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Abstract Separable penalties for sparse vector recovery are plentiful throughout
statistical methodology and theory. Here, we confine attention to the problem of
estimating sparse high-dimensional normal means. Separable penalized likelihood
estimators are known to have a Bayesian interpretation as posterior modes under
independent product priors. Such estimators can achieve rate-minimax performance
when the correct level of sparsity is known. A fully Bayes approach, on the other
hand, mixes the product priors over a shared complexity parameter. These construc-
tions can yield a self-adaptive posterior that achieves rate-minimax performance
when the sparsity level is unknown. Such optimality has also been established for
posterior mean functionals. However, less is known about posterior modes in these
setups. Ultimately, the mixing priors render the coordinates dependent through a
penalty that is no longer separable. By tying the coordinates together, the hope is
to gain adaptivity and achieve automatic hyperparameter tuning. Here, we study
two examples of fully Bayes penalties: the fully Bayes LASSO and the fully Bayes
Spike-and-Slab LASSO of Ročková and George (2015b). We discuss discrepancies
and highlight the benefits of the two-group prior variant. We develop an Appell func-
tion apparatus for coping with adaptive selection thresholds. We show that the fully
Bayes treatment of a complexity parameter is tantamount to oracle hyperparameter
choice for sparse normal mean estimation.
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1 Introduction

1.1 Separable versus Non-separable

Separable penalty functions are limited by their inability to adapt to common fea-
tures across model parameters because they treat these parameters independently.
Non-separable penalties, on the other hand, can harvest structural knowledge such
as groupings, networks or temporal orderings, to induce similarity across related
components. The Fused LASSO (Tibshirani et al., 2005), the group LASSO (Meier
et al., 2008), OSCAR (Bondell and Reich, 2008) are just a few prominent exam-
ples, which exploit structural similarities among parameters. Our interest in non-
separable penalties here is fundamentally different. We want to explore the degree
of adaptivity to unknown sparsity levels that can be achieved with exchangeable
non-separable penalties when estimating sparse signals. To this end, we take a fully
Bayesian perspective on penalized likelihood estimation of sparse normal means.

We consider the classic problem of estimating a mean vector from a single mul-
tivariate observation. With y = (y1, . . . ,yn)

′ that arises from

yi = β0i + εi, where εi
iid∼N (0,1), i = 1, . . . ,n, (1)

independently, the goal is to estimate β 0 = (β01, . . . ,β0n)
′ under squared error

loss, assuming that β 0 is possibly sparse. Throughout the paper, sparsity is un-
derstood as a requirement that pn = o(n) as n → ∞, where pn = ‖β 0‖0. The
quality of recovery of β 0 is often assessed relative to the benchmark minimax
risk 2 pn log(n/pn)(1+ o(1)) (Donoho et al., 1992) and the “near-minimax” risk
2 pn logn(1+o(1)), a perspective adopted here.

By regularizing towards sparsity, superbly behaving estimators can be obtained
through maximization of the penalized likelihood

β̂ = arg max
β∈Rn

{
−1

2

n

∑
i=1

(yi−βi)
2 +Penλ (β )

}
, (2)

where Penλ (β ) is a regularizing penalty and λ > 0 is a user-specified penalty param-
eter. The known equivalence between penalized likelihood estimators and Bayesian
posterior modes is obtained by associating a penalty function with a (possibly im-
proper) prior π(β |λ ) via Penλ (β ) = logπ(β |λ ). Particularly appealing have been
penalties that are separable in the sense: Penλ (β ) = ∑

n
i=1 penλ (βi). These corre-

spond to independent product priors π(β |λ ) = ∏
n
i=1 π(βi |λ ). Familiar examples of

separable penalties include the `0 variable selection penalty −∑λδ0(βi), its closest
concave relative the `1 LASSO penalty −∑λ |βi| (Tibshirani, 1994) and the plen-
tiful LASSO variants (Zou, 2006; Zou and Hastie, 2005). Recently there has been
a surge of interest in separable penalties that are non-concave (SCAD of Fan and
Li (2001), MC+ of Zhang (2010), log penalty of Friedman (2008)). Such penalties
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eliminate modeling bias and can achieve more refined recovery rates (Wang et al.,
2014).

Separable penalized likelihood estimators can achieve the minimax risk (up to
a constant) with a suitable choice of λ that typically depends on pn. Removing the
need to assume that pn is known, adaptive estimators can be obtained with empirical
Bayes and fully Bayes approaches. The latter is of interest to us here.

To move beyond the independent product priors that give rise to separable penal-
ties, more flexible penalty functions can be obtained from fully Bayes hierarchical
prior constructions. Such priors are obtained by mixing over a shared parameter,

π(β ) =
∫ n

∏
i=1

π(βi |η)π(η)dη , (3)

where π(η) is a prior distribution. The coefficients β1, . . . ,βn are now conditionally
independent given η . Appropriately formulated, such exchangeable priors can be
used to create multivariate estimators that “borrow strength” across the components
of β .

Such estimators have a long tradition. Perhaps the best known examples are the
variety of posterior mean Stein estimators that can be motivated with hierarchi-
cal mixtures of normal priors. For example, the construction (3) with π(βi |η) =

N(0,η) and uniform π(η) over (0,∞), yields the harmonic prior πH(β )=
(
∑i β 2

i
)−n−2

under which the components of β are no longer independent. With this prior, the

formal Bayes Stein estimator β̂
H

is known to be minimax in the classical sense of
having expected squared error loss less than than the minimax value n, for all β

whenever n ≥ 3 (Stein, 1974). It is also known to be admissible (Brown, 1971).

To appreciate the adaptive shrinkage behavior of β̂
H

, note that a large fixed value
of η would cause the posterior mean to shrink very little, whereas a very small η

would cause the posterior mean to shrink dramatically. By introducing a prior on

η , β̂
H

adaptively shrinks more towards 0 when smaller values of η (and ∑i β 2
i )

are supported by the data through the posterior. Further elaborations of (3) can be
used to obtain generalized Stein estimators that adaptively exploit ensemble struc-
ture among the components of β . For example, a location mixture of normals for
each component of β , namely π(βi |η1, . . . ,ηK) = ∑

K
k=1 wkN(uik,ηk) with indepen-

dent uniform priors on the ηk, leads to a minimax multiple shrinkage estimator
that adaptively shrinks towards the prior mean best supported by the data (George,
1968b,a). There are many possibilities for the construction of such estimators, which
offer substantial risk reduction in the vicinity of their shrinkage targets.

