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Abstract

Considerable effort has been directed to developing asymptotically minimax proce-
dures in problems of recovering functions and densities. These methods often rely on
somewhat arbitrary and restrictive assumptions such as isotropy or spatial homogene-
ity. This work enhances theoretical understanding of Bayesian forests (including BART)
under substantially relaxed smoothness assumptions. In particular, we provide a com-
prehensive study of asymptotic optimality and posterior contraction of Bayesian forests
when the regression function has anisotropic smoothness that possibly varies over the
function domain. The regression function can also be possibly discontinuous. We in-
troduce a new class of sparse piecewise heterogeneous anisotropic Hölder functions and
derive their minimax lower bound of estimation in high-dimensional scenarios under the
L2-loss. Next, we find that the default Bayesian tree priors, coupled with a Dirichlet
subset selection prior for sparse estimation in high-dimensional scenarios, adapt to un-
known heterogeneous smoothness, discontinuity, and sparsity. These results show that
Bayesian forests are uniquely suited for more general estimation problems which would
render other default machine learning tools, such as Gaussian processes, suboptimal. Our
numerical study shows that Bayesian forests outperform other competitors such as ran-
dom forests and deep neural networks, which are believed to work well for discontinuous
or complicated smooth functions. Beyond nonparametric regression, we also show that
Bayesian forests can be successfully applied to many other problems including density
estimation and binary classification.
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1 Introduction

1.1 Motivation

Many of the existing asymptotic minimaxity results for estimating regression functions are
predicated on the assumption that certain smoothness conditions hold, which can be rarely
satisfied/verified when confronted with real data. This creates a disconnect between theory
and practice, limiting the scope of many of the theoretical results. For example, in non-
parametric regression involving multiple predictors, the assumption of isotropic smoothness
can be unnecessarily restrictive. A more realistic scenario is when the function exerts dif-
ferent degrees of smoothness in different directions and areas, with possible discontinuities
that allow further flexibility. This work is motivated by the desire to evaluate theoretical
performance of Bayesian forests, one of the workhorses of Bayesian machine learning, in such
broad scenarios.

Bayesian trees and their ensembles have achieved a notable empirical success in statistics
and machine learning (Chipman et al., 1998; Denison et al., 1998; Chipman et al., 2010).
Relative to other Bayesian machine learning alternatives, tree-based methods require compar-
atively less tuning and can be scaled to higher dimensions (Lakshminarayanan et al., 2013;
Bleich et al., 2014; He et al., 2019). The popularity of Bayesian forests such as Bayesian
additive regression trees (BART) (Chipman et al., 2010) is growing rapidly in many areas
including causal inference (Hill, 2011; Hahn et al., 2020), mean-variance function estimation
(Pratola et al., 2020), smooth function estimation (Linero and Yang, 2018), variable selection
(Bleich et al., 2014; Linero, 2018), interaction detection (Du and Linero, 2019), survival anal-
ysis (Sparapani et al., 2016) and time series (Taddy et al., 2011), to list a few. Despite the
remarkable success in empirical studies, theoretical properties of Bayesian forests were un-
available for a long time with first studies emerging only very recently (Ročková and van der
Pas, 2020; Linero and Yang, 2018; Ročková and Saha, 2019; Castillo and Ročková, 2021). Al-
though these pioneering findings divulge why tree-based methods perform very well, they are
limited to isotropic regression function surfaces, which exhibit the same level of smoothness
in every direction. Isotropy is one of the archetypal assumptions in theoretical studies, but
can be restrictive in real-world applications. This assumption is particularly unattractive in
higher dimensions where the function can behave very poorly in certain directions.

However, from the plentiful empirical evidence, Bayesian forests are expected to adapt to
more intricate smoothness situations. For example, Figure 1 shows that BART successfully
adapts to a piecewise smooth function or a Doppler-type function. The successful perfor-
mance beyond isotropy is for at least three reasons: (i) tree methods are based on top-down
recursive partitioning, where splits occur more often in areas where the function is locally
uneven or bumpy, making the procedure spatially adaptive; (ii) the choice of coordinates
for split is data-driven, making the domain divided more often in directions in which the
function is less smooth; and (iii) tree-based learners are piecewise constant and, as such, are
expected to adapt to discontinuous functions by detecting smoothness boundaries and jumps.
These considerations naturally create an expectation that Bayesian forests achieve optimal
estimation properties in more complex function classes without any prior modification.
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(a) Piecewise smooth function estimation

(b) Doppler-type function estimation

Figure 1: Function estimation in nonparametric regression with complicated smoothness
using Bayesian CART and BART.

1.2 Our contribution

The main goal of this paper is to study optimality and posterior contraction of Bayesian
forests under relaxed smoothness assumptions. More specifically, we introduce a class of
functions whose domain has been cleaved into hyper-rectangles where each rectangular piece
has its own anisotropic smoothness (with the same harmonic mean). We allow for possible
discontinuities at the boundaries of the pieces. We call this new class of functions piecewise
heterogeneous anisotropic functions (see Definitions 1–2 in Section 2.2). We establish ap-
proximation theory for this general class which blends anisotropy with spatial inhomogeneity
and which, to the best of our knowledge, has not yet been pursued in the literature. Our
results complement the body of existing work on piecewise isotropic smoothness classes (e.g.,
Candès and Donoho, 2000, 2004; Le Pennec and Mallat, 2005; Petersen and Voigtlaender,
2018; Imaizumi and Fukumizu, 2019). Our function class subsumes the usual (homogeneous)
anisotropic space for which adaptive procedures exist with optimal convergence rate guar-
antees, including the dyadic CART of Donoho (1997). We refer to Barron et al. (1999),
Neumann and von Sachs (1997), Hoffman and Lepski (2002), Lepski (2015), and references
therein for a more complete list. There are also adaptive Bayesian procedures for anisotropic
function estimation with desired asymptotic properties (e.g., Bhattacharya et al., 2014; Shen
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and Ghosal, 2015). There appear to be no theoretical properties for adaptation in the more
general case of piecewise heterogeneous anisotropic smoothness. Indeed, existing theoreti-
cal studies for discontinuous piecewise smooth classes impose the isotropy assumption (e.g.,
Candès and Donoho, 2000, 2004; Le Pennec and Mallat, 2005; Petersen and Voigtlaender,
2018; Imaizumi and Fukumizu, 2019) and the convergence rates in spatially adaptive esti-
mation depend on global smoothness parameters (e.g., Pintore et al., 2006; Liu and Guo,
2010; Wang et al., 2013; Tibshirani, 2014). In this respect, our study appears to be the first
theoretical investigation of piecewise anisotropic function classes.

The majority of frequentist/Bayesian methods for anisotropic function estimation rely on
multiple scaling (bandwidth) parameters, one for each direction. As noted by Bhattacharya
et al. (2014), selecting optimal scaling parameters in a frequentist way can be computa-
tionally difficult as adaptation in anisotropic spaces presents several challenges (Lepski and
Levit, 1999). The Bayesian paradigm provides an effective remedy by assigning priors over
these unknown parameters. One such example is the generalized Gaussian process priors or
spline basis representations (Bhattacharya et al., 2014; Shen and Ghosal, 2015). Although
these priors enjoy elegant theoretical guarantees in typical anisotropic spaces, it is unclear
whether they can adapt to piecewise heterogeneous anisotropic spaces without substantial
modification. Bayesian forests, on the other hand, are expected to work in these more com-
plex scenarios without any additional scaling parameters. The approximability is controlled
merely by the depth of a tree and the orientation of its branches, where no prior modifications
should be required to achieve optimal performance. Moreover, computation with Gaussian
processes can be quite costly (Banerjee et al., 2013; Liu et al., 2020), while Bayesian forests
are more scalable and faster than their competitors.

In the context of regression or classification, Bayesian forests often rely on observed
covariate values for splits in recursive partitioning (Chipman et al., 1998; Denison et al., 1998;
Chipman et al., 2010). This facilitates theoretical investigation under the fixed regression
design. In the context of nonparametric Gaussian regression, Ročková and van der Pas
(2020) and Ročková and Saha (2019) investigated posterior contraction for BART based
on this conventional manner of partitioning. The dyadic CART (Donoho, 1997), on the
other hand, splits at dyadic midpoints of the domain and can achieve optimal performance
as well (Castillo and Ročková, 2021). We generalize the dyadic CART by introducing the
notion of split-nets which form a collection of candidate split-points that are not necessarily
observed covariate values and/or dyadic midpoints. Our findings show that optimality can be
achieved with split-nets which are sufficiently evenly distributed. By allowing the split-points
occur beyond observed values, we show that Bayesian forests enjoy the general recipe of the
posterior contraction theory (Ghosal et al., 2000; Ghosal and van der Vaart, 2007) which
applies to other statistical setups such as density estimation or regression/classification with
random design.

Asymptotic minimaxity is often used to evaluate optimality of statistical procedures.
Yang and Tokdar (2015) derived the minimax rates of sparse function estimation in high
dimensions but their results are restricted to the isotropic cases. In fixed (low) dimensions,
minimax rates over anisotropic function spaces have been extensively studied in the literature
(Ibragimov and Hasminskii, 1981; Nussbaum, 1985; Birgé, 1986). If the true function only
depends on a subset of coordinates, the minimax rate is improved and determined by smooth-
ness parameters of active coordinates (Hoffman and Lepski, 2002). However, to the best of our
knowledge, there are no available studies on minimax rates over piecewise anisotropic func-
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tion spaces like ours. While there exist results on piecewise isotropic classes (e.g., Imaizumi
and Fukumizu, 2019), even the simpler fixed-dimensional setup without sparsity has not been
studied for piecewise anisotropic classes. Focusing on Gaussian nonparametric regression, we
derive the minimax lower bound for our piecewise heterogeneous anisotropic spaces under
the high-dimensional scenario. This result verifies that our obtained contraction rates for
Bayesian forests are indeed minimax-optimal, up to a logarithmic factor.

We summarize the contribution of this paper as follows.

� Approximation theory: The true function should be approximable by tree-based
learners in order to establish the optimal rate of posterior contraction. Approximation
theory for piecewise heterogeneous anisotropic classes is much more intricate when
there are discontinuities and heterogeneity. We establish such approximation theory
here under suitable regularity conditions (with smoothness up to 1 due to the limitation
of piecewise constant learners).

� Posterior contraction: For functions belonging to piecewise heterogeneous anisotropic
spaces, posterior contraction of Bayesian forests is established under the high dimen-
sional setup with a Dirichlet sparse prior. The derived rates consist of the risk of
variable selection uncertainty and the risk of function estimation, similar to isotropic
cases (Yang and Tokdar, 2015; Ročková and van der Pas, 2020).

� Minimax optimality: Minimax rates in high-dimensional spaces have been unavail-
able even for simple anisotropic classes. For Gaussian nonparametric regression with
high-dimensional inputs, we formally derive the minimax lower bound over piecewise
heterogeneous anisotropic spaces. This certifies that our obtained contraction rate for
Bayesian forests is optimal, up to a logarithmic factor.

� Applications beyond regression: Unlike the asymptotic studies of the traditional
tree priors (Ročková and van der Pas, 2020; Ročková and Saha, 2019), our findings show
that splits for recursive partitioning do not necessarily have to be at observed covariate
values. This implies that our proving technique extends beyond fixed-design regression
to other estimation problems such as density estimation or regression/classification
with random design.

1.3 Preview and outline of the paper

The main results of this study begin to appear in Section 4.2 after excessive preliminary
steps. Before going into preparatory phase, here we provide a preview of our main results.
Let us focus on a fixed design regression setup,

Yi = f0(xi) + εi, εi ∼ N(0, σ2
0), i = 1, . . . , n, (1)

with a response Yi ∈ R and a covariate xi ∈ [0, 1]p, where f0 : [0, 1]p 7→ R and σ2
0 < ∞.

