Table 2). The recovery error is computed twice, once after the exploratory run

(λ0 <∞) and then after the evaluation run (λ0 ≈ ∞). Whereas for the exploration, we used both the

SSL prior (Figure 4) and the LASSO prior (Figure 5), the evaluation is run always with the SSL prior.

The results indicate that the criterion G̃(Γ) is higher for models with fewer false negative/positive

discoveries and effectively discriminates the models with the best reconstruction properties. It is

worth noting that the output from the exploratory run is greatly refined with the point-mass SSL prior

(λ0 ≈ ∞), which reduces the reconstruction error. This is particularly evident for the single LASSO

prior, which achieves good reconstruction properties (estimating the pattern of sparsity) for larger

penalty values, however at the expense of the poor recovery of the coefficients (Figure 6).

Given the improved recovery, we recommend outputting the estimates after the evaluation run
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(a)

Best Recovered
G
~ = − 319755.9

(b)

Least Well Recovered
G
~ = − 321836.8

(c)

SPCA

(d)

Varimax AFTER SPCA

(e)

Figure 7: (a) True loading matrix, (b) and (c) PXL-EM using two different random initializations, (d) sparse

principal component analysis (SPCA) with K = 5, (e) varimax after SPCA

with λ0 =∞. In order to guarantee identifiability (in light of considerations in Section 2), we restrict

the support of the IBP prior in the evaluation run to matrices with at least two nonzero γjk in the active

columns of Γ. With λ0 =∞, this guarantees the absence of singleton loadings in posterior modes.

Lastly, to see how our approach would fare in the presence of no signal, a similar simulated ex-

periment was conducted withBtrue = 0G×K? . The randomly initiated dynamic posterior exploration

soon yielded the null model B̂ = Btrue, where the criterion G̃(Γ) was also the highest. Our approach

did not find a signal where there was none.

6 Varimax Robustifications

We now proceed to investigate the performance of PXL-EM in a less stylized scenario with more

severe overlap and various degrees of sparsity across the columns. To this end, we generated a zero

allocation pattern according to the IBP stick breaking process with α = 2, assuming G = 2 000

and n = 100. Confining attention to the K+ = 5 strongest factors and permuting the rows and

columns, we obtained a true loading matrixBtrue with
∑
γtruejk = 3 410 nonzero entries, all set equal

to 1 (Figure 7(a)). With considerable overlap and less regular sparsity, the detection problem here is

27



G
~ = − 393984.3
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λ0 = 30
G
~ = − 319760.5

λ0 = 40
G
~ = − 319755.8

λ0 = 50

Figure 8: Dynamic posterior exploration of PXL-EM with a varimax rotation every 5 iterations. The initial-

ization is the same as in Figure 7(c). Only nonzero columns are plotted.

far more challenging. There are more competing sparse rotations and thus more sensitivity towards

initialization. Generating a dataset with σ2
01 = · · · = σ2

0G = 1 and setting K? = 20, we perform

dynamic posterior exploration with λ0 ∈ I = {10, 20, 30, 40, 50} using 10 random starting matrices

(generated from a matrix-valued standard Gaussian distribution).

In all 10 independent runs, PXL-EM output at λ0 = 50 consistently identified the correct factor

dimensionality. Two selected solutions6 are depicted in Figure 7, the best reconstructed (Figure 7(b))

and the least well reconstructed loading matrix (Figure 7(c)). PXL-EM recovered the correct orien-

tation (as in Figure 7(b)) in 3 out of the 10 runs. These three sparse orientations were rewarded with

the highest values of the criterion G̃(Γ̂). The other 7 runs output somewhat less sparse variants of the

true loading pattern, with two or three loading columns rotated (as in Figure 7(c)). We also compared

our reconstructions with a sparse PCA method (R package PMD), performing 5-fold cross validation

while setting the dimensionality equal to the oracle value K+ = 5. The recovered loading matrix

(Figure 7(d)) captures some of the pattern, however fares less favorably.

Interestingly, performing a varimax rotation after sparse PCA greatly enhanced the recovery (Fig-

ure 7(e)). Similar improvement was seen after applying varimax to the suboptimal solution in Figure

6All 10 solutions recovered by dynamic posterior exploration are reported in Section F of the Supplemental material.
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7(c). On the other hand, the varimax rotation did not affect the solution in Figure 7(b). As discussed

in Section 3.5, we consider a robustification of PXL-EM by including an occasional varimax rota-

tion (every 5 iterations) throughout the PXL-EM computation. Such a step proved to be remarkably

effective here, eliminating the local convergence issue. Applying this enhancement with the “least

favorable" starting value (Figure 7(c)) yielded the solution path depicted in Figure 8. The correct

rotation was identified early in the solution path. With the varimax step, convergence to the correct

orientation was actually observed with every random initialization we considered.