The hierarchical normal priors for posterior mean Stein estimation could also
be used to generate non-separable penalty functions logπ(β ) to obtain posterior
mode estimators. Sometimes these modal estimators will be the same as the mean
estimators, as occurs under the harmonic prior, but in general they will differ. In any
case, the classical minimax guarantee offered by Stein estimators is less important
in sparse settings where pn = o(n), as protection against all β is no longer needed.
Instead, one can focus on obtaining risk reduction in the narrower region of interest
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where pn is small. By using posterior mode estimators that adaptively threshold
irrelevant coefficients in such regions, one can aim for the asymptotic minimax value
2 pn log(n/pn), a vast improvement over n.

1.2 Bayesian Penalty Mixing

As opposed to the simple addition of penalty terms that typically occurs with sepa-
rable penalties, prior constructions such as (3) exemplify another route for penalty
construction. This general approach, which we call Bayesian penalty mixing, is a
strategy that combines penalty functions via mixtures of their underlying prior dis-
tributions. More precisely, let Pen(β |η) = logπ(β |η) be a set of penalties corre-
sponding to a set of priors π(β |η) indexed by η . Bayesian penalty mixing entails
the creation of a penalty

Pen(β ) = logπ(β ) = log
∫

π(β |η)π(η)dη

induced by mixing the underlying priors over π(η). Note that this mixing occurs in
the space of priors rather than the space of penalties.

As is well-known, the derivatives of Pen(β ) and Pen(β |η) play a crucial role as
the “bias terms” of the penalized likelihood solution β̂ to (2), (Fan and Li, 2001).
The adaptive potential of Bayesian penalty mixing is reflected in the relationship
between these derivatives given by the following fundamental identity

∂Pen(β )
∂ |βi|

=
∫

∂Pen(β |η)

∂ |βi|
π(η |β )dη (4)

which follows from

∂ logπ(β )

∂ |βi|
=

1
π(β )

∫
∂π(β |η)

∂ |βi|
π(η)dη =

∫
∂ logπ(β |η)

∂ |βi|
π(η |β )dη .

Thus the bias induced by Pen(β ) will be an adaptive convex combination of the
biases induced by each of the combined penalties Pen(β |η). More weight is put on
shrinkage terms that are better supported by π(η |β ). In this way, Pen(β ) automat-
ically emphasizes those shrinkage terms which are better suited for each β .

The principal thrust of this paper is to demonstrate the potential of Bayesian
penalty mixing through three examples:

• A fully Bayes LASSO penalty obtained by mixing LASSO penalties across co-
ordinates, (Section 2).

• A Spike-and-Slab LASSO penalty obtained by mixing pairs of LASSO penalties
within coordinates, (Section 3).

• A fully Bayes Spike-and-Slab LASSO penalty obtained by mixing LASSO
penalties both within and across coordinates, (Section 4).
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These Spike-and-Slab LASSO examples complement the developments of Ročková
(2015), who introduced Spike-and-Slab LASSO priors, and Ročková and George
(2015a,b), who further developed and applied these priors for variable selection.

In each of these three examples, we pay particular attention to the ability of the
modal estimator to adapt to the unknown sparsity level (a property known to hold
for a posterior mean in similar spike-and-slab setups). Our exploration concludes
with a very important finding. By mixing within coordinates and then adding a
prior distribution over a complexity parameter, one achieves a level of adaptivity
that is tantamount to an oracle hyperparameter choice. Our analysis constitutes an
initial step towards the general development of more elaborate hierarchical penalty
constructions for asymptotically minimax penalized likelihood estimation with un-
known pn.

In Section 2, we study the fully Bayes variant of the LASSO. Section 3 and
4 review the Spike-and-Slab LASSO and its fully Bayes variant. Section 5 then
develops an Appell function apparatus to deal with expectations under a certain
class of generalized beta distributions. Section 6 shows the adaptability of the fully
Bayes Spike-and-Slab LASSO in sparse normal means. Section 7 concludes with a
discussion of future directions.

The following notation will be used throughout. For sequences an and bn, an ∼
bn means an/bn → c for some c > 0, an � bn means bn = O(an), an � bn means
bn = o(an). We will denote by | · | the `1 norm.

2 Fully Bayes LASSO

The `1 penalty Penλ (β ) = −λ |β |, arguably the most prominent separable regu-

larizer, gives rise to the LASSO estimator β̂
L

in (2). With the universal threshold
choice λ ∼

√
2logn, the LASSO estimator enjoys oracle properties (Donoho and

Johnstone 1994) and achieves a near-minimax risk rate when pn = o(n). In practice,
however, the parameter λ is often chosen by performance based criteria such as
cross-validation, generalized cross-validation or ideas based on Stein’s unbiased es-
timate of risk (Tibshirani, 1994). Park and Casella (2008) offer Bayesian alternatives
to choosing λ : an empirical Bayes strategy through marginal maximum likelihood
and a fully Bayes solution with an appropriate prior distribution π(λ ). All of these
approaches use the data to inform the penalty hyperparameter, thereby potentially
boosting performance. Whereas Park and Casella (2008) used fully Bayes for pos-
terior median estimation via MCMC, here we investigate the implications for direct
penalized likelihood estimation.

For any given prior distribution π(λ ), a fully-Bayes-LASSO penalty is defined
as

PenFL(β ) = log
∫

∞

0

(
λ

2

)n

e−λ |β |dπ(λ ). (5)

Except for trivial point-mass priors π(λ ), (5) is a non-separable penalty. The well-
known closed-form solution for the LASSO estimator, which treats λ as fixed,
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writes β̂
L
= (β̂ L

1 , . . . , β̂
L
n )
′ as

β̂
L
i = (|yi|−λ )+sign(yi). (6)

This follows from the KKT conditions, using the fact that −λ is the derivative of
the LASSO penalty. With the fully-Bayes-LASSO penalty, the derivative is instead

∂PenFL(β )

∂ |βi|
=−

∫
∞

0 λ

(
λ

2

)n
e−λ |β |dπ(λ )∫

∞

0

(
λ

2

)n
e−λ |β |dπ(λ )

=−E [λ |β ],

a special case of (4). Thereby, the fully-Bayes-LASSO estimator β̂
FL

=(β̂ FL
1 , . . . , β̂ FL

n )′

satisfies
β̂

FL
i =

[
|yi|−E

(
λ
∣∣ β̂ FL)]

+
sign(yi). (7)

Here, the shrinkage term is adaptive, depending on the data through β̂
FL

. Interest-
ingly, the fully Bayes approach is seen to manifest itself through the plug-in choice

E [λ | β̂
FL
] in empirical Bayes-like fashion. Note, however, that β̂

FL
is contained on

both sides of (7), in contrast with approaches which insert a single derived estimate
for λ . With the fully Bayes plug-in, the amount of shrinkage reflects the size of

|β̂
FL
|, as will be seen below.