Assume that f0 depends only on d variables among the p coordinates. Assume further
that f0 is a piecewise heterogeneous anisotropic function with a global smoothness harmonic
mean ᾱ ∈ (0, 1] (see Definitions 1–3 for a more precise definition). Assigning BART priors
on f0, the posterior contraction rate is obtained as

√
(d log p)/n + (log n)cn−ᾱ/(2ᾱ+d) for

some c > 0 (Theorem 2). It is also shown that this rate is minimax-optimal up to a log
factor (Theorem 3). The same contraction rates are also achieved in other statistical setups
(Theorems 4–7).
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The rest of this paper is organized as follows. In Section 2, we describe the background
of function spaces and Bayesian forests. In high-dimensional scenarios, the tree priors on
functions are specified in Section 3. Section 4 sheds light on the approximation theory for
our function spaces. In Section 5, we study posterior contraction of Bayesian forests and
their minimax optimality in nonparametric regression with a fixed design. The section also
includes a numerical study that shows the outstanding performance of BART over other
methods such as random forests and deep neural networks, which are believed to work well
for discontinuous or complicated smooth functions. Posterior contraction properties in other
statistical models such as density estimation and binary classification are investigated in
Section 6. An example of additive regression is also considered in Section 6 to emphasize a
theoretical advantage of Bayesian forests over single tree models. Section 7 concludes with
discussion. All technical proofs are collected in Appendix.

2 Modus operandi

2.1 Notation and terminology

Although the main focus of this paper is BART for regression in (1), we work with a general
statistical experiment Pf indexed by a measurable function f : [0, 1]p 7→ R for some p > 0,
which will be modeled by Bayesian forests. This allows us to incorporate other statistical
setups, such as density estimation, into our theoretical framework. Each statistical model we
are dealing with will be specified for our examples in Sections 5–6. We observe n observations
with the true function denoted by f0 and assume that p is possibly increasing with the sample
size n. The notation E0 and P0 denote the expectation and probability operators under the
true model with f0.

For sequences an and bn, we write an . bn (or bn & an equivalently) if an ≤ Cbn for
some constant C > 0, and an � bn implies an . bn . an. We also write an � bn (or
bn � an equivalently) if an/bn → 0 as n → ∞. For a subspace E of the Euclidean space,
C(E) denotes a class of continuous functions f : E 7→ R. For a given measure µ and a
measurable function f , we denote by ‖f‖v,µ = (

∫
|f |vdµ)1/v the Lv(µ)-norm, 1 ≤ v < ∞.

We particularly denote by L2(µ) the linear space of real valued functions equipped with

inner product 〈f, g〉µ =
∫
fgdµ and norm ‖f‖2,µ = 〈f, f〉1/2µ . The support of a measure

µ is denoted by supp(µ). The supremum norm of a function f is denoted by ‖f‖∞. For
convenience, we write ‖f‖v for the Lv-norm with the Lebesgue measure on a unit hypercube.
For a given vector u, the notations ‖u‖v and ‖u‖∞ represent the `v-norms, 1 ≤ v <∞, and the
maximum-norm, respectively. For a semimetric space (F , ρ) endowed with a semimetric ρ, the
expressions D(ε,F , ρ) and N(ε,F , ρ) are ε-packing and ε-covering numbers of F , respectively.
For a subset S ⊆ {1, . . . , p} and x = (x1, . . . , xp)

> ∈ Rp, let xS = (xj , j ∈ S) ∈ R|S| be the
indices chosen by S.

A p-dimensional hyper-rectangle Ψ ⊆ [0, 1]p with any p > 0 is simply called a box. Boxes
can be closed (the form of

∏p
j=1[aj , bj ]) or half-closed (the form of

∏p
j=1(aj , bj ]) depending

on the context. A partition Y = (Ψ1, . . . ,ΨJ) of [0, 1]p, consisting of J disjoint boxes
Ψr ⊆ [0, 1]p, r = 1, . . . , J , is called a box partition. For a p-dimensional Cartesian product
E ⊆ Rp with any p > 0, we denote the jth projection mapping of E by [E]j = {xj ∈ R :
(x1, . . . , xp)

> ∈ E}. The length and interior of an interval I ∈ R is denoted by len(I) and
int(I), respectively.
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2.2 Heterogeneous anisotropic function spaces with sparsity

In this subsection, we introduce our function spaces with heterogeneous smoothness and
sparsity in high dimensions. The first assumption is that the true regression function f0 :
[0, 1]p 7→ R is d-sparse, i.e., it depends on a small subset of d variables. This means that
there exist a function h0 : [0, 1]d 7→ R and a subset S0 ⊆ {1, . . . , p} with |S0| = d, such that
f0(x) = h0(xS0) for any x ∈ [0, 1]p. For example, suppose the true function is defined as
f0(x1, x2) = sin(x1) on [0, 1]2 with p = 2. This function can be completely expressed by the
one-dimensional function h0(x1) = sin(x1) on [0, 1], and hence is 1-sparse by definition.

For now we focus on the function h0 on the low-dimensional domain [0, 1]d. The complete
characterization of f0 will soon be discussed. We assume that [0, 1]d partitioned into many
boxes and h0 is Hölder continuous with possibly different smoothness in each box. Moreover,
the smoothness inside each box is anisotropic, i.e., different for each coordinate. Focusing on
a single box, we first define an anisotropic Hölder space in the usual sense.

Definition 1 (Anisotropic Hölder space). For a smoothness parameter α = (α1, . . . , αd)
> ∈

(0, 1]d, a box Ψ ⊆ [0, 1]d, and a Hölder coefficient λ <∞, we denote byHα,dλ (Ψ) an anisotropic
α-Hölder space on Ψ, i.e.,

Hα,dλ (Ψ) =

h : Ψ 7→ R; |h(x)− h(y)| ≤ λ
d∑
j=1

|xj − yj |αj , x, y ∈ Ψ

 .

Note that the definition above imposes a restriction α ∈ (0, 1]d. Although one can
generalize this definition to smoother classes (e.g. Bhattacharya et al., 2014), we do not
consider such extensions here since step function estimators cannot be optimal in classes
smoother than Lipschitz.

As discussed above, our targeted function class is not necessarily globally anisotropic over
the entire domain [0, 1]d. Instead, we assume that h0 has different anisotropic smoothness on
several disjoint boxes of the domain with the same harmonic mean (an important assump-
tion for obtaining the minimax rate). To be more precise, we define a set of R-tuples for
smoothness parameters,

AR,dᾱ =

(α1, . . . , αR) : αr = (αr1, . . . , αrd)
> ∈ (0, 1]d, ᾱ−1 = d−1

d∑
j=1

α−1
rj , r = 1, . . . , R

 .

We assume that anisotropic smoothness of h0 is specified on an unknown underlying box
partition X = (Ξ1, . . . ,ΞR) of [0, 1]d with R ≥ 1 boxes. If R = 1, we write X = ([0, 1]d) with
Ξ1 = [0, 1]d. The function space is formed by agglomerating anisotropic Hölder spaces for all
boxes. We emphasize that the resulting function space is not necessarily continuous, which
provides a lot more flexibility relative to the conventional Hölderian class. Considering that
smoothness parameters can vary across boxes and functions can be discontinuous at their
boundaries, we call this new class a piecewise heterogeneous anisotropic Hölder space. We
define these functions formally below.

Definition 2 (Piecewise heterogeneous anisotropic Hölder space). Consider a box partition
X = (Ξ1, . . . ,ΞR) of [0, 1]d with boxes Ξr ⊆ [0, 1]d and a smoothness parameter Aᾱ =
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Figure 2: A graphical illustration of a piecewise heterogeneous anisotropic Hölder space with
five boxes. Each piece has its own smoothness parameter, but the harmonic mean is assumed
to be the same.

(αr)
R
r=1 ∈ A

R,d
ᾱ for some ᾱ ∈ (0, 1]. We define a piecewise heterogeneous anisotropic Hölder

space as

HAᾱ,dλ (X) =
{
h : [0, 1]d 7→ R; h|Ξr ∈ H

αr,d
λ (Ξr), r = 1, . . . , R

}
.

A graphical illustration of the piecewise heterogeneous anisotropic Hölder spaces is given
in Figure 2. Clearly, Definition 2 subsumes the anisotropic Hölder space in Definition 1
with R = 1. According to Definition 2, any h ∈ HAᾱ,dλ (X) is anisotropic on each Ξr with
a smoothness parameter αr ∈ (0, 1]d and the same harmonic mean ᾱ for all Ξr. We again
emphasize that discontinuities are allowed at the boundaries of boxes Ξr, r = 1, . . . , R.

Definition 2 does not impose a specific structure on the partition X other than a box
partition. However, we will later see that depending on the approximation metric, our
approximation theory will require it to be a tree-based recursive structure defined in the
next section (see Figure 4 below). Nonetheless, since every box partition can be extended
to the required form by adding more splits, this discrepancy is not practically an issue. We
refer the reader to Section 2.3 and Section 4.1.1 for more discussion.

Remark 1. We compare Definition 2 with piecewise smooth function spaces widely inves-
tigated in the literature. Approximation rates for piecewise smooth functions with smooth
jump curves/surfaces have been extensively studied in two dimensions (e.g., Candès and
Donoho, 2000, 2004; Guo and Labate, 2007) as well as in higher dimensions (Chandrasekaran
et al., 2008; Petersen and Voigtlaender, 2018; Imaizumi and Fukumizu, 2019). All these
studies deal with smooth functions with smooth jump curves/surfaces under the isotropy
assumption. On the other hand, our definition deals with different anisotropic smoothness
parameters for the boxes in a box partition, and hence seems takes some flexibility. Our
jump surfaces, however, are restricted to hyper-planes parallel to the coordinates.

Note that Definition 2 is for the mapping h0 from the lower dimensional domain [0, 1]d

while the true function f0 maps the entire [0, 1]p to R. We now characterize a sparse elabora-
tion of Definition 2 for the mapping f0 : [0, 1]p 7→ R. For any S ⊆ {1, . . . , p}, we denote with
W p
S : C(R|S|) 7→ C(Rp) the map that transmits h ∈ C(R|S|) onto W p

Sh : x 7→ h(xS). Similarly
to Yang and Tokdar (2015) for the isotropic cases, we now formalize d-sparse function spaces
as follows.
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(b) {2}-chopped partition

Figure 3: Examples of sparse partitions in three dimensions.

Definition 3 (Sparse function space). For the space HAᾱ,dλ (X) in Definition 2, we define a
d-sparse piecewise heterogeneous anisotropic Hölder space as

ΓAᾱ,d,pλ (X) =
⋃

S⊆{1,...,p}:|S|=d

W p
S

(
HAᾱ,dλ (X)

)
.

For an unknown smoothness parameter Aᾱ = (αr)
R
r=1 ∈ A

R,d
ᾱ (with possibly decreasing

ᾱ) and model components R, d, p, and λ (which are possibly increasing with n), the true

function f0 is assumed to belong to the class ΓAᾱ,d,pλ (X) which allows for discontinuities, or

to its continuous variant ΓAᾱ,d,pλ (X)∩C([0, 1]p).1 This means that there exists a function h0 :
[0, 1]d 7→ R and a subset S0 ⊆ {1, . . . , p} with |S0| = d such that f0 = W p

S0
h0. The continuous

variant ΓAᾱ,d,pλ (X)∩ C([0, 1]p) achieves approximability under more relaxed assumptions (see
Theorem 1 below). The two spaces are identical if R = 1.

Note that X is the box partition of the d-dimensional cube [0, 1]d. Considering the
domain [0, 1]p of f0, it will be convenient to extend X to the corresponding box partition
of the p-dimensional cube [0, 1]p. To this end, we extend each Ξr to the p-dimensional box
Ξ∗r = {x ∈ [0, 1]p : xS0 ∈ Ξr, xSc0 ∈ [0, 1]p−d} ⊆ [0, 1]p using the true sparsity index S0;
that is, Ξr is the projection of Ξ∗r onto the coordinates in S0. The boxes Ξ∗r then constitute
the box partition X∗ = (Ξ∗1, . . . ,Ξ

∗
R) of [0, 1]p. It should be noted that X∗ depends on the

unknown sparsity index S0 of the true function f0. Observe also that our definition gives rise
to X∗ = ([0, 1]p) with Ξ∗1 = [0, 1]p if R = 1.