7 The AGEMAP Data

We illustrate our approach on a high-dimensional dataset extracted from AGEMAP (Atlas of Gene

Expression in Mouse Aging Project) database of Zahn and et al. (2007), which catalogs age-related

changes in gene expression in mice. Included in the experiment were mice of ages 1, 6, 16, and

24 months, with ten mice per age cohort (five mice of each sex). For each of these 40 mice, 16

tissues were dissected and tissue-specific microarrays were prepared. From each microarray, values

from 8 932 probes were obtained. The collection of standardized measurements is available online

http://cmgm.stanford.edu/∼kimlab/aging_mouse/. Factor analysis in genomic studies pro-

vides an opportunity to look for groups of functionally related genes, whose expression may be af-

fected by shared hidden causes. In this analysis we will also focus on the ability to featurize the

underlying hidden variables. The success of the featurization is also tied to the orientation of the

factor model.

The AGEMAP dataset was analyzed previously by Perry and Owen (2010), who verified the

existence of some apparent latent structures using rotation tests. Here we will focus only on one tissue,

cerebrum, which exhibited strong evidence for the presence of a binary latent variable, as confirmed

by a rotation test (Perry and Owen, 2010). We will first deploy a series of linear regressions, regressing

out the effect of an intercept, sex and age on each of the 8 932 responses. Taking the residuals from

these regressions as new outcomes, we proceed to apply our infinite factor model, hoping to recover
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Figure 9: (Left) Dynamic posterior exploration, evolution of the G̃(·) function, one line for each of the 10

initializations; (Middle) Histogram of the newly created feature; (Right) Histogram of the factor loadings of the

new factor

the hidden binary variable.

We assume that there are at most K? = 20 latent factors and run our PXL-EM algorithm with

the SSL prior and λ1 = 0.001, α = 1/G. For factor model exploration, we deploy dynamic posterior

exploration, i.e. sequential reinitialization of the loading matrix along the solution path. The solution

path will be evaluated along the following tempering schedule λ0 ∈ {λ1 + k × 2 : 0 ≤ k ≤ 9},

initiated at the trivial case λ0 = λ1. To investigate the sensitivity to initialization, we consider 10

random starting matrices (standard Gaussian entries) to initialize the solution path. We use Σ(0) = IG,

θ(0) = (0.5, . . . , 0.5)′ as initialization for every λ0. The margin ε = 0.01 is used to claim convergence.

The results of dynamic posterior exploration are summarized in Table 2 of Section E of the Sup-

plementary material. The table reports the estimated factor dimension K̂+ (i.e. the number of factors

with at least one nonzero estimated loading), estimated number of nonzero factor loadings
∑

jk γ̂jk

and the value of the surrogate criterion G̃(Γ̂). The evolution of G̃(Γ̂) along the solution path is also de-

picted on Figure 9(a) and shows a remarkably similar pattern, despite the very arbitrary initializations.

From both Table 1 and Figure 9(a) we observe that the estimation has stabilized after λ0 = 12.001,

yielding factor models of effective dimension K̂+ = 1 with a similar number of nonzero factor load-

ings. Based on this analysis, we would select just one factor. The best recovery, according to the value
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G̃(Γ̂), yields a single latent feature (histogram on Figure 9(b)). This latent variable has a strikingly

dichotomous pattern, suggesting the presence of an underlying binary hidden variable. A similar his-

togram was reported also by Perry and Owen (2010). Their finding was supported by a statistical

test.

The representation, despite sparse in terms of the number of factors, is not sparse in terms of factor

loadings. The single factor loaded on the majority of considered genes (78%). The histogram of

estimated loadings (Figure 9(c)) suggests that there are a few very active genes that could potentially

be interpreted as leading genes for the factor. We note that the concise representation with a single

latent factor could not obtained using, for instance, sparse principal components, which smear the

signal across multiple factors when the factor dimension is overfitted.

We further demonstrate the usefulness of our method with the familiar Kendall applicant dataset

in Section D of the Supplemental material.

8 Discussion

We have presented a new Bayesian strategy for the discovery of interpretable latent factor models

through automatic rotations to sparsity. These rotations are introduced via parameter expansion within

a PXL-EM algorithm that iterates between soft-thresholding and transformations of the factor basis.