It can be shown1 that the risk of the LASSO estimator β̂
L

satisfies

Eβ 0
||β̂

L
−β 0||2 ≤ pn(2+4λ

2)+(n− pn)4λφ(λ ), (8)

when ||β 0||0 = pn. In order to obtain the near-minimax rate, one would need to

select λ ∼
√

2 logn so that Eβ 0
||β̂

L
−β 0||2 � pnλ 2 = 2 pn logn.

Analogously, it can be shown that the fully-Bayes-LASSO estimator satisfies

Eβ 0
||β̂

FL
−β 0||2 ≤ pn(2+4Eβ 0

λ̂
2)+(n− pn)4Eβ 0

λ̂ φ(λ̂ ),

where λ̂ =E
(

λ
∣∣ β̂ FL)

. One would hope that the fully Bayes variant will self-adapt,

yielding ideally Eβ 0
λ̂ ∼
√

2logn, the desired LASSO tuning. To get a sense of this

possibility, let’s take a closer look at λ̂ .
For the purpose of illustration, consider the conjugate class2 of priors π(λ ) =

ba

Γ (a)λ a−1e−bλ I(λ > 0), so that

1 Following the proving technique of Ročková (2015), Remark 5.1. This upper bound is useful for
illustration and can be sharpened.
2 Casella and Park (2009) use a gamma prior on λ 2 for the ease of MCMC implementation.
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π(β ) =
ba

2nΓ (a)

∫
∞

0
λ

n+a−1e−λ (|β |+b)dλ =
baΓ (n+a)

2nΓ (a)(|β |+b)n+a .

This yields

λ̂ = E [λ | β̂
FL
] =

n+a

|β̂
FL
|+b

. (9)

Thus λ̂ is an adaptive threshold that depends not only on the sparsity of β̂
FL

, but

also on the size of the nonzero coefficients. The dependence on |β̂
FL
|, and hence

on |β 0|, makes it impossible to tune a and b so that Eβ 0
λ̂ ∼
√

2 logn. Thus, there
seems to be a disconnect between the universal LASSO tuning for near-minimax
rates, and the fully Bayes LASSO approach.

Moreover, note that in (7), all coordinates are shrunk by the same amount. As
opposed to the classical LASSO, the adaptive weight here depends on the size of
the coefficients β̂ . With just one tuning-parameter, despite its adaptivity, the penalty
will fail to shrink globally and act locally (Polson and Scott, 2010). As a locally
adaptive extension of the LASSO prior, Griffin and Brown (2012) propose individ-
ual penalties λi for each coordinate, where λi ∼ π(λ ). Each λi is a realization from
a mixing distribution. Marginally, such strategies induce sharply peaked separable
penalties.

Although the fully Bayes treatment of the LASSO offers the possibility for self-

tuning, the penalty E(λ | β̂
FL
) cannot both circumvent the bias issue and adapt to

sparsity at the same time. For this, it is imperative that each coefficient is given
a unique opportunity to escape the overall shrinkage effect. This is achieved with
global/local shrinkage priors and two-group spike-and-slab priors. In the sequel, we
explore the two group mixture prior formulations for penalty creation. Instead of
mixing across coordinates immediately, we begin by mixing within coordinates.

3 Spike-and-Slab LASSO

Penalty mixing within coordinates provides an opportunity to enhance the perfor-
mance of penalized likelihood estimators (2) by combining the benefits of single
penalties. For instance, the elastic net (Zou and Hastie, 2005) blends the LASSO and
the ridge, inducing a grouping effect in estimation while maintaining the ability to
threshold. Other combinations of convex and concave penalties have been proposed
to achieve good subset recovery and bias elimination (Fan and Lv, 2014). In these
two cases, the mixing operates at the penalty level through the linear superposition
of penalty terms.

In sharp contrast, Bayesian penalty mixing, which operates at the prior level, is
inherently nonlinear and probabilistic. Such Bayesian penalty mixing arises natu-
rally in the context of spike-and-slab mixture formulations for Bayesian variable
selection. In particular, let us turn to the recently proposed Spike-and-Slab LASSO
(SSL) prior of Ročková (2015). Viewed as a continuous relaxation of the point mass
mixture prior (Castillo and van der Vaart (2012)), the SSL prior deploys a two-point
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mixture of a Laplace spike distribution π(β | λ0) =
λ0
2 e−|β |λ0 and a Laplace slab

π(β |λ1) =
λ1
2 e−|β |λ1 , i.e.

π(β |θ ,λ1,λ0) =
n

∏
i=1

[θπ(βi |λ1)+(1−θ)π(βi |λ0)],

where θ ∈ (0,1) is a mixing weight. It is assumed λ0 >> λ1 > 0. Note that the
SSL prior reduces to a single Laplace (LASSO) prior when λ0 = λ1, and converges
to a point mass spike-and-slab mixture as λ0→ ∞. Here we have three parameters
(λ1,λ0,θ), where 0 < λ1 < 1 is a small fixed constant treated as known (made pre-
cise by the theoretical study of Ročková (2015)) and λ0 and θ are the two parameters
subject to tuning. In what follows, we suppress λ1 from the conditioning.

Tailored for Bayesian variable selection (Ročková and George, 2014; Ročková,
2015; Ročková and George, 2015b), each βi is thought of as arriving from the diffuse
slab distribution π(βi |λ1), with probability θ ∈ (0,1), or from the sharply peaked
spike distribution π(βi |λ0). In the context of Bayesian regression analysis, selection
with a spike-and-slab prior has traditionally entailed a decision to include the ith
regressor only when the “posterior probability that βi came from π(βi |λ1)” is high.
However, when approached from a penalized likelihood perspective, the selection
strategy is very different.