Apart from the notion of sparsity for functions, we also introduce sparsity of box partitions
as follows.

Definition 4 (Sparse partition). Consider a box partition Y = (Ψ1, . . . ,ΨJ) of [0, 1]p with
boxes Ψr ⊆ [0, 1]p, r = 1, . . . , J .2 For a subset S ⊆ {1, . . . , p}, the partition Y is called
S-chopped if maxj∈S len([Ψr]j) < 1 and minj /∈S len([Ψr]j) = 1 for every r = 1, . . . , J .

1Although ᾱ, R, d, p, and λ can be sequences of n rather than fixed constants, we suppress subscript n
for the sake of notational simplicity.

2We often write Y = (Ψr)r to denote an arbitrary box partition of [0, 1]p with boxes Ψr ⊆ [0, 1]p, r =
1, 2, . . . , and write Ψ ⊆ [0, 1]p to denote an arbitrary p-dimensional box. The notations X = (Ξ1, . . . ,ΞR) and
X∗ = (Ξ∗1, . . . ,Ξ

∗
R) are used only for the box partitions associated with the piecewise heterogeneous anisotropic

spaces in Definitions 2–3.
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(a) A non-tree box partition (b) A tree partition.

Figure 4: Examples of non-tree box partitions and tree partitions

A graphical illustration of sparse partitions is provided in Figure 3. According to Defini-
tion 4, the extended box partition X∗ is S-chopped for some S ⊆ S0. Observe that X∗ is not
always S0-chopped, since X may not have been cleaved in some coordinates. For example, if
f0(x1, x2, x3) = h0(x1, x3) = sin(x1) cos(x3)1(0 ≤ x1 ≤ 0.5)1(0 ≤ x2 ≤ 1), then S0 = {1, 3}
but X∗ = ([0, 0.5] × [0, 1]2, (0.5, 1] × [0, 1]2) is {1}-chopped. In particular, X∗ is ∅-chopped
if R = 1 no matter what S0 is. From this it is clear that sparsity of X∗ is not the same as
sparsity of f0. In what follows, we use the notation S(X∗) ⊆ S0 to denote sparsity of X∗;
that is, X∗ is S(X∗)-chopped.

2.3 Tree-based partitions

In this work, for estimators of the true function f0, we focus on piecewise constant learners,
i.e., step functions that are constant on each piece of a box partition of [0, 1]p. A precise
description of piecewise constant learners requires an underlying partitioning rule that pro-
duces a partition for these step functions. In tree-structured models, the idea is based on
recursively applying binary splitting rules to split the domain [0, 1]p. Here we shed light on
this mechanism to construct tree-based partitions, while deferring a complete description of
the induced step functions to Section 2.4.

For a given box Ψ ⊆ [0, 1]p, choose a splitting coordinate j ∈ {1, . . . , p} and a split-point
τj ∈ int([Ψ]j). The pair (j, τj) then dichotomizes Ψ along the jth coordinate into two boxes:
{x ∈ Ψ : xj ≤ τj} and {x ∈ Ψ : xj > τj}, where xj is jth entry of x. Starting from the
root node [0, 1]p, the procedure is iterated K − 1 times in a top-down manner by picking
one box for a split each time. This generates K disjoint boxes Ψ1, . . . ,ΨK , called terminal
nodes, which constitute a tree-shaped partition of [0, 1]p, called a tree partition. We call
this iterative procedure the binary tree partitioning. We will further refer to resulting tree
partitions as flexible tree partitions to emphasize that splits can occur everywhere in the
domain [0, 1]p (not necessarily at dyadic midpoints or observed covariate values). According
to Definition 4, we say that a flexible tree partition is S-chopped if splitting coordinates j
are restricted to a subset S ⊆ {1, . . . , p}. Note that while flexible tree partitions are always
box partitions, the reverse is not generally true; see Figure 4.

Although the binary tree partitioning allows splits to occur anywhere in the domain,
Bayesian tree models usually take advantage of priors that choose split-points from a pre-
determined discrete set. For example, in regression with continuous covariates, observed co-
variate values are typically used for split-points (Chipman et al., 1998; Denison et al., 1998;
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Chipman et al., 2010). Following this manner, Ročková and van der Pas (2020) and Ročková
and Saha (2019) investigated posterior contraction of BART in Gaussian nonparametric re-
gression with fixed covariates. Here we relax this restriction while keeping split-points chosen
from a discrete set. To this end, we define a discrete collection of locations where splits can
occur, which we call a split-net.

Definition 5 (split-net). For an integer sequence bn, a split-net Z = {zi ∈ [0, 1]p, i =
1, . . . , bn} is a set of bn points zi = (zi1, . . . , zip)

> ∈ [0, 1]p at which possible splits occur
along coordinates.

For a given split-net Z, we call each point zi = (zi1, . . . , zip)
> a split-candidate. For a given

splitting coordinate j and a split-net Z, a split-point will be chosen from [Z]j ∩ int([Ψ]j) to
dichotomize a box Ψ. Note that [Z]j = {zij ∈ [0, 1], i = 1, . . . , bn} may have fewer elements
than Z due to duplication. We denote by bj(Z) the cardinality of [Z]j , i.e., the number
of unique values in the bn-tuple (z1j , . . . , zbnj). Then we have max1≤j≤p bj(Z) ≤ bn by
definition. For example, consider a regular (equidistant) grid system illustrated in Figure 5a,

where bj(Z) = b
1/p
n < bn, j = 1, . . . , p. This simplest split-net will be further discussed in

Section 4.3.1. It is also possible to construct a split-net such that bj(Z) = bn, j = 1, . . . , p,
as shown in Figure 5b. As noted above, another typical example of Z is the observed
covariate values in fixed-design nonparametric regression with bn = n (supposing that all
xi are different). This specific example will be discussed in Section 4.3.2. Our definition
of split-nets yields additional flexibility in situations when no deterministic covariate values
are available, such as density estimation or in the analysis of nonparametric regression with
random covariates. A subset of the observed covariate values can also be used in a fixed-
design regression setup.

In assigning a prior over tree partitions, we will assume that splits in the binary parti-
tioning rule occur only at the points in Z; that is, for every splitting box Ψ ⊆ [0, 1]p with a
splitting coordinate j, a split-point τj is chosen such that τj ∈ [Z]j ∩ int([Ψ]j). Since a split
is restricted to the interior of a given interval, some split-candidates may have already been
eliminated in the previous steps of the splitting procedure (see Figure 5a). Clearly, a tree
partition constructed by Z is an instance of flexible tree partitions, but the reverse is not
the case. To distinguish the two more clearly, we make the following definition.

Definition 6 (Z-tree partition). For a given split-net Z, a flexible tree partition T =
(Ω1, . . . ,ΩK) of [0, 1]p with boxes Ωk ⊆ [0, 1]p, k = 1, . . . ,K, is called a Z-tree partition if
every split occurs at points zi ∈ Z.3

In summary, we have the following relationship among the three types of partitions:
{Z-tree partitions} ⊆ {Flexible tree partitions} ⊆ {Box partitions}. Similar to flexible tree
partitions, Z-tree partitions can be S-chopped for a subset S ⊆ {1, . . . , p} no matter what Z
is employed. Since we aim to do sparse estimation in high-dimensional setups, we are mostly
interested in S-chopped Z-tree partitions for some low-dimensional S. In what follows, we
denote by TS,K,Z the set of all S-chopped Z-tree partitions with K boxes.

Remark 2. The definition of a Z-tree partition is introduced to restrict possible splits to a
discrete set. This means that we assign a discrete prior on the tree topologies (see Section 3).

3The notation T = (Ωk)k is used only for the Z-tree partitions with a split-net Z, with some suitable
superscript and/or superscript if required. We denote flexible tree partitions by Y = (Ψk)k as general box
partitions.
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(a) Regular grid system (b) Split-net without duplication

Figure 5: Examples of the split-net with bn = 25 in two dimensions. For the regular grid in
(a), one can easily see that bj(Z) = 5, j = 1, 2; hence, initial splits eliminate the possibility
of other splits. The split-candidates of the split-net in (b) are unique in every coordinate, so
bj(Z) = bn, j = 1, 2.

One may instead assign a prior on the topology of flexible tree partitions, in which case a split-
net Z is not needed. For regression problems, most of the recent BART procedures deploy a
discrete set of split-candidates in their prior constructions using the observed covariate values.
We aim to generalize this conventional way while incorporating it into our framework. A
discrete prior has an advantage in that it is invariant to a transformation of predictor variables
(Chipman et al., 1998). This paper only considers putting a discrete tree prior using a given
split-net Z, and a continuous prior on flexible tree partitions is not considered.

2.4 Bayesian trees and forests

We now describe our piecewise constant learners using Z-tree partitions. While single tree
learners have received some attention (Chipman et al., 1998; Denison et al., 1998), it is widely
accepted that additive aggregations of small trees are much more effective for prediction
(Chipman et al., 2010). Noting that single trees are a special case of tree ensembles (forests),
we will focus on forests throughout the rest of the paper.

We consider a fixed number T of trees. For a given split-net Z and for each t ≤ T , we
denote with T t = (Ωt

1, . . . ,Ω
t
Kt) a Z-tree partition of size Kt and with βt = (βt1, . . . , β

t
Kt)> ∈

RKt
the heights of the step function, called the step-heights. An additive tree-based learner

is then fully described by a tree ensemble E = (T 1, . . . , T T ) and terminal node parameters

B = (β1>, . . . , βT>)> ∈ R
∑T
t=1 K

t
through

fE,B(x) =

T∑
t=1

Kt∑
k=1

βtk1(x ∈ Ωt
k). (2)

That is, fE,B is constant on the boxes constructed by overlapping Z-tree partitions T 1, . . . , T T .
Chipman et al. (2010) recommended the choice T = 200 which was seen to provide good em-

pirical results. For a given ensemble E , we henceforth define FE = {fE,B : B ∈ R
∑T
t=1K

t} the
set of functions in (2). If E consists of a single tree T , we instead write FT to denote FE .
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Our objective is to characterize the posterior asymptotic properties of the tree learners
in (2) in estimating the true function f0 belonging to ΓAᾱ,d,pλ (X) or ΓAᾱ,d,pλ (X) ∩ C([0, 1]p).
This goal requires two nice attributes of the procedure. First, appropriate prior distributions
should be assigned to the tree learners fE,B in (2) so that the induced posterior can achieve
the desired asymptotic properties. Second, there should exist a piecewise tree learner approx-
imating f0 with a suitable approximation error matched to our target rate. The following
two sections aim to elucidate these in detail.

3 Tree and forest priors in high dimensions

3.1 Priors over tree topologies with sparsity

Conventional tree priors (Chipman et al., 1998; Denison et al., 1998) are not designed for high-
dimensional data with a sparse underlying structure. Prior modifications are thus required
for trees to meet demands of high-dimensional applications (Linero, 2018; Linero and Yang,
2018; Ročková and van der Pas, 2020). Ročková and van der Pas (2020) adopted a spike-and-
slab prior for BART to achieve adaptability to unknown sparsity levels, but the computation
of the posterior distribution is much more challenging than the original BART algorithm due
to the nature of a point mass prior. Linero (2018) and Linero and Yang (2018) considered
a sparse Dirichlet prior on splitting coordinates for a computationally feasible algorithm,
while achieving the theoretical optimality in the high-dimensional scenario. In this paper,
we deploy the sparse Dirichlet prior developed by Linero (2018) for ease of computation of
the posterior.