Beyond its value as a method for automatic reduction to simple structure, our methodology enhances

the potential for interpretability. It should be emphasized, however, that any such interpretations will

ultimately only be meaningful in relation to the scientific context under consideration.

The EM acceleration with parameter expansion is related to parameter expanded variational Bayes

(VB) methods (Qi and Jaakkola, 2006), whose variants were implemented for factor analysis by

Luttinen and Ilin (2010). The main difference here is that we use a parameterization that completely

separates the update of auxiliary and model parameters, while breaking up the dependence between

factors and loadings. Parameter expansion has already proven useful in accelerating convergence of

sampling procedures, generally (Liu and Wu, 1999) and in factor analysis (Ghosh and Dunson, 2009).
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What we have considered here is an expansion by a full prior factor covariance matrix, not only its

diagonal, to obtain even faster accelerations (Liu et al., 1998). An interesting future avenue would be

implementing a marginal augmentation variant of our approach in the context of posterior simulation.

By deploying the IBP process, we have avoided the need for fixing the factor dimensionality in

advance. By providing a posterior tail bound on the number of factors, we have shown that our poste-

rior distribution reflects the true underlying sparse dimensionality. This result constitutes an essential

first step towards establishing posterior concentration rate results for covariance matrix estimation

(similar as in Pati et al (2014)). As the SSL prior itself yields rate-optimal posterior concentration

in orthogonal regression designs (Ročková, 2015) and high-dimensional regression (Ročková and

George, 2015), the SSL-IBP prior is en a promising route towards similarly well-behaved posteriors.

Although full posterior inference is unavailable with our approach, local uncertainty estimates

can still be obtained. For example, by conditioning on a selected sparsity pattern Γ̂, MCMC can

be used to simulate from π(B,Σ | Γ̂,Y ), focusing only on the nonzero entries in B̂. Conditional

credibility intervals for these nonzero values under the point-mass spike-and-slab prior could then be

efficiently obtained whenever B̂ is reasonably sparse. Alternatively, the inverse covariance matrix can

be estimated by the observed information matrix in (4.12), again confining attention to the nonzero

entries in B̂. To this end, the supplemented EM algorithm (Meng and Rubin, 1991) could be deployed

to obtain a numerically stable estimate of the asymptotic covariance matrix of the EM-computed

estimate.

Our approach can be directly extended to non-Gaussian or mixed outcome latent variable models

using data augmentation with hidden continuous responses. For instance, probit/logistic augmenta-

tions (Albert and Chib, 1993; Polson et al., 2013) can be deployed to implement a variant of factor

analysis for binary responses (Klami, 2014). A generalization of the PXL-EM for this setup requires

only one more step, a closed form update of the hidden continuous data. The implementation of

this step is readily available. Potentially vast improvement can be obtained using extra parameter

expansion, introducing additional working variance parameters of the hidden data (as in the probit
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regression Example 4.3 of Liu et al. (1998)). Our methodology can be further extended to canonical

correlation analysis or to latent factor augmentations of multivariate regression.

Acknowledgments

The authors would like to thank the Associate Editor and the anonymous referees for their insightful

comments and useful suggestions. We would also like to thank Art Owen for kindly providing the

AGEMAP dataset. The work was supported by NSF grant DMS-1406563 and AHRQ Grant R21-

HS021854.

References
Albert, J. H. and Chib, S. (1993), “Bayesian analysis of binary and polychotomous response data,”

Journal of the American Statistical Association, 88, 669–679.

Bhattacharya, A. and Dunson, D. (2011), “Sparse Bayesian infinite factor models,” Biometrika, 98,
291–306.

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. (2008), “High-
dimensional sparse factor modelling: Applications in gene expression genomics,” Journal of the
American Statistical Association, 103, 1438–1456.

Dempster, A., Laird, N., and Rubin, D. (1977), “Maximum likelihood from incomplete data via the
EM algorithm,” Journal of the Royal Statistical Society. Series B, 39, 1–38.

Frühwirth-Schnatter, S. and Lopes, H. (2009), Parsimonious Bayesian factor analysis when the num-
ber of factors is unknown, Technical report, University of Chicago Booth School of Business.

George, E. I. and McCulloch, R. E. (1993), “Variable selection via Gibbs sampling,” Journal of the
American Statistical Association, 88, 881–889.

Geweke, J. and Zhou, G. (1996), “Measuring the pricing error of the arbitrage pricing theory,” The
review of financial studies, 9, 557–587.

Ghosh, J. and Dunson, D. (2009), “Default prior distributions and efficient posterior computation in
Bayesian factor analysis,” Journal of Computational and Graphical Statistics, 18, 306Ű320.
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