In the context of penalized likelihood estimation, variable selection capitalizes
on a penalty of the form

PenSL(β |θ ,λ0) =
n

∑
i=1

log[θπ(βi |λ1)+(1−θ)π(βi |λ0)]. (10)

The penalty (10) stands out from classical penalty functions as nonlinear in both |βi|
and (λ1,λ0,θ). The benefits of using this rather complex nonlinear functional are
revealed by its implicit shrinkage term, the derivative. As a special case of (4), we
obtain

∂PenSL(β |θ ,λ0)

∂ |βi|
=−λ1 p?θ (βi)−λ0[1− p?θ (βi)]≡−λ

?
θ (βi), (11)

where

p?θ (βi) =
θπ(βi |λ1)

θπ(βi |λ1)+(1−θ)π(βi |λ0)
=

1

1+ 1−θ

θ

λ0
λ1

e−|βi|(λ0−λ1)
(12)

is the conditional probability that βi came from π(βi | λ1) having seen βi. Thus,
the spike-and-slab LASSO shrinkage term λ ?

θ
(βi) mixes the two LASSO shrinkage

terms (λ1,λ0) and does so adaptively. Ideally, one would like to use λ1 < 1 when
|βi| is large, and λ0 >> 1 when |βi| is small. This is essentially effectuated with the
adaptive exponential weight 0 < p?

θ
(βi)< 1, which gears λ ?

θ
(βi) towards λ0, when

|βi| is small, and towards λ1 when |βi| is large.
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The first order KKT conditions immediately yield a necessary characterization

of the global mode β̂
SL

, where the coordinate estimators must satisfy

β̂
SL
i =

[
|yi|−λ

?
θ (β̂

SL
i )
]
+

sign(yi), i = 1, . . . ,n. (13)

The form (13) resembles the LASSO estimator (6). However, here the SSL penalty
term λ ?

θ
(β̂ SL

i ) is not constant, but rather depends on the data through β̂ SL
i . As with

the adaptive LASSO, (Zou, 2006), each coefficient has its own penalty, which serves
as a basis for “differential” shrinkage. Adaptive in this way, the SSL estimator de-
ploys a large penalty (close to λ0) to threshold small estimates, and a small penalty
(close to λ1) to hold large estimates steady with only slight bias. This is very much
in contrast to a single LASSO estimator which shrinks all estimates equally with a
constant penalty.

To further eliminate local modal solutions, the necessary characterization (13)

can be sharpened (Ročková, 2015), where β̂
SL

can be shown to be sandwiched be-
tween soft and hard thresholding operators. When λ0 is large enough, the coordinate
estimates must satisfy

β̂
SL
i =

[
|yi|−λ

?
θ (β̂

SL
i )
]

sign(yi) I(|yi|> ∆), i = 1, . . . ,n, (14)

where
∆ ∼

√
2log[1/p?

θ
(0)]+λ1, (15)

when λ1 ≤ e−2 and λ0 ≥ 1/θ + 3, and 0 < θ ≤ 0.5. Thus, letting λ0 increase with

the sample size, the asymptotic risk of β̂
SL

is ultimately governed by the threshold
∆ through a functional

1/p?θ (0) = 1+
λ0

λ1

(1−θ)

θ
. (16)

It follows from the proof of Theorem 5.1 of (Ročková, 2015) that

Eβ 0
||β̂

SL
−β 0||2 � pn∆

2 +(n− pn)∆φ(∆). (17)

This upper bound is similar to (8), where ∆ now plays the role of selection thresh-

old. The rate-minimax performance of the global posterior mode β̂
SL

will be then
achieved when 1/p?

θ
(0) ∼ (n/pn)

α for some α > 0. This will occur, for instance,
when λ1 < e−2, θ ∼ pn/n and λ0 ∼ 1/θ . Under this “oracle” choice, the threshold
∆ is of the optimal order

√
2log[n/pn], yielding (Corollary 5.1 of Ročková (2015))

sup
β 0∈l0[pn;n]

Eβ 0
||β̂

SL
−β 0||2 ∼ pn log(n/pn).

Moreover, with this parameter choice, the entire posterior distribution π(β | y) con-
centrates around the true vector β 0 at the minimax rate (Corollary 6.1 of Ročková
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(2015)). Namely,

sup
β 0∈l0[pn;n]

Eβ 0
P(β ∈ Rn : ||β −β 0||2 > M pn log[n/pn] | y(n))→ 0 (18)

for a suitably large constant M > 0. This property fails to hold for a single LASSO
Laplace prior (Castillo et al. (2015)), despite the optimality of the LASSO mode.

Nevertheless, the oracle parameter setup will be unavailable when pn is unknown,
as will typically be the case in practice. To get around this problem, one could con-
sider an empirical Bayes plug-in choice for θ and λ0 (along the lines of Johnstone
and Silverman (2004)). However, here we explore a fully Bayes approach which
places a prior distribution on θ . The hope is that by treating θ as unknown in this
way, we can mimic the performance obtained by the oracle choice.

It is important to note that the spike penalty λ0 also requires proper tuning.
Here, we focus exclusively on adapting θ , assuming that λ0 satisfies λ0/λ1 ∼ nα

for α > 0). This scenario is instructive for understanding the basic mechanisms un-
derlying the adaptivity of fully Bayes penalty mixing. It is also a fundamental first
step towards fully adaptive procedures, obtained by inducing a prior on λ0. We dis-
cuss some of these alternatives at the end of Section 6.

4 Fully Bayes Spike-and-Slab LASSO

In Section 2, we considered a fully Bayes treatment of the original LASSO, mixing
its single penalty parameter over a prior distribution. This mixing produces a data-
dependent penalty, which ties the coordinates together. In Section 3, we considered
a very different approach, mixing penalties within coordinates over a spike-and-slab
prior, keeping the value of the shared hyperparameter θ fixed. This mixing treated
each coefficient uniquely, preventing the borrowing of strength across coordinates.
We now proceed to combine these two perspectives, by mixing the spike-and-slab
prior over a prior distribution on θ . This will allow the coordinates to share a global
hyperparameter, while the spike-and-slab prior allows each coefficient to be treated
locally.

Adaptive mixing of spike-and-slab penalties across the coordinates of βi can be
achieved with a suitable prior π(θ) (Ročková and George, 2015b). The prior mixing
proportion θ plays the role of a complexity parameter, determining the sparsity of
the solution. In the absence of knowledge about pn, setting θ fixed to a constant
may diminish performance by over/underestimating the dimensionality. The hope is
that by introducing π(θ), the penalty can adapt to the sparsity level and help yield
oracle-like performance automatically, avoiding the need for setting θ close to pn/n.

With a prior on θ , the coordinates in β are now marginally dependent, yielding

π(β ) =
∫ 1

0

n

∏
i=1

[θπ(βi |λ1)+(1−θ)π(βi |λ0)]dπ(θ) (19)
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which will be non-separable for all but trivial choices of π(θ). Generally, the in-
tegral above does not have a closed form solution, complicating the tractability of
the penalty Pen(β ) = logπ(β ). Fortunately, a revealing and simple form can still be
found for its derivative.