Unlike the original tree priors, the BART model with the sparse Dirichlet prior chooses
a splitting coordinate j is from a proportion vector η = (η1, . . . , ηp)

> belonging to the p-
dimensional simplex Sp = {(x1, . . . , xp)

> ∈ Rp :
∑p

j=1 xj = 1, xj ≥ 0, j = 1, . . . , p}. A
proportion vector η has a Dirichlet prior with ζ > 0 and ξ > 1,

η = (η1, . . . , ηp)
> ∼ Dir(ζ/pξ, . . . , ζ/pξ). (3)

The requirement ξ > 1 is needed for technical reasons. The prior imposes a sparsity into
splitting variables (we refer the reader to Figure 2 of Linero (2018)). Given a proportion
vector η, the BART prior is assigned as in Chipman et al. (2010) with a minor modification.
Assuming an independent product prior for E , i.e., Π(E) =

∏T
t=1 Π(T t), a Bayesian CART

prior (Chipman et al., 1998) is assigned to each T t. The procedure begins with the root
node [0, 1]p of depth ` = 0, where the depth of a node means the number of nodes along the
path from the root node down to that node. For each ` = 0, 1, 2, . . . , each node of depth ` is
split with prior probability ν`+1 for ν ∈ (0, 1/2). If a node corresponding to a box Ω is split,
a splitting coordinate j is drawn from the proportion vector η and a split-point τj will be
chosen randomly from [Z]j ∩ int([Ω]j) for a given Z. The procedure repeats until all nodes
are terminal.

The original CART prior proposed by Chipman et al. (1998) uses a splitting probability
that decays polynomially. Ročková and Saha (2019) showed that this decay may not be fast
enough, and suggested using an exponentially decaying probability as ours. This modification
gives rise to the desirable exponential tail property of tree sizes. Linero and Yang (2018)
handled this issue by assigning a prior on the number T of trees. Since we want to fix T as in
the practical implementation of BART, we use the exponentially decaying prior probability
for splits.
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3.2 Prior on step-heights

To complete the prior on the sparse function space, what remains to be specified is the prior
on step-heights B in (2). Given K1, . . . ,KT induced by E , Chipman et al. (2010) suggested
using a Gaussian prior on B:

dΠ(B|K1, . . . ,KT ) =
T∏
t=1

Kt∏
k=1

φ(βtk; 0, 1/T ),

where φ( · ;µ, σ2) is the Gaussian density with mean µ and variance σ2. The variance 1/T
shrinks step-heights toward zero, limiting the effect of individual components by keeping
them small enough for large T . This choice is preferred in view of the practical performance,
but any zero-mean multivariate Gaussian prior on B gives rise to the same optimal prop-
erties as soon as the eigenvalues of the covariance matrix are bounded below and above.
Throughout the paper, we put a Gaussian prior on the step-heights B in most cases. From
the computational point of view, this choice is certainly appealing in Gaussian nonparamet-
ric regression due to its semi-conjugacy. For theoretical purposes, a prior with exponentially
decaying thicker tails, such as a Laplace distribution, can easily replace a Gaussian prior
for the same optimality under relaxed conditions. Although such a prior may loosen a re-
striction on ‖f0‖∞ (Ročková, 2020), we mostly consider normal priors throughout the paper,
even for non-Gaussian models for the sake of simplicity. We consider non-Gaussian priors
only when required for theoretical purposes; see, for example, a truncated prior for regression
with random design in Section 6.

4 Approximating the true function

Recall that tree learners fE,B in (2) are piecewise constant, whereas the true function f0 does
not have to be. This will not be an issue as long as there exists a tree learner which can
approximate f0 sufficiently well. In this section, we establish the approximation theory for
tree ensembles in the context of our targeted function spaces.

For isotropic classes, it is well-known that balanced k-d trees (Bentley, 1979) give rise
to rate-optimal approximations under mild regularity conditions (Ročková and van der Pas,
2020). This is not necessarily the case for our general setup where smoothness may vary over
the domain and where cycling repeatedly through the coordinates (as is done in the k-d tree)
may not be enough to capture localized features of f0. In this section, we generalize the notion
of k-d trees and show that there exists a good partitioning scheme for piecewise heterogeneous
anisotropic classes. Although our primary interest lies in additive tree aggregations in (2),
we show that a single deep tree can approximate well. We thereby consider only single trees
T and suppress the superscript t throughout this section.

4.1 Split-nets for approximation

Approximation properties of tree-based estimators are driven by the granularity and fineness
of a chosen split-net. Roughly speaking, a good approximation requires that a split-net have
two properties: (i) it should be dense enough so that the boundaries of the box partition X∗ =
(Ξ∗1, . . . ,Ξ

∗
R), extended from X = (Ξ1, . . . ,ΞR), can be detected by a Z-tree partition with

a minimal error; and (ii) it should be regular enough so that there exists a Z-tree partition
that captures local/global features of f0 on each Ξ∗r . We elucidate these two properties.
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Figure 6: A two-dimensional example of the Hausdorff-type divergence in Definition 7. The
divergence is the maximum dependency of the boxes in the partitions.

4.1.1 Dense split-nets: Global approximability

Recall that the underlying partition X∗ = (Ξ∗1, . . . ,Ξ
∗
R) for the true function is unknown.

From the sheer flexibility of binary tree partitioning, we expect that the boundaries can be
detected well enough by a Z-tree partition if X∗ is a flexible tree partition. If the prior
rewards partitions that are sufficiently close to X∗, Bayesian CART (BART) is expected to
adapt to unknown X∗ without much loss of efficiency. We examine when this adaptivity can
be achieved in more detail below.

The ability to detect X∗ is thus closely tied to the density of the split-net Z; it should be
dense enough so that a Z-tree partition can be constructed that is sufficiently close to X∗.
Therefore, we need a gadget to measure the closeness between two partitions. To this end,
below we introduce a Hausdorff-type divergence; see Figure 6 for an illustration.

Definition 7 (Hausdorff-type divergence). For any two box partitions Y1 = (Ψ1
1, . . . ,Ψ

1
J)

and Y2 = (Ψ2
1, . . . ,Ψ

2
J) with the same number J of boxes, we define a divergence between

Y1 and Y2 as

Υ(Y1,Y2) = min
(π(1)...π(J))∈Pπ [J ]

max
1≤r≤J

Haus(Ψ1
r ,Ψ

2
π(r)),

where Pπ[J ] denotes the set of all permutations (π(1) . . . π(J)) of {1, . . . , J} and Haus(·, ·) is
the Hausdorff distance.

The permutation in Definition 7 makes the specification immune to the ordering of boxes.
We want the split-net Z to produce a Z-tree partition T such that Υ(X∗, T ) is smaller than
some threshold. Section 4.2 establishes how small these thresholds should be so that the tree
learner is close to f0 (for various approximation metrics). The following definition will be
useful in characterizing the details.

Definition 8 (Dense split-net). For a given subset S ⊆ {1, . . . , p} and an integer J ≥ 1,
consider an S-chopped partition Y = (Ψ1, . . . ,ΨJ) of [0, 1]p with boxes Ψr ⊆ [0, 1]p, r =
1, . . . , J . For any given cn ≥ 0, a split-net Z = {zi ∈ [0, 1]p, i = 1, . . . , bn} is said to be
(Y, cn)-dense if there exists an S-chopped Z-tree partition T = (Ω1, . . . ,ΩJ) of [0, 1]p such
that Υ(Y, T ) ≤ cn.

In Section 4.2, the approximation theory will require that Z be (X∗, cn)-dense for some
suitable cn ≥ 0. Note that the ideal case cn = 0 can be achieved only when X∗ is a Z-tree
partition. This condition, while obviously satisfied in the case R = 1, is very restrictive in
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the most situations. This is because, if J = 1, i.e., Y = ([0, 1]p), we have Υ(Y, T ) = 0
for T = ([0, 1]p). Hence, every split-net Z is (([0, 1]p), 0)-dense. However, we will see in
Theorem 1 that in many cases, it is sufficient that cn tends to zero at a suitable rate. This
means that X∗ should be at least a flexible tree partition, but not necessarily a Z-tree
partition. If X∗ is a box partition but not a flexible tree partition, we can redefine X∗ by
adding more splits to make it a flexible tree partition. For example, the non-tree box partition
in Figure 4 can be extended to a tree partition with a single extra split. In Section 4.3, we
present some examples of dense split-nets.

Dense split-nets have nested properties. That is to say a (Y, cn)-dense split-net is also
(Y, c̃n)-dense for every c̃n ≥ cn. We are interested in the smallest possible cn. In particular,
every split-net Z is (Y, 1)-dense for any box partition Y.

4.1.2 Regular split-nets: Local approximability

Beyond closely tracking smoothness boundaries, good tree partitions should be able to cap-
ture local/global smoothness features of f0. In other words, there should exist a Z-tree
partition that achieves an optimal approximation error determined by our target rate. In
Section 4.1.1, we focused on more global approximability of underlying partitions which re-
quires split-nets to be suitably dense. Now, we focus on local approximability.

Assume that X∗ can be approximated well (as discussed in the previous section) by an
S(X∗)-chopped Z-tree partition T ∗ = (Ω∗1, . . . ,Ω

∗
R).4 More specifically, for a (X∗, cn)-dense

split-net Z with a given cn > 0, T ∗ is defined as argminT ∈TS(X∗),R,Z
Υ(X∗, T ). We now

focus on local approximability inside each box Ω∗r . Ideally, one would like to construct a
sub-tree partition of this local box that balances out approximation errors in all coordinates.
Therefore, we first need to devise a splitting scheme to achieve this balancing condition. The
regularity of split-nets can then be spelled out based on such a law.

We now zoom onto a single box Ω∗r . Recall that the true function f0 has anisotropic
smoothness on each of Ξ∗r . Intuitively, denser subdivisions are required for less smooth
coordinates to capture the local features. Allowing splits to occur more often in certain
directions, below we define the anisotropic k-d tree, which achieves the desired approximation
error for anisotropic smoothness. The definition requires the notion of midpoint-splits defined
as follows. For a given box Ψ and a splitting coordinate j, a midpoint-split picks up the
db̃j(Z,Ψ)/2eth split-candidate in [Z]j ∩ int([Ψ]j) as a split-point τj , where b̃j(Z,Ψ) is the
cardinality of [Z]j ∩ int([Ψ]j).

Definition 9 (Anisotropic k-d tree). Consider a smoothness vector α = (α1, . . . , αd)
> ∈

(0, 1]d, a box Ψ ⊆ [0, 1]p, a split-net Z = {zi ∈ [0, 1]p, i = 1, . . . , bn}, an integer L > 0, and
an index set S = {s1, . . . , sd} ⊆ {1, . . . , p} with |S| = d. We define the anisotropic k-d tree
AKD(Ψ;Z, α, L, S) as the iterative splitting procedure that partitions Ψ into disjoint boxes
as follows.

1. Start from the root node by setting Ω◦1 = Ψ and set lj = 0, j = 1, . . . , d.

2. For splits at iteration 1 +
∑d

j=1 lj , choose j corresponding to the smallest ljαj . If the
smallest ljαj is duplicated with multiple js, choose the smallest j among such j’s.

4The notation T ∗ = (Ω∗1, . . . ,Ω
∗
R) with an asterisk is only used to denote an S(X∗)-chopped Z-tree partition

approximating X∗ = (Ξ∗1, . . . ,Ξ
∗
R).
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Figure 7: A realization of the anisotropic k-d tree with smoothness parameters α1 = 0.25
(for the horizontal axis) and α2 = 0.5 (for the vertical axis), and some box Ψ (the shaded
box) that is a subspace of [0, 1]2 (the outer square). Since 2α1 = α2, the subset Ψ splits
twice as often in the vertical direction than in the horizontal direction.

3. For all boxes Ω◦k, k = 1, . . . , 2
∑d
j=1 lj , at the current iteration, do the midpoint-splits

with the given Z and the splitting coordinate sj chosen by j. Relabel the generated

new boxes as Ω◦k, k = 1, . . . , 21+
∑d
j=1 lj , and then increase lj by one for chosen j.

4. Repeat 2–3 until either
∑d

j=1 lj = L or the midpoint-split is no longer available. Return

(l1, . . . , ld)
> and T ◦ = (Ω◦1, . . . ,Ω

◦
2L◦

), where L◦ =
∑d

j=1 lj .

Note that the anisotropic k-d tree construction depends on the smoothness that is un-
known. Rather than a practical estimator, we use this to show that there exists a good tree
approximator in the technical proof. One possible realization of the anisotropic k-d tree gen-
erating process is given in Figure 7. Observe that AKD(Ψ;Z, α, L, S) returns a tree partition
T ◦ = (Ω◦1, . . . ,Ω

◦
2L◦

) of Ψ and a vector (l1, . . . , ld)
> such that L◦ =

∑d
j=1 lj ≤ L.5 Although

these returned items clearly depend on the inputs of the anisotropic k-d tree procedure (i.e.,
Ψ, Z, α, L, and S), we suppress them throughout the paper. Each lj is a counter of how
many times the jth coordinate has been used. The procedure is designed so that every lj is
approximately proportional to α−1

j after enough iterations. The total number of splits for the

jth coordinate is thus close to 2C/αj for every j with some C > 0. In the proof of Theorem 1
below, one can see that this matching is indeed optimal and minimizes the induced bias.

To play a role as a ‘sieve’ for approximation, Ψ needs to be sufficiently finely subdivided
to capture the global/local behavior of a function. The threshold L determines the resolu-
tion of the returned tree partition T ◦ = (Ω◦1, . . . ,Ω

◦
2L◦

). For a good approximation we are
particularly interested in the situation when L◦ = L, i.e., the resulting tree has the desired
depth. If L◦ < L due to insufficient split-candidates, the resolution may not be good enough.

Now, we can define the regularity of a split-net on Ψ ⊆ [0, 1]p using T ◦. The desirable
situation is when all the splits occur nearly at the center of boxes such that for any given

5The notation T ◦ = (Ω◦k)k with a circle is used only for tree partitions of some box Ψ ⊆ [0, 1]p, returned
by the anisotropic k-d trees, with some suitable subscript if required.
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j ∈ S, all len([Ω◦k]j), k = 1, . . . , 2L, are balanced well. The evenness of the returned partition
is solely determined by the regularity of a split-net Z. Intuitively, the split-net should be
sufficiently regularly distributed to give rise to an appropriate partition, in which we say a
split-net is regular. We make the definition technically precise below, which will be used as a
basis for approximating the function classes. See Verma et al. (2009) for a related regularity
condition.

Definition 10 (Regular split-net). For a given box Ψ ⊆ [0, 1]p, an integer L > 0, and an
index set S = {s1, . . . , sd} ⊆ {1, . . . , p}, we say that a split-net Z is (Ψ, α, L, S)-regular if
T ◦ = (Ω◦1, . . . ,Ω

◦
2L◦

) and (l1, . . . , ld)
> returned by AKD(Ψ;Z, α, L, S) satisfy L◦ = L and

maxk len([Ω◦k]sj ) . len([Ψ]sj )2
−lj for every j = 1, . . . , d.

The condition maxk len([Ω◦k]sj ) . len([Ψ]sj )2
−lj is the key to obtaining optimal approxi-

mation results. In the ideal case that all the splits occur exactly at the center, this condition
is trivially satisfied as maxk len([Ω◦k]sj ) = len([Ψ]sj )2

−lj . The inequality provides a lot more
flexibility where the condition can be satisfied in most cases except for very extreme situa-
tions. See Section 4.3 for examples of regular split-nets.

Similar to dense split-nets, regular split-nets also have nested properties. If a split-net
Z is (Ψ, α, L, S)-regular for some Ψ, α, L, and S, then it is also (Ψ, α, L̃, S)-regular for any
L̃ ≤ L. This can be easily shown by noting that the latter is determined only by a sub-tree
of a blown tree for the former. We are particularly interested in the largest possible L.

Remark 3. Since regular split-nets require the desired depth, i.e., L◦ = L, it is of interest
to see which L achieves this precondition. Consider a box Ψ ⊆ [0, 1]p and a split-net Z =
{zi ∈ [0, 1]p, i = 1, . . . , bn}. If there are no ties in Z for any coordinate, i.e., bj(Z) = bn,
j = 1, . . . , p, it can be easily checked that any integer L ≤ blog2(b̃j(Z; Ψ) + 1)c gives rise to
L◦ = L with the anisotropic k-d tree. (Observe that all b̃j(Z; Ψ) are identical in this case.)
If there are ties, L may need to be much smaller to achieve L◦ = L, but a tight upper bound
may not be obtained for the general case.

4.2 Approximation theory

Our goal is to establish asymptotic properties of the posterior distribution. This requires
that tree learners be able to approximate functions in the spaces ΓAᾱ,d,pλ (X) and ΓAᾱ,d,pλ (X)∩
C([0, 1]p) appropriately. Here, we establish the approximation properties for these sparse
function spaces.

Recall that a split-net Z is required to be suitably dense and regular. First, a split-net Z
should be (X∗, cn)-dense for some suitable cn. The boundaries of X∗ = (Ξ∗1, . . . ,Ξ

∗
R) should

thus be detected well by the binary tree partitioning rule. Since X∗ is approximated by a
Z-tree partition with a given Z, the underlying partition X∗ should be at least a flexible tree
partition, but a stronger result is obtained if X∗ is a Z-tree partition (see Theorem 1 below).
Denoting by T ∗ = (Ω∗1, . . . ,Ω

∗
R) the S(X∗)-chopped Z-tree partition approximating X∗, each

box Ω∗r should be appropriately subdivided to capture the local/global nature of the true
function on Ξ∗r . (If R = 1, we write T ∗ = X∗ = ([0, 1]p) with Ω∗1 = [0, 1]p.) Hence, for a

smoothness parameter Aᾱ ∈ AR,dᾱ and L0 specified below, Z should also be (Ω∗r , αr, L0, S0)-
regular, r = 1, . . . , R. The integer L0 is chosen below such that the approximation error
is balanced with our target rate. Let T ◦r = (Ω◦r1, . . . ,Ω

◦
r2L0

) be the tree partition of Ω∗r
returned by AKD(Ω∗r ;Z, αr, L0, S0), r = 1, . . . , R. Then, the approximating partition T̂ is
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Figure 8: An example of constructing T̂ . First, X∗ = (Ξ∗1, . . . ,Ξ
∗
4) is approximated by

T ∗ = (Ω∗1, . . . ,Ω
∗
4). Then, each Ω∗r is subdivided by the anisotropic k-d tree, producing T ◦r a

constituent of T̂ displayed on the rightmost panel.

formed by agglomerating all sub-tree partitions T ◦r , leading to an S0-chopped Z-tree partition
T̂ = (Ω◦11, . . . ,Ω

◦
12L0

, . . . ,Ω◦R1, . . . ,Ω
◦
R2L0

). A graphical illustration of constructing T̂ is given
in Figure 8.

The strongest approximation results relative to the supremum norm for ΓAᾱ,d,pλ (X) are
of particular interest. Due to the possible discontinuity or heterogeneity at the unknown
boundaries of X∗, however, such results are not practically obtained except for the case
R = 1. As the following lemma shows, the conditions can be relaxed if we opt for weaker
metrics, which often suffice in many statistical setups. For example, in our examples of
Gaussian nonparametric regression in Section 5.1, we only need an approximation rate in
L2- or empirical L2-sense. The approximation results for the continuous variant ΓAᾱ,d,pλ (X)∩
C([0, 1]p) require even milder conditions.

Theorem 1 (Approximation theory). For a split-net Z that is (X∗, cn)-dense for cn >
0 specified below, let T ∗ = (Ω∗1, . . . ,Ω

∗
R) = argminT ∈TS(X∗),R,Z

Υ(X∗, T ). For every r =

1, . . . , R, assume that Z is (Ω∗r , αr, L0, S0)-regular for a smoothness parameter Aᾱ ∈ AR,dᾱ

and an integer sequence L0 > 0 such that 2L0 � (λ2d2n/(R log n))d/(2ᾱ+d). Let ε̄n =
(λd)d/(2ᾱ+d)((R log n)/n)ᾱ/(2ᾱ+d) and construct the S0-chopped Z-tree partition T̂ as above.
Then, the following assertions hold.

(i) If c
minr,j αrj
n . ε̄n/(λ|S(X∗)|), then for every f0 ∈ ΓAᾱ,d,pλ (X) ∩ C([0, 1]p), there exists

f̂0 ∈ FT̂ such that ‖f0 − f̂0‖∞ . ε̄n.

(ii) Fix v ≥ 1. If

cn .

(
ε̄n
‖f0‖∞

)v minr,j len([Ξ∗r ]j)

|S(X∗)|
, (4)

then for every f0 ∈ ΓAᾱ,d,pλ (X), there exists f̂0 ∈ FT̂ such that ‖f0 − f̂0‖v . ε̄n. If (4)
is not satisfied but

c
1+vminr,j αrj
n .

( ε̄n
λ

)v minr,j len([Ξ∗r ]j)

|S(X∗)|v+1
, (5)

then for every f0 ∈ ΓAᾱ,d,pλ (X)∩C([0, 1]p), there exists f̂0 ∈ FT̂ such that ‖f0−f̂0‖v . ε̄n.

(iii) Fix v ≥ 1. For every f0 ∈ ΓAᾱ,d,pλ (X) and cn = 1, there exists f̂0 ∈ FT̂ such that

‖f0 − f̂0‖v,PZ . ε̄n, where PZ(·) = b−1
n

∑bn
i=1 δzi(·).
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Proof. See Section A.1 in Appendix.

The assertion in (i) is given for the supremum norm which is the most comprehensive
and universally used in many statistical estimation problems. This, however, imposes the
continuity restriction. The assertion in (ii) is with respect to the Lv-norm, v ≥ 1, which is
useful in many statistical setups. The result allows for the discontinuity of f0 if (4) is satisfied.
Notice that (5) is not always milder than (4) despite the continuity restriction. It should be
understood that the expression of (ii) is adopted for the sake of simplicity. One may easily

see that (5) is milder than (4) only if λ|S(X∗)|cminr,j αrj
n . ‖f0‖∞. This is often satisfied

since we are usually interested in a decreasing polynomial in n for cn. The assertion in (iii) is
particularly useful in regression setups with Z chosen by fixed covariates (see Section 4.3.2).
Note that (iii) only requires the regularity of a split-net Z, as all split-nets are (X∗, 1)-dense.

Observe that |S(X∗)| = 0 if R = 1. In this particular case, the conditions for cn in (i) and
(ii) are automatically satisfied since all split-nets are (([0, 1]p), 0)-dense. The assertions then
only require a split-net to be suitably regular. This fact certainly makes sense because there
are no boundaries to be detected if R = 1. Note also that ΓAᾱ,d,pλ (X) = ΓAᾱ,d,pλ (X)∩C([0, 1]p)
if R = 1, and hence (i) is the strongest in this case.

If R > 1, the conditions in (i) and (ii) are not trivially satisfied. The conditions are oracle-

type conditions since they depend on unknown model components, e.g., Aᾱ ∈ AR,dᾱ , λ, and
|S(X∗)|. More practical conditions can be obtained by plugging in reasonable bounds of the
unknown components. For example, we cannot hope for better than ε̄n & (λdR(log n)/n)1/3

due to the fundamental limitation of piecewise constant learners. For the procedure to be
consistent, we need the necessary conditions d/ᾱ� log n and λᾱ/dR� n (see the rate in (7)
below). We can also assume that minr,j len([Ξ∗r ]j) is bounded away from zero or decreases
sufficiently slowly. Putting everything together, the conditions in (i) and (ii) can be easily
satisfied if cn is a decreasing polynomial in n with a suitable exponent (a suitable decreasing
order of minr,j αrj is required for (i)). Note again that (iii) does not require a decreasing cn.

No upper bounds for bn and bj(Z) are made for Theorem 1; the approximation results
are more easily achieved with larger values of bj(Z), j = 1, . . . , p. However, values increasing
too fast may harm the contraction rate as they escalate the model complexity. In Sec-
tion 5, we will see that our main results on the optimal posterior contraction require that
max1≤j≤p log bj(Z) . log n. Hence, we are ultimately interested in split-nets with bj(Z),
j = 1, . . . , p, balanced very well.