With θ fixed, a simple necessary characterization of the global mode was ob-
tained in (14). Following the development in Ročková and George (2015b), we can
still obtain a similar simple characterization under the dependent prior π(β ). As
another special case of (4), we have

∂ logπ(β )

∂ |βi|
=

1
π(β )

∫ 1

0

∂π(β |θ)
∂ |βi|

π(θ)dθ =
∫ 1

0

∂ logπ(β |θ)
∂ |βi|

π(θ |β )dθ

=−λ1

∫ 1

0
p?θ (βi)π(θ |β )dθ −λ0

[
1−

∫ 1

0
p?θ (βi)π(θ |β )dθ

]
. (20)

The difference between (11) and (20) is illuminating. Instead of the “fixed-θ”
mixing probability p?

θ
(βi) in (11), (20) employs an aggregated mixing probability∫ 1

0 p?
θ
(βi)π(θ |β )dθ that averages p?

θ
(βi) over π(θ |β ). The implicit bias term (20)

reveals the mechanism underlying the adaptivity. By averaging over the conditional
distribution π(θ |β ), the penalty is given an opportunity to learn about the level of
sparsity of β .

Going further, substantial insight and simplification is provided by the following
surprising identity from Ročková and George (2015b)

p?θi
(βi)≡

∫ 1

0
p?θ (βi)π(θ |β )dθ , θi ≡ E[θ |β i]. (21)

Here β i denotes the sub-vector of β containing all but the ith entry. Even though
p?

θ
(βi) is a nonlinear function of θ , its average value over π(θ |β ) is obtained by

simply substituting θi ≡ E[θ | β i] for θ to obtain p?
θi
(βi). With the representation

(21), the implicit bias term (20) is of the simple form

∂ logπ(β )

∂ |βi|
= λ1 p?θi

(βi)+λ0
[
1− p?θi

(βi)
]
≡ λ

?
θi
(βi), (22)

which similarly comes from λ ?
θ
(βi) in (11) by simple substitution of θi for θ .

A direct analogue of (14) is now readily available. The coordinates of the global

modal estimator β̂
FSL

under the fully Bayes non-separable SSL penalty will jointly
satisfy

β̂
FSL
i =

[
|yi|−λ

?
θ̂i
(β̂ FSL

i )
]
+

sign(yi) I(|yi|> ∆i), (23)

where θ̂i ≡ E [θ | β̂
FSL
i ], and

∆i ∼
√

2log[1/p?
θ̂i
(0)]+λ1. (24)
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Compared to equation (14), each coordinate in (23) now has a penalty λ ?
θ̂i
(β̂ FSL

i )

which depends on all the coordinates through β̂i and θ̂i, not just the ith. This de-

pendency originates from the mixing distribution π(θ | β̂
FSL

), used to obtain the

“average” inclusion probability (21). The fewer zeros in β̂
FSL

, the less concentrated
this distribution will be around the origin, thereby leading to a larger value of θ̂i.

Another essential difference between (14) and (23), is the replacement of ∆ by
the adaptive thresholds ∆i. In the separable case, we have a single threshold for
which

(∆ −λ1)
2 ∼ 2 log

[
1+

λ0

λ1

1−θ

θ

]
. (25)

With θ fixed to a constant, (25) deploys prior odds of non-entering the model (1−
θ)/θ . Substituting θ̂i for θ , we have

(∆i−λ1)
2 ∼ 2 log

1+
λ0

λ1

1−E(θ | β̂
FSL
i )

E(θ | β̂
FSL
i )

 (26)

which shows how very different the non-separable formulation is from the separable

one. By treating θ as random, (26) uses the “posterior odds” [1−E(θ | β̂
FSL
i )]

E(θ | β̂
FSL
i )

. Through

β̂ , the data inform θ about the sparsity level through the proportion of its nonzero
entries. This observation is fundamental to understanding the mechanism through
which the fully Bayes formulation transmits information into the posterior mode.

5 Bounds and Rates for the Fully Bayes Selection Thresholds

The selection thresholds ∆i are indispensable to describing the properties of the
global mode estimator. For this purpose, Ročková and George (2015b) present
bounds for the quantity E [θ | β̂ i], and thereby also ∆i when θ ∼B(a,b). Note that
the posterior expectations E(θ | β̂ i) will be very similar for each i = 1, . . . ,n, when
n is sufficiently large. Thus, despite ∆i’s that are coordinate-specific, they will not
be dramatically different. For a relatively uninformative choice of π(θ), one would
expect E(θ | β̂ i) to be close to p̂i/n, where p̂ i = ‖β̂ i‖0.

Let us assume that it is the first p̂ entries in β̂ that are nonzero. Under θ ∼
B(a,b), the density of the conditional distribution π(θ | β̂ ) is given by

π(θ | β̂ ) ∝ θ
a−1(1−θ)b−1(1−θz)n−p̂

p̂

∏
j=1

(1−θx j), (27)

where z = 1− λ1
λ0

, x j =
(

1− λ1
λ0

e|β̂ j |(λ0−λ1)
)

. This distribution turns out to be a gen-
eralization of the Gauss hypergeometric distribution (Armero and Bayarri, 1994;
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Ismail and Pitman, 2000). The normalizing constant writes as an Euler integral
representation of the hypergeometric function of several variables (Gradshteyn and
Ryzhik, 2000). Consequently, the expectation can be written as

E [θ | β̂ ] =
∫ 1

0 θ a(1−θ)b−1 (1−θz)n−p̂
∏

p̂
j=1 (1−θx j)dθ∫ 1

0 θ a−1(1−θ)b−1 (1−θz)n−p̂
∏

p̂
j=1 (1−θx j)dθ

. (28)

Ročková and George (2015b) suggest approximating (28) by

B(a+1,b)
B(a,b)

F1(a+1, p̂−n,−p̂,a+b+1;z,x)
F1(a, p̂−n,−p̂,a+b;z,x)

, (29)

for some suitable x, where

F1(a′,b′,c′,d′;z,x)=
1

B(d′−a′,a′)

∫ 1

0
θ

a′−1(1−θ)d′−a′−1(1−θz)−b′(1−θx)−c′dθ

is the Appell F1 function. To obtain suitable lower and upper bounds for E [θ | β̂ ], we
begin with the following lemma which establishes that the ratio (29) is monotone in
x and z.