4.3 Examples of split-nets for approximation

Although the notion of dense and regular split-nets is crucial in characterizing the approx-
imation theory in Section 4.2, it remains unclear how to obtain such a good split-net in
practice. We will show that the two split-nets in Figure 5 are suitably dense and regular, and
hence fulfill the requirements of Theorem 1. Throughout this section, T ∗ = (Ω∗1, . . . ,Ω

∗
R) is

defined as T ∗ = argminT ∈TS(X∗),R,Z
Υ(X∗, T ) for a given Z.

4.3.1 Regular grid

We first consider a regular grid Z = {(i− 1/2)/b
1/p
n , i = 1, . . . , b

1/p
n }p for bn such that b

1/p
n is

an integer. This simplest example is a split-net according to Definition 5. A two-dimensional
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example is illustrated in Figure 5a. The following lemma shows that, with an appropriately
chosen bn, a regular grid is suitably dense and regular under mild conditions.

Lemma 1 (Regular grid). Consider a regular grid Z with bn = ncp for a constant c ≥ 1.
If minr,j len([Ξ∗r ]j)� n−c and λd1(R > 1)/minr,j len([Ξ∗r ]j)

ᾱ/d+1/2 . ncᾱ/d+(c−1)/2
√
R log n,

then Z is (X∗, cn)-dense and (Ω∗r , αr, L0, S0)-regular for r = 1, . . . , R, where cn = n−c1(R >
1).

Proof. See Section A.2 in Appendix.

The second condition is simplified as λd1(R > 1)/
√

minr,j len([Ξ∗r ]j) . n(c−1)/2
√
R log n

by taking ᾱ → 0. We pay particular attention to the case R = 1, i.e., X∗ = ([0, 1]p), where
the conditions are trivially satisfied. In this case, we obtain the strongest result in (i) of

Theorem 1 (recall that ΓAᾱ,d,pλ (X) = ΓAᾱ,d,pλ (X) ∩ C([0, 1]p) if R = 1). For the case R > 1,
the conditions are very mild if c is large enough with the necessary conditions d � log n
and λᾱ/dR � n for consistent estimation. The choice c = 1 can even be sufficient with
stronger boundedness conditions. Since cn is a decreasing polynomial in n with our choice
of bn, the assertions in (i) and (ii) of Theorem 1 hold with a large enough c. Note that (iii)
of Theorem 1 also holds trivially with this Z.

Since max1≤j≤p log bj(Z) = p−1 log bn . log n, a regular grid satisfies the condition for
the optimal posterior contraction specified in Section 5. This nice property makes a regular
grid very appealing for practical use given its simplicity, and there is no much benefit of
considering more complicated split-nets. The only exception is a set of fixed design points
commonly used in the literature of BART (Chipman et al., 2010; Ročková and van der Pas,
2020).

A regular grid can easily be extended to an irregular rectangular grid with boxes of
different sizes. If every mesh-size of this irregular checkerboard is asymptotically proportional

to 1/b
1/p
n , the above results still hold with minor modification. This extension is particularly

interesting in a regression setup where the distribution of covariates is explicitly available.
For example, it allows us to use the quantiles for grid points, which is a natural way to
generate a weakly balanced system (Castillo and Ročková, 2021).

4.3.2 Fixed design points

Now we focus on a fixed design regression setup, where observed covariate values are readily
available. Using fixed design points is particularly appealing in that (iii) of Theorem 1
(coupled with this split-net) gives an approximation error relative to the empirical probability
measure as soon as it is suitably regular. The strategy is conventional in the literature of
Bayesian CART and BART (Chipman et al., 1998; Denison et al., 1998; Chipman et al.,
2010).

Suppose that a split-net Z = {zi ∈ [0, 1]p, i = 1, . . . , n} consists of the observed covariate
values in a regression setup. We need to assume that the design points are sufficiently evenly
distributed in unknown S0. Thus we make the following assumption on Z.

(F) For every α ∈ (0, 1]d and every box Ψ ⊆ [0, 1]p with nPZ(Ψ) � 1, Z is (Ψ, α, L, S0)-
regular with L = blog2(cnPZ(Ψ))c for some constant c > 0.

The condition nPZ(Ψ) � 1 implies that the number of split-candidates contained in Ψ
increases. If Z is balanced very well in S0 and there are no ties so that splits can occur
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nPZ(Ψ) times, then Z is (Ψ, α, L, S0)-regular for L = blog2(nPZ(Ψ) + 1)c (see Remark 3).
Our requirement is thus milder.

Lemma 2 (Fixed design points). Consider fixed design points Z = {zi, i = 1, . . . , n} with
Assumption in (F). If λd . (n/R)ᾱ/d

√
log n, minr PZ(Ξ∗r) & R−1, and R � n, then Z is

(Ω∗r , αr, L0, S0)-regular for r = 1, . . . , R.

Proof. See Section A.3 in Appendix.

Since nPZ(Ξ∗r) is the number of split-candidates in Ξ∗r , the condition minr PZ(Ξ∗r) & R−1

implies that the number of split-candidates should be balanced well among the R boxes. Our
condition λd . (n/R)ᾱ/d

√
log n slightly relaxes the condition λd .

√
log n of Theorem 4.1

in Ročková and van der Pas (2020) (for the case of global isotropy). The two conditions are
comparable if we take ᾱ→ 0 from the practical perspective. We see that (iii) of Theorem 1
directly follows from this lemma. Since design points are used as Z, the term ‖f0 − f̂0‖v,PZ
is translated into the approximation error relative the empirical probability measure. In
regression setups, this fact makes fixed design points much more attractive than other split-
nets in the previous sections. We also note that the requirement max1≤j≤p log bj(Z) . log n
for the optimal posterior contraction is trivially satisfied in this case.

5 BART in nonparametric regression

5.1 Posterior contraction rates

BART is an archetypal example of Bayesian forests (Chipman et al., 1998; Denison et al.,
1998; Chipman et al., 2010). For a fixed design Gaussian nonparametric regression, Ročková
and van der Pas (2020) and Ročková and Saha (2019) established L2 rate-optimal posterior
contraction of BART for high-dimensional isotropic regression functions. Our investigation
goes beyond these studies in three aspects: (i) we treat the variance parameter σ2 as unknown
with a prior; (ii) we consider both fixed and random regression design; and, most importantly,
(iii) the true function is assumed to be in the piecewise heterogeneous anisotropic space
introduced earlier. The last point significantly enlarges the optimality scope of BART.

We separately deal with fixed and random designs. This section is focused on the fixed
design case, while the random design case will be considered in Section 6.1. The fixed design
regression model writes as

Yi = f0(xi) + εi, εi ∼ N(0, σ2
0), i = 1, . . . , n, (6)

where xi = (xi1, . . . , xip)
> ∈ [0, 1]p, i = 1, . . . , n, are fixed. The model is independent but not

identically distributed, and hence the asymptotic studies are established under the product
measure for the n observations. The general theory of posterior contraction requires an
exponentially powerful test function of a semimetric under this product measure (Ghosal
and van der Vaart, 2017). In nonparametric regression with fixed design, such a good test
function can be directly constructed for the empirical L2-distance even when the noise error
is unknown (Salomond, 2018). We also refer to Ning et al. (2020) and Jeong and Ghosal
(2021) for the construction of relevant test functions with respect to the Rényi divergence.
The general theory also requires desirable properties of the prior. We show that the tree
priors in Section 3 satisfy those conditions.

We impose the following assumptions on the true parameters f0 and σ2
0.
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(A1) For d > 0, λ > 0, R > 0, X = (Ξ1, . . . ,ΞR), and Aᾱ ∈ AR,dᾱ with ᾱ ∈ (0, 1], the true

function satisfies f0 ∈ ΓAᾱ,d,pλ (X) or f0 ∈ ΓAᾱ,d,pλ (X) ∩ C([0, 1]p).

(A2) It is assumed that d, p, λ, R, and ᾱ satisfy εn � 1, where

εn =

√
d log p

n
+ (λd)d/(2ᾱ+d)

(
R log n

n

)ᾱ/(2ᾱ+d)

. (7)

(A3) The true function satisfies ‖f0‖∞ .
√

log n.

(A4) The true variance parameter satisfies σ2
0 ∈ [C−1

0 , C0] for some sufficiently large C0 > 1.

Assumption (A1) means that the true regression function f0 lies on a sparse piecewise hetero-
geneous anisotropic space. If the continuity assumption is further imposed, the approxima-
tion results in Theorem 1 are obtained under milder conditions. Assumption (A2) is required
to make our target rate εn tend zero. The boundedness condition in (A3) is made to guarantee
a sufficient prior concentration under the normal prior on the step-heights specified in (P2)
below. Although the Gaussian prior can be replaced by a thick-tailed prior (e.g., Ročková,
2020), we only consider the Gaussian prior to leverage its semi-conjugacy. Assumption (A4)
allows one to assign a standard prior to σ2, e.g., an inverse gamma distribution.

It is also important to choose a suitable split-net so that Theorem 1 can be deployed. For
regression with fixed design, we need an approximation result with respect to the empirical
L2-norm ‖·‖n defined as ‖f‖2n = n−1

∑n
i=1 |f(xi)|2. We make the following assumptions on

the split-net Z. Below the notation dep means the depth of a node, the number of nodes
along the path from the root node down to that node.

(A5) The split-net Z satisfies max1≤j≤p log bj(Z) . log n.

(A6) The split-net Z is suitably dense and regular to construct a Z-tree partition T̂ such
that there exists f̂0 ∈ FT̂ satisfying ‖f0 − f̂0‖n . ε̄n by Theorem 1.

(A7) The Z-tree partition T ∗ = (Ω∗1, . . . ,Ω
∗
R) approximating X∗ satisfies maxr dep(Ω∗r) .

log n.

Assumption (A5) is required for a suitable bound of the entropy and a good prior concentra-
tion (see Lemma 4). Assumption (A6) provides the desired approximation error with respect
to the ‖·‖n-distance. Due to Theorem 1 and Lemma 2, using fixed design points as Z is of
particular interest, as ‖·‖2,PZ is equivalent to the empirical L2-norm ‖·‖n in this case. As-
sumption (A7) is a technical requirement which is certainly mild. This condition is trivially
satisfied if R is bounded.

Lastly, a careful prior specification is required to obtain the optimal posterior contraction.
We consider the following prior distributions discussed in Section 3.

(P1) For a fixed T > 0, each tree T t, t = 1, . . . , T , is independently assigned a tree prior
with Dirichlet sparsity.

(P2) The step-heights B are assigned a normal prior with a zero-mean and a covariance
matrix whose eigenvalues are bounded below and above.

(P3) The variance parameter σ2 is assigned an inverse gamma prior.

Under the above assumptions and priors, the following theorem formalizes the posterior
contraction rate of model (6).
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Theorem 2 (Nonparametric regression, fixed design). Consider model (6) with Assumptions
(A1)–(A7) and the prior assigned through (P1)–(P3). Then, there exists a constant M > 0
such that for εn in (7),

E0Π
{

(f, σ2) : ‖f − f0‖n + |σ2 − σ2
0| > Mεn

∣∣Y1, . . . , Yn

}
→ 0.

Proof. See Section A.4 in Appendix.

Intuitively, the rate in (7) resembles a near-minimax rate of estimation of high-dimensional
anisotropic functions. The first part in (7) is the near-minimax risk of the penalty for
not knowing the subset S0 (Raskutti et al., 2011). The second part in (7) is incurred by
anisotropic regression function estimation. Although λ and R can be a polynomial in n with
a suitably small power to satisfy εn → 0, a particularly interesting case is when both are at
most logc n for some c > 0. The second term then corresponds to the near-minimax rate
of anisotropic function estimation (Hoffman and Lepski, 2002). Whether or not the rate in
(7) is in fact the actual (near) minimax rate remains to be established. The answer to this
question is provided in the following subsection, where we formally derive the minimax lower
bound with respect to the L2-risk.

Remark 4. In isotropic regression using BART, Ročková and van der Pas (2020) assumed
that the first part of the rate in (7) is dominated by the second part, whereby the resulting
rate is simplified such that it only depends on the risk of function estimation. Since this
restriction is not required, we keep the rate in the form of (7).

5.2 Minimax lower bounds

In Section 5.1, we established the posterior contraction rate of BART under relaxed smooth-
ness assumptions. Although the rate in (7) consists of two logical components (a penalty
for variable selection uncertainty and a rate of anisotropic function estimation), it is not
guaranteed that the whole rate is (nearly) minimax optimal. While the minimax rates in
high-dimensional isotropic function estimation were studied exhaustively in Yang and Tok-
dar (2015), extensions to (piecewise) anisotropic functions have not been obtained in the
literature. We fill this gap by deriving the minimax lower bound in our general smoothness
setup. These results will certify that the rates obtained in Section 5.1 are indeed minimax
optimal (with respect to the L2-risk) up to a logarithmic factor.

To deploy the conventional minimax theory, we consider the model with random design
given by

Yi = f0(Xi) + εi, Xi ∼ Q, εi ∼ N(0, σ2
0), i = 1, . . . , n, (8)

where Xi = (Xi1, . . . , Xip), i = 1, . . . , n, are p-dimensional random covariates and Q is a
probability measure such that supp(Q) ⊆ [0, 1]p. We assume (without loss of generality)
that σ2

0 is fixed to 1. To obtain a lower bound of the minimax rate, we use the Le Cam
equation (Birgé and Massart, 1993; Wong and Shen, 1995; Barron et al., 1999). Now the
density q of Q is assumed to satisfy the following assumption under which the L2(Q)-norm
is replaced by L2-norm.
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(M) There exist constants 0 < q ≤ q ≤ ∞ such that the density q satisfies q ≤ infx q(x) ≤
supx q(x) ≤ q.

We define the minimax risk for any function space F ∈ L2(Q) as

r2
n(F , Q) = inf

f̂∈Bn
sup
f0∈F

Ef0,Q‖f̂ − f0‖22,Q,

where Bn is the space of all L2(Q)-measurable function estimators and Ef,Q is the expectation
operator under the model with f and Q. The Le Cam equation requires suitable upper
and lower bounds of the metric entropy of the target function space. We thus define the

bounded function space Γ
Aᾱ,d,p
λ,M (X) = {f ∈ ΓAᾱ,d,pλ (X) : ‖f‖∞ ≤ Mλ} for any M > 0. Since

our contraction rate is the same for both ΓAᾱ,d,pλ (X) and ΓAᾱ,d,pλ (X) ∩ C([0, 1]p), we aim to

construct a lower bound of rn
(
Γ
Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), Q

)
close enough to εn.

Theorem 3 (Minimax lower bound). Consider model (8) for σ2
0 = 1 with Assumption (M).

For d > 0, λ > 0, R > 0, a partition X = (Ξ1, . . . ,ΞR) of [0, 1]d, and a smoothness parameter

Aᾱ ∈ AR,dᾱ for ᾱ ∈ (0, 1] such that log len([Ξr]j) & −1/αrj, 1 ≤ r ≤ R, 1 ≤ j ≤ d, there
exists Md > 0 depending only on d such that

rn
(
Γ
Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), Q

)
≥Mdγn,

where γn =
√
n−1 log

(
p
d

)
+ (λd/ᾱ/n)ᾱ/(2ᾱ+d), if γn � 1/d.

Proof. See Section A.5 in Appendix.

Since Md can be dependent on d, the correct interpretation of the result is with a bounded
d. Also, our contraction rate εn is derived under the condition ‖f0‖∞ .

√
log n, and hence

we assume that λ .
√

log n to match the two spaces. One can easily verify that the condition
log len([Ξr]j) & −1/αrj , 1 ≤ r ≤ R, 1 ≤ j ≤ d, leads to the restriction logR . d/ᾱ which
removes the term R is removed from our rate εn in (7). Putting the bounds together, εn
matches γn up to a logarithmic factor. Even if d is increasing, recall that we must have
d/ᾱ � log n to guarantee consistent estimation. Therefore, our rate εn matches the lower
bound γn up to a logarithmic factor even for increasing d, implying that the rate εn is
near-minimax optimal.

5.3 Numerical study

In this section, we provide a numerical study that shows the successful performance of BART
for model (6) with a piecewise smooth function. For competitors we consider the random
forest and deep neural network (DNN) models with the rectified linear unit (ReLU) acti-
vation functions, which are believed to work well for discontinuous or complicated smooth
functions. In particular, the recent literature has reported that DNN models are instru-
mental in adapting to complicated function classes with the guaranteed optimal properties
(e.g., Petersen and Voigtlaender, 2018; Imaizumi and Fukumizu, 2019; Schmidt-Hieber, 2020;
Hayakawa and Suzuki, 2020). The random forest is expected to perform similarly to BART,
as it is also based on the additive tree structure. Our numerical study shows that BART
outperforms these competitors in estimating piecewise smooth classes.
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Figure 9: RMSPEs obtained from 100 replicated datasets for each simulation setting. RF1
stands for the random forest of 200 trees with maximal node size 5. RF1 stands for the
random forest of 200 trees with maximal node size 5 for each tree. RF2 stands for the
random forest of 200 trees with maximal node size 50 for each tree. NN1 stands for the DNN
model with two hidden layers and (64, 32) hidden units. NN2 stands for the DNN model
with four hidden layers and (256, 128, 64, 32) hidden units.

The test datasets are generated from model (6) with the true function f0 : [0, 1]p 7→ R,

f0(x1, . . . , xp) = 1 +
1

p

{
p∑
j=1

(−1)j1(xj ≥ 1/2)

}{
p∑
j=1

(xj − 1/2)2

}
, (9)

with given p and σ2
0. The function f0 is discontinuous on 2p pieces of [0, 1]p. For a fair

comparison to the other methods, we do not use the Dirichlet sparse prior in (3). Instead, we
assign a uniform prior that corresponds to the Dirichlet prior with concentration parameter
1, with a priori assumption that all predictor variables contribute equally to the observations.
Hence, p must be much smaller than n. For given predictor variables Xi generated uniformly
on [0, 1]p, the response variable Yi is generated from model (6), i = 1, . . . , n. With the sample
size n = 103, we consider the simulation settings p ∈ {2, 10, 20, 50} and σ2

0 ∈ {0.052, 0.52}.
We fit BART with 200 trees using the R package BART. The random forest is fitted by the
randomForest package with 200 trees and the maximal node size 5 or 50 for each tree. The
DNN models are trained by TensorFlow with the Keras interface. We consider two DNN
models with 2 and 4 hidden layers with (64, 32) and (256, 128, 64, 32) hidden units. All hidden
units take the ReLU activation function with the dropout of rate 0.3 for regularization.

Figure 9 shows the root mean squared prediction error (RMSPE) obtained by the five
methods. The RMSPEs are calculated with randomly drawn out-of-samples in 100 replicated
datasets for each simulation setting. The result shows that BART clearly outperforms the
other learning algorithms for the piecewise smooth function in (9). In particular, the DNN
models often fall behind in the competition, while requiring long computation time. We
surmise that this is because the training procedure of DNN models often gets stuck at a local
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mode due to the susceptibility; it is very challenging to fully optimize complicated DNN
models. We also tested many other tuning parameter setups and network structures for the
random forest and the DNN, but found no improvement.

6 Further applications

Section 5 establishes the posterior contraction rate of BART for the nonparametric regres-
sion model and justifies its near-minimax optimality. Since our approximation theory only
requires very general conditions on a split-net, the results can be extended to statistical
models beyond nonparametric regression with fixed design. In this section, we consider other
applications such as nonparametric regression with random design, density estimation, and
nonparametric binary classification. Moreover, since the technical results in Section 5 hold
even with the single tree model (T = 1), one can find no theoretical advantages of BART over
Bayesian CART. A theoretical advantage of BART can be recognized if the true function
has an additive structure (Linero and Yang, 2018; Ročková and van der Pas, 2020). Such an
extension is also considered in this section.

6.1 Nonparametric regression with random design

Theorem 2 quantifies the posterior contraction rate of nonparametric regression with fixed
design where the predictor variables are not random variables. Now we consider a random
design regression in (8). The random design assumption is often necessary, for example,
in measurement error models (Tuo and Wu, 2015) or causal inference models (Hahn et al.,
2020; Ray and van der Vaart, 2020). Here we establish the posterior contraction rate of
BART for the random design model in (8). It is important to note that fixed design points
in Section 4.3.2 can not be used for a split-net, as the procedure is not truly Bayesian if the
prior is dependent on the data. Instead, a regular grid in Section 4.3.1 can be useful.

We consider model (8) for Q a probability measure that satisfies supp(Q) ⊆ [0, 1]p with a
bounded density. Unlike model (6), model (8) is independent and identically distributed. The
well-known fact that exponentially powerful tests exist with respect to the Hellinger metric
ρH(·, ·) allows one to establish the contraction rate for the corresponding metric (Ghosal
et al., 2000). However, in normal models, the Hellinger distance is matched to the L2-type
metric only when ‖f‖∞ and | log σ2| are bounded in the entire parameter space, not only for
the true values (e.g., Xie and Xu, 2018). Unlike in Theorem 2, this restriction requires that
f0 be uniformly bounded and a prior be appropriately truncated. Note also that we need a
good approximation error with respect to the integrated L2-norm. Below we summarize the
required modifications of (A3), (A6), (P2), and (P3).

(A3∗) The true function f0 satisfies ‖f0‖∞ ≤ C∗0 for some sufficiently large C∗0 > 0.

(A6∗) The split-net Z is suitably dense and regular to construct a Z-tree partition T̂ such
that there exists f̂0 ∈ FT̂ satisfying ‖f0 − f̂0‖2 . ε̄n by Theorem 1.

(P2∗) A prior on the compact support [−C1, C1] is assigned to the step-heights B for some
C1 > C∗0 .

(P3∗) A prior on the compact support [C
−1
2 , C2] is assigned to σ2 for some C2 > C0.
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Assumption (A6∗) requires good approximability with respect to the L2-norm. Due to The-
orem 1, a regular grid in Section 4.3.1 can be useful to meet this requirement. We wrap up
this section with a theorem that formalizes the posterior contraction of BART for model (8).

Theorem 4 (Nonparametric regression, random design). Consider model (8) with Assump-
tions (A1), (A2), (A3∗), (A4), (A5), (A6∗), and (A7), and the prior assigned through (P1),
(P2∗), and (P3∗). Then, there exists a constant M > 0 such that for εn in (7),

E0Π
{

(f, σ2) : ‖f − f0‖2,Q + |σ2 − σ2
0| > Mεn

∣∣ (X1, Y1), . . . , (Xn, Yn)
}
→ 0.

Proof. See Section A.6 in Appendix.

6.2 Density estimation

For some probability measure P that satisfies supp(P ) ⊆ [0, 1]p, suppose n independent
observations Xi, i = 1, . . . , n, are drawn from P , i.e.,

Xi ∼ P, i = 1, . . . , n. (10)

Assume that P is absolutely continuous with respect to the Lebesgue measure with the true
density p0. We assign a prior on pf indexed by f such that pf = exp(f)/

∫
[0,1]p exp(f(x))dx

with f assigned the forest priors in Section 3. We write f0 = log p0 while assuming (A1)–
(A3). We leverage the existence of an exponentially powerful test for the Hellinger metric
ρH(·, ·). Due to the relationship between Hellinger balls and supremum-norm balls in density
estimation with the exponential link, we need an approximation result with respect to the
supremum-norm. This is obtained by (i) of Theorem 1 with an appropriate split-net, but
requires the continuity restriction on the true function. We make the following assumptions
to satisfy this requirement.

(A1‡) For d > 0, λ > 0, R > 0, X = (Ξ1, . . . ,ΞR), and Aᾱ ∈ AR,dᾱ with ᾱ ∈ (0, 1], the true

function satisfies f0 ∈ ΓAᾱ,d,pλ (X) ∩ C([0, 1]p).

(A6‡) The split-net Z is suitably dense and regular to construct a Z-tree partition T̂ such
that there exists f̂0 ∈ FT̂ satisfying ‖f0 − f̂0‖∞ . ε̄n by Theorem 1.