Lemma 1. (Monotonicity Ratio of Appell F1 Functions)
Assume δ > 0. Then the function

fδ (a
′,b′,c′,d′;z,x) =

F1(a′+δ ,b′,c′,d′+δ ;z,−x)
F1(a′,b′,c′,d′;z,−x)

(30)

is monotone increasing when c′ < 0 and monotone decreasing when c′ > 0 for x >
−1.

Proof. Denote by Aδ = 1
B(d′−a′,a′+δ ) . Then

fδ (a
′,b′,c′,d′;z,x) =

Aδ

∫ 1
0 θ a′+δ−1(1+θx)−c′g(a′,d′,b′,z;θ)dθ

A0
∫ 1

0 θ a′−1(1+θx)−c′g(a′,d′,b′,z;θ)dθ
, (31)

where g(a′,d′,b′,z;θ) = (1− θ)d′−a′−1(1− θz)−b′ . By differentiating ratio (31)
with respect to x, the function fδ (a′,b′,c′,d′;z,x) is monotone increasing for c′ < 0
(and monotone decreasing for c′ > 0) if∫ 1

0
q(θ)p(θ)dθ

∫ 1

0
h(θ)p(θ)dθ <

∫ 1

0
q(θ)h(θ)p(θ)dθ

∫ 1

0
p(θ)dθ , (32)

where

p(θ) = θ
a′−1(1+θx)−c′g(a′,d′,b′,z;θ)

q(θ) = θ
δ , h(θ) =

θ

1+θx
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The inequality (32) follows from Chebyshev’s integral inequality, because the func-
tion p(θ) is positive and both q(θ) and h(θ) are monotone increasing on (0,θ) for
x >−1.

Remark 1. Lemma 1 is a generalization of Lemma 1.1 of Karp and Sitnik (2009),
who showed the monotonicity of ratios of Gauss Hypergeometric functions (a spe-
cial case of the Appell F1 functions) with shifted hyperparameters. Their result is
obtained as a special case when either b′ = 0 or c′ = 0. Lemma 1 can also be for-
mulated in terms of z, where the ratio will be monotone increasing in z when b′ < 0
and decreasing when b′ > 0.

The next lemma will be a stepping stone for deriving the upper bound on the selec-
tion threshold.

Lemma 2. Assume δ > 0 and let fδ (a′,b′,c′,d′;z,x) be as in (30). Assume c′ < 0
and 0 < z < 1. Then we have

lim
x→∞

fδ (a
′,b′,c′,d′;z,x)<

B(d′−a′,a′)
B(d′−a′,a′+δ )

B(d′−a′,a′+δ − c′)
B(d′−a′,a′− c′)

. (33)

Proof. Let Aδ be as in the proof of Lemma 1. Repeatedly applying l’Hospital’s rule
(with respect to x), we obtain for c′ < 0

lim
x→∞

fδ (a
′,b′,c′,d′;z,x) =

Aδ

A0

∫ 1
0 θ a′+δ−c′−1(1−θ)d′−a′−1[1−θz]−b′dθ∫ 1

0 θ a′−c′−1(1−θ)d′−a′−1[1−θz]−b′dθ
(34)

=
Aδ

A0

B(d′−a′,a′+δ − c′)
B(d′−a′,a′− c′)

F1(a′+δ − c′,b′,0,d′+δ ;z,1)
F1(a′− c′,b′,0,d′;z,1)

(35)

Note that F1(a′,b′,0,d′;z,1) = F1
2 (b

′,a′,d′;z), where F2 is the Gauss hypergeo-
metric function. We can apply Lemma 1.1 of Karp and Sitnik (2009) or Lemma
1 to conclude that the ratio of two Gauss functions with shifted arguments is
monotone decreasing in z. Since 0 < z < 1, we have F1(a′+δ−c′,b′,0,d′+δ ;z,1)

F1(a′−c′,b′,0,d′;z,1) <
F1(a′+δ−c′,b′,0,d′+δ ;0,1)

F1(a′−c′,b′,0,d′;0,1) = 1.

Having developed the apparatus of Appell F1 functions, we are ready to state and
prove the following key lemma.

Lemma 3. Assume π(θ | β̂ ) is distributed according to (27). Let p̂ = ‖β̂‖0. Then

C
p̂+a

b+a+n
< E [θ | β̂ ]< p̂+a

b+a+ p̂
,

where 0 < C < 1. Moreover, when a = 1,b = n and (λ0 − λ1)
2 n/ p̂2 → ∞, then

limn→∞ C = 1.
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Proof. Let x j =
(

1− λ1
λ0

e|β̂ j |(λ0−λ1)
)

and assume (without loss of generality) that
x j = x for 1 ≤ j ≤ p̂. Note that x < 1 and x→−∞ as λ0→ ∞. Applying Lemma 1
and Lemma 2 (with δ = 1) , we obtain

E [θ | β̂ ] = B(a+1,b)
B(a,b)

F1(a+1, p̂−n,−p̂,a+b+1;z,x)
F1(a, p̂−n,−p̂,a+b;z,x)

(36)

<
B(p̂+a+1,b)

B(p̂+a,b)
=

p̂+a
p̂+a+b

. (37)

Next, we can write

E [θ | β̂ ]>
∫ 1

0 θ p̂+a(1−θ)b(1−θz)n−p̂dθ∫ 1
0 θ p̂+a−1(1−θ)b(1−θz)n−p̂dθ

×

∫ 1
0 θ p̂+a−1(1−θ)b(1−θz)n−p̂dθ∫ 1

0 θ p̂+a−1(1−θ)b(1−θz)n−p̂(1+ 1−θ

θ

λ0
λ1

e−|βi|(λ0−λ1))p̂dθ
,

where we used the fact that 1/p?
θ
(βi) = 1+ 1−θ

θ

λ0
λ1

e−|βi|(λ0−λ1)] > 1. Denote by R(z)
the first term in the product above and by C the second term. Then

R(z) =
B(p̂+a+1,b)

B(p̂+a,b)
F1(p̂+a+1,0, p̂−n, p̂+a+b+1;0,z)

F1(p̂+a,0, p̂−n, p̂+a+b;0,z)
> R(1) =

p̂+a
b+a+n

,

(38)

where we applied Lemma 1.
Next, we show that C→ 1 as λ0 → ∞. First, we denote by π̃(θ) ∝ θ a+p̂−1(1−

θ)b−1(1−θz)n−p̂(1+ 1−θ

θ

λ0
λ1

e−|βi|(λ0−λ1))p̂, the density of a generalized Gauss hy-
pergeometric distribution, and by E π̃ [·] its expectation operator. Then

C = E π̃

{[
1+

1−θ

θ

λ0

λ1
e−|β̂i|(λ0−λ1)

]−p̂
}
.

We now use the fact that nonzero values β̂i are larger than a certain threshold,
p?

θi
(β̂i) > 0.5(1+

√
1−4/(λ0−λ1)2, (Ročková, 2015). This can be equivalently

written as

λ0

λ1
e−|β̂i|(λ0−λ1) <

E [θ | β̂ i]

1−E [θ | β̂ i]

1
(λ0−λ1)2/2−1

<
p̂+a
b−1

1
(λ0−λ1)2/2−1

.

In the second inequality above, we applied the upper bound (36). Next,

1 >

[
1+

1−θ

θ

λ0

λ1
e−|β̂i|(λ0−λ1)

]−p̂

> e
− 1−θ

θ

p̂+a
b−1

p̂
(λ0−λ1)

2/2−1 ≡ g(θ)
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Assuming (λ0−λ1)
2 n/p̂2→∞ as n→∞ and b = n,a = 1, we have limn→∞ g(θ) =

1∀θ ∈ (0,1) and limn→∞ C = 1, by the bounded convergence theorem.
The arguments apply also when xi 6= x j,1 ≤ i, j ≤ p̂n, yielding ultimately the

same upper/lower bounds.

Lemma 3 has important implications for the tuning of a and b. With a = 1 and
b = n, we obtain E [θ | β̂ ]∼ p̂

n , which is the actual proportion of nonzero coefficients
in β̂ . Using Lemma 3, we obtain that with a= 1 and b= n, the posterior odds satisfy

n+ p̂+1
p̂+1

−1 <
1−E [θ | β̂ ]
E [θ | β̂ ]

<
2n+1
p̂+1

−1. (39)

These posterior odds play a key role in determining the selection thresholds ∆i,
which in turn drive the risk of the global mode estimator.

6 Risk Properties of the Global Mode

Now consider the fully-Bayes SSL estimator β̂
FSL

, and again assume that it is the
first p entries in β 0 that are nonzero. Adapting the proof of Theorem 5.1 of Ročková
(2015), we obtain

Eβ 0
||β̂

FSL
−β 0||2 �

pn

∑
i=1

Eβ 0
∆i

2 +
n

∑
i=pn+1

Eβ 0
∆iφ(∆i). (40)

With a = 1 and b = n, using (39) we obtain

Eβ 0
||β̂

FSL
−β 0||2 � pnEβ 0

log
[

1+
λ0

λ1

n
p̂+1

]
. (41)

It is worthwhile to compare (41) with the upper risk bound (17) obtained for
the non-adaptive estimator. Here, we have a different selection threshold for each
coordinate and deploy an expected value of these thresholds under π(Y |β 0). In the
absence of knowledge of pn, the automatic choice λ0/λ1 = nα , for α > 0, and θ =
1/n yielded ∆ ∼

√
2log(1+nα+1) in the non-adaptive case. Here, by adapting the

parameter θ , we obtain an improvement, where ∆i ∼
√

2log(1+nα+1/p̂). In either
case, with λ0/λ1 = nα one achieves the near-minimax risk rate

√
2logn. However,

in the adaptive case we have obtained a sharper upper bound.

Whereas the fully Bayes LASSO selection threshold E [λ | β̂
L
] could not be scaled

as
√

2logn, here the adaptive thresholds ∆i are themselves logarithms and scale as√
2logn under a suitable beta prior B(1,n). Thus, with the spike-and-slab LASSO,

there is no longer a disconnect between the fully Bayes and universal hyperparam-
eter tuning.
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6.1 Adapting to the Dimensionality

The purpose of this section is to demonstrate the ability of the “posterior odds”
[1−E(θ | β̂ i)]/E(θ | β̂ i) to adapt to the true unknown sparsity level pn. For θ ∼
B(1,n), the asymptotic rate of the odds ratio (39) is governed by n/p̂. Our goal
in this section is to show that these odds are of the optimal order n/pn with large
probability. The following lemma will be instrumental in the result to follow.

Lemma 4. We have

log

[
π(β 0)

π(β̂ )

]
>−λ1|β̂ −β 0|+(p̂− pn) log

[
λ0

λ1

b+ k+a
p̂+a

]
+ logC,

where k = p̂ I(p̂ < pn)+n I(p̂ > pn) and C was defined in the proof of Lemma 3.

Proof. We can write

log

[
π(β 0)

π(β̂ )

]
>−λ1|β̂ −β 0|+(p̂− pn) log

(
λ0

λ1

)
+ log

[
N(z)
D(z)

]
+ logC (42)

where z = (1− λ1
λ0
) and

N(z)≡
∫ 1

0
θ

pn+a−1(1−θ)b−1(1−θz)n−pndθ , (43)

D(z)≡
∫ 1

0
θ

p̂+a−1(1−θ)b−1(1−θz)n−p̂dθ . (44)

Denote by R(z) = B(p̂n+a,b)
B(pn+a,b)

N(z)
D(z) . First, assume pn = p̂+δ for some δ > 0. We can

write

R(z) =
F1(p̂+a+δ ,0, p̂−n+δ ,b+ p̂+a+δ ;0,z)

F1(p̂+a,0, p̂−n,b+ p̂+a;0,z)
. (45)

As in Lemma 1, we can show (using similar arguments) that R(z) is monotone de-
creasing in z and thus can be lower-bounded by R(1). Therefore

N(z)
D(z)

>
B(pn +a,b+n− pn)

B(p̂+a,b+n− p̂)
>

(
b+n+a

p̂+a

)p̂−pn

. (46)

Now assume p̂ = pn + δ for some δ > 0. Using again the monotonicity argument,
we find that 1/R(z) can be upper-bounded by 1/R(0). This yields

N(z)
D(z)

>
B(pn +a,b)
B(p̂+a,b)

>

(
b+ p̂+a

p̂+a

)p̂−pn

.

In the following theorem we show that, with high probability, p̂ has the same
order as pn, assuming that the signal is strong enough. Namely, we provide a non-
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asymptotic upper and lower bound for p̂, focusing on a set τ0 =
{

Y : ||Y −β 0||∞ ≤ λ̄
}

,
where λ̄ = 2

√
logn. The complement of this set has a small probability, i.e. P(τc

0)≤
2
n (Castillo et al. (2014), Lemma 2).