We assign the tree prior with Dirichlet sparsity and a normal prior on the step-heights.
Under suitable assumptions, the following theorem provides the posterior contraction rate
for pf with respect to the Hellinger distance.

Theorem 5 (Density estimation). Consider model (10) with Assumptions (A1‡), (A2)–
(A3), (A5), (A6‡), and (A7), and the prior assigned through (P1)–(P2). Then, there exists
a constant M > 0 such that for εn in (7),

E0Π
{
f : ρH(pf , p0) > Mεn

∣∣X1, . . . , Xn

}
→ 0.

Proof. See Section A.6 in Appendix.
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As mentioned in Section 5.1, the normal prior in (P2) is not necessary and a heavy-
tailed prior can relax the assumption on ‖f‖∞. Since normal priors are not conjugate to
the model likelihood in the density estimation example, there is no clear benefit of adopting
(P2) anymore. This is also the case in the example of binary classification given in the next
subsection. Nevertheless, we employ (P2) for the sake of simplicity.

6.3 Nonparametric binary classification

For a binary response Yi ∈ {0, 1} and a random covariate Xi ∈ Rp, assume that we have n
independent observations (X1, Y1), . . . (Xn, Yn) from the binary classification model:

P0(Yi = 1|Xi = x) = ϕ0(x), Xi ∼ Q, i = 1, . . . , n, (11)

for some ϕ0 : [0, 1]p 7→ [0, 1] and some probability measure Q such that supp(Q) ⊆ [0, 1]p with
a bounded density. We thus consider a binary classification problem with random design.

We parameterize the probability function using the logistic link function H : R 7→ [0, 1]
such that ϕf = H(f) for f on which the forest priors in Section 3 are assigned. For true
function ϕ0, we write f0 = H−1(ϕ0) while assuming (A1)–(A3) as in the density estimation
problem. In the proof, it will be shown that the Hellinger metric is bounded by the L2(Q)-
distance in this example, and hence (A6∗) is assumed. Similar to Section 6.1, fixed design
points are not available for a split-net, but a regular grid in Section 4.1.2 can be useful.
The following theorem formalizes the posterior contraction rate with respect to the L2(Q)-
distance.

Theorem 6 (Binary classification). Consider model (11) with Assumptions (A1)–(A3),
(A5), (A6∗), and (A7), and the prior assigned through (P1)–(P2). Then, there exists a
constant M > 0 such that for εn in (7),

E0Π
{
f : ‖H(f)−H(f0)‖2,Q > Mεn

∣∣ (X1, Y1), . . . , (Xn, Yn)
}
→ 0.

Proof. See Section A.6 in Appendix.

6.4 Additive nonparametric regression

Thus far we have considered statistical models with the true function f0 that belongs to
the piecewise heterogeneous anisotropic Hölder space with sparsity. Since Theorems 2-6
hold even with the single tree model (T = 1), the empirical success of BART is not well
explained by the previous examples, though the empirical performance of BART should be
attributed to its fast mixing to some extent. However, Linero and Yang (2018) and Ročková
and van der Pas (2020) observed that BART optimally adapts to a larger class of additive
functions which single tree models do not adapt to. In this section, we consider additive
nonparametric regression to show theoretical advantages of BART over Bayesian CART.

We consider the nonparametric regression model with fixed design in (6), but the true
function f0 is assumed to have an additive structure with T0 components, f0 =

∑T0
t=1 f0t,

where each f0t belongs to the piecewise heterogeneous anisotropic Hölder space with sparsity.
We also need suitable conditions on a split-net Z such that the approximation theory works
for every additive component. We thus make the following modifications of the conditions
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used in Section 5.1. In what follows, the subscript or superscript t stands for additive
component-specific extensions of the model elements used in Section 5.1.

(A1§) For dt > 0, λt > 0, Rt > 0, Xt = (Ξt1, . . . ,ΞtR), and At,ᾱt ∈ A
Rt,dt
ᾱt with ᾱt ∈ (0, 1],

1 ≤ t ≤ T0, the true function satisfies f0 =
∑T0

t=1 f0t for f0t ∈ Γ
At,ᾱt ,dt,p
λt

(Xt) or

f0t ∈ Γ
At,ᾱt ,dt,p
λt

(Xt) ∩ C([0, 1]p).

(A2§) It is assumed that dt, pt, λt, Rt, and ᾱt satisfy εt,n � 1, where εt,n =
√

(dt log p)/n+

(λtdt)
dt/(2ᾱt+dt) ((Rt log n)/n)ᾱt/(2ᾱt+dt).

(A6§) The split-net Z is suitably dense and regular to construct a Z-tree partition T̂ t

such that for ε̄t,n = (λtdt)
dt/(2ᾱt+dt) ((Rt log n)/n)ᾱt/(2ᾱt+dt), there exists f̂0t ∈ FT̂ t

satisfying ‖f0t − f̂0t‖n . ε̄t,n by Theorem 1, 1 ≤ t ≤ T0.

(A7§) The Z-tree partition T ∗t = (Ω∗t1, . . . ,Ω
∗
tR) approximating X∗t satisfies maxr dep(Ω∗tr) .

log n, 1 ≤ t ≤ T0.

These simply mean that the assumptions in Section 5.1 hold for every additive component
f0t. It is worth noting that we do not need to modify the prior distribution for additive
regression, which makes BART very appealing in that the procedure truly adapts to the
unknown true function. This fact is due to the use of the Dirichlet prior in (3); the spike-
and-slab prior does not yield such a nice property (Ročková and van der Pas, 2020). The
next theorem provides the posterior contraction rate for the additive regression model.

Theorem 7 (Additive nonparametric regression). Consider model (6) with Assumptions
(A1§)–(A2§), (A3)–(A5), and (A6§)–(A7§) and the prior assigned through (P1)–(P3). If

T0 ≤ T , there exists a constant M > 0 such that for ε∗n =
√∑T0

t=1 ε
2
t,n,

E0Π
{

(f, σ2) : ‖f − f0‖n + |σ2 − σ2
0| > Mε∗n

∣∣Y1, . . . , Yn

}
→ 0.

Proof. See Section A.6 in Appendix.

Theorem 7 shows that the posterior contraction rate for additive regression is the sum of
the rates for the additive components. If the function space is reduced to a high-dimensional
isotropic class, then our rate ε∗n matches the minimax rate for high-dimensional additive
regression (Yang and Tokdar, 2015). We strongly believe that ε∗n is indeed near-minimax
optimal and this can be formally justified by combining the proof technique of our Theorem 3
and the tools for additive scenarios developed in Yang and Tokdar (2015). Considering the
length of the paper, however, we do not purse this direction in this study.

7 Discussion

In this paper, we have enlarged the scope of theoretical understanding of Bayesian forests
in the context of function estimation by considering relaxed smoothness assumptions. We
introduced a new class of piecewise anisotropic sparse functions, which form a blend of
anisotropy and spatial inhomogeneity. We have derived the minimax rate of estimation of
these functions in high-dimensional regression setups, extending existing results obtained
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earlier only for isotropic functions. Next, we have formalized that Bayesian forests attain the
near-optimal posterior concentration rate for these general function classes without any need
for prior modification. Our results apply to a general class of estimation problems including
nonparametric regression with a fixed and random design, binary classification, and density
estimation.

Appendix

A Proofs of the main results

A.1 Proof of Theorem 1

Proof of Theorem 1. We fix any yrk ∈ Ω◦rk ∩Ξ∗r and let f̂0(x) =
∑

r,k 1Ω◦rk
(x)βrk,0 for βrk,0 =

f0(yrk), so that we have

f0(x)− f̂0(x) =
R∑
r=1

2L0∑
k=1

1Ω◦rk
(x)(f0(x)− f0(yrk)).

In what follows, we write S0 = {s0,1, . . . , s0,d}. Below, we verify the assertions for each of
the given metrics.

Verification of (i): Fix r and k. For any x ∈ Ω◦rk, define

x 7→ x∗ : x∗ = argminz∈clo(Ω◦rk∩Ξ∗r)‖x− z‖1, (12)

where clo(·) denotes the closure of a set. If x ∈ Ω◦rk ∩ Ξ∗r , it is trivial that x∗ = x ∈ Ξ∗r
which gives |f0(x) − f0(x∗)| = 0. If x ∈ Ω◦rk ∩ Ξ∗cr , there exists r′ 6= r such that x ∈ Ξ∗r′
for Ξ∗r′ that is contiguous to Ξ∗r . Then x∗ ∈ clo(Ξ∗r) ∩ clo(Ξ∗r′). In this case x 6= x∗, but we
still have that xj = x∗j for j /∈ S(X∗) ⊆ S0, where xj and x∗j are the jth entries of x and
x∗, respectively. Since f0 is continuous and x, x∗ ∈ clo(Ξ∗r′), we thus have |f0(x)− f0(x∗)| =
|h0(xS0) − h0(x∗S0

)| ≤ λ
∑d

j=1 |xs0,j − x∗s0,j |
αr′j . It follows that for any x ∈ Ω◦rk with given r

and k,

|f0(x)− f0(x∗)| ≤ λ
d∑
j=1

|xs0,j − x∗s0,j |
minr,j αrj ≤ λ|S(X∗)|cminr,j αrj

n , (13)

since ‖x− x∗‖∞ ≤ cn and xj = x∗j for j /∈ S(X∗). Hence, by the triangle inequality, for any
any x ∈ Ω◦rk,

|f0(x)− f0(yrk)| ≤ λ|S(X∗)|cminr,j αrj
n + |f0(x∗)− f0(yrk)|. (14)

Let (lr1, . . . lrd)
> be a vector returned by AKD(Ω∗r ;Z, α, L0, S0) such that L0 =

∑d
j=1 lrj ,

r = 1, . . . , R. Since x∗, yrk ∈ clo(Ω◦rk ∩ Ξ∗r) ⊆ clo(Ξ∗r) and f0 is continuous,

|f0(x)− f0(yrk)| ≤ λ
d∑
j=1

len([Ω◦rk]s0,j )
αrj . λ

d∑
j=1

2−αrj lrj . (15)
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Let l̃rj = L0ᾱ/(dαrj) for r = 1, . . . , R, j = 1, . . . , d, such that αr1 l̃r1 = · · · = αrd l̃rd and

L0 =
∑d

j=1 l̃rj for every r (note that l̃rj may no be integers). Then it can be seen that

lrj > l̃rj − 1 for every r, j, and hence

λ
d∑
j=1

2−αrj lrj ≤ 2λ
d∑
j=1

2−αrj l̃rj ≤ 2λd2−ᾱL0/d. (16)

Putting the bounds together for every r and k, we obtain

‖f0 − f̂0‖∞ . λ|S(X∗)|cminr,j αrj
n + λd2−ᾱL0/d.

This verifies (i).
Verification of (ii): Observe that (ii) consists of two parts. To show the first part of (ii),

we first show that when f0 ∈ ΓAᾱ,d,pλ (X), for any finite measure µ and any fixed v ≥ 1,

‖f0 − f̂0‖v,µ . ε̄n, if

R∑
r=1

µ(Ω∗r ∩ Ξ∗cr ) . (ε̄n/‖f0‖∞)v. (17)

Observe that ∫
|f0(x)− f̂0(x)|vdµ(x) =

R∑
r=1

2L0∑
k=1

∫
Ω◦rk

|f0(x)− f0(yrk)|vdµ(x). (18)

The integral term in each summand is bounded by∫
Ω◦rk∩Ξ∗r

|f0(x)− f0(yrk)|vdµ(x) + µ(Ω◦rk ∩ Ξ∗cr )(2‖f0‖∞)v. (19)

Let (lr1, . . . lrd)
> be the counter vector returned by AKD(Ω∗r ;Z, α, L0, S0) such that L0 =∑d

j=1 lrj , r = 1, . . . , R. Using (15) and (16), observe that for every x, yrk ∈ Ω◦rk ∩ Ξ∗r ⊆ Ξ∗r ,

|f0(x)− f0(yrk)| . λd2−ᾱL0/d.

It follows that the first term of (19) is bounded by a constant multiple of µ(Ω◦rk∩Ξ