Theorem 1. Assume λ0/λ1 = nα where α > 0 and λ1 < λ̄ . Assume |β0i| ≥ b0, when
β0i 6= 0, where b0 > C1

√
pn logn for some C1 > 0. Then with probability at least

1− 2
n , we have

pn ≤ p̂≤ 2 pn +1. (47)

Proof. Denote by Q(β )=− 1
2 ||Y−β ||2+logπ(β ), where π(β ) is the non-separable

prior (19). Using the global optimality 0≥ Q(β 0)−Q(β̂ ), we can write

0≥ ||β̂ −β
0||2−2ε

′(β̂ −β
0)+2 log

(
π(β 0)

π(β̂ )

)
(48)

Now, we condition on the set τ0 and use the Hölder inequality |α ′β | ≤ |α|∞|β | to
find that

0≥ ||β̂ −β
0||2−2 λ̄ |β̂ −β 0|+2 log

(
π(β 0)

π(β̂ )

)
. (49)

Denote by δ = β̂ −β 0. Using the fact |δ | ≤ ||δ || ||δ ||1/2
0 , we have

0≥ ||δ ||2−2 λ̄ ||δ || ||δ ||1/2
0 +2 log

(
π(β 0)

π(β̂ )

)
. (50)

We will first show the upper bound p̂ ≤ C2 pn for some C2 > 1. To this end, we
assume p̂ > pn. Using the lower-bound of the log-prior ratio in Lemma 4 we have

log

[
π(β 0)

π(β̂ )

]
≥−λ1|β 0− β̂ 0|+(p̂− pn) log

(
λ0

λ1

b+n+a
p̂+a

)
+2logC.

To continue with (50), we can write[
||δ ||− (λ̄ +λ1)||δ ||1/2

0

]2
+2(p̂− pn) log

(
λ0

λ1

b+n+a
p̂+a

)
≤ (λ̄ +λ1)

2||δ ||0+2log1/C.

(51)
With (51) and using the fact ||δ ||0 ≤ p̂+ pn, we obtain

2(p̂− pn) log
(

λ0

λ1

b+n+a
p̂+a

)
≤ (λ̄ +λ1)

2(p̂+ pn)+2log1/C

which is equivalent to writing
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p̂≤ pn

1+
2(λ̄ +λ1)

2

2log
(

λ0
λ1

b+n+a
p̂n+a

)
− (λ̄ +λ1)2

+2log1/C.

With λ1 < λ̄ and λ0/λ1 = nα for sufficiently large α > 0, we have log
(

λ0
λ1

b+n+a
p̂+a

)
>

(λ̄ + λ1)
2. Because C → 1 under given assumptions, log1/C < 1/2 for n large

enough. We obtain the upper bound in (47) with C2 = 2.
What remains to be shown is pn ≤ p̂. We prove this statement by contradiction.

Assume p̂ < pn and let 0 < q = pn− p̂. To continue with (50), we use Lemma 4 to
obtain

0≥ ||δ ||
[
||δ ||−2(λ̄ +λ1)||δ ||1/2

0

]
+2(p̂− pn) log

(
λ0

λ1

b+ p̂+a
p̂+a

)
+2logC.

Because ||δ ||< pn + p̂ < (1+C2)pn +1, this writes as

0≥ ||δ ||
[
||δ ||−2(λ̄ +λ1)

√
pn(1+C2)+1

]
+2(p̂− pn) log

(
λ0

λ1

b+ p̂+a
p̂+a

)
+2logC.

(52)
Assuming the minimal-strength condition |β0i|> b0 when β0i 6= 0, we can write

1
2
||δ ||> 1

2
√

qb0 >C1
√

pn logn > 2(λ̄ +λ1)
√

pn(1+C1)+1

for suitably large C1. Assuming λ0/λ1 = nα , (52) yields

0≥ 1
2
||δ ||2−2q log

(
λ0

λ1

b+ p̂+a
p̂+a

)
+2logC

> 2C2
1

√
pn logn−2q log

(
λ0

λ1

b+ p̂+a
p̂+a

)
+2logC > 0

for C1 sufficiently large.

Remark 2. The minimal strength condition in Lemma 1 is a bit stronger than typical
beta-min conditions in the LASSO literature. This stronger condition was used pre-
viously by Fan and Lv (2014) and Zheng et al. (2014) to show sign consistency of
non-concave regularizers.

We conclude the paper with the following result which follows directly from
Lemma 3 and Theorem 1.

Corollary 1. Assume θ ∼B(1,n). Under the same conditions as in Theorem 1, we
obtain

1−E [θ | β̂ i]

E [θ | β̂ i]
∼ n/pn

and thus (∆i−λ1)
2 ∼ 2log

(
λ0
λ1

n
pn

)
, with probability at least 1− 2

n .
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Corollary 1 conveys the very important conclusion that the portion of the se-
lection threshold ∆i involving θ is self-adaptive. In other words, the non-separable
penalty obtained with the prior π(θ) =B(1,n) removes the need for setting θ equal
to the true proportion of true coefficients pn/n, because it can adapt to the ambient
dimensionality of the data. Thus, the fully Bayes treatment of θ here mimics oracle
performance. This behavior was confirmed by simulations, where self-tuning θ with
the fully Bayes formulation was tantamount to selecting θ by cross-validation.

Adapting θ is only halfway towards a fully automatic procedure that would adapt
λ0 and θ simultaneously, removing the need for assuming pn is known. Observing
that (1−θ)/θ and λ0 should be of the same order n/pn, Ročková (2015) proposed
tying λ0 and θ through λ0 ∼ 1/θ to borrow strength. This amounts to inducing
a beta prime distribution on the spike penalty. Another potentially useful approach
would be to treat θ and λ0 independently by assigning two prior distributions. In any
case, adapting λ0 simultaneously with θ requires several nontrivial modifications of
our approach and will be reported elsewhere.

7 Discussion

In this paper we demonstrated the potential of the fully Bayes approach for adap-
tive penalty creation. We compared two deployments of this strategy in terms of
their ability to adapt to unknown sparsity: the fully Bayes LASSO and the fully
Bayes Spike-and-Slab LASSO. In the first example, the fully Bayes adaptation could
not overcome the restrictive form of the penalty. In the second example, however,
the fully Bayes adaptation automatically performed universal hyperparameter tun-
ing. For the Spike-and-Slab LASSO, treating a penalty hyperparameter as random
with a prior was shown to be tantamount to an oracle choice of the hyperparameter.
Thus, penalty functions arising from such fully Bayes prior constructions exert self-
adapting ability. This adaptability is reminiscent of an empirical Bayes strategy, and
constitutes an alternative to cross-validation and other calibration approaches.
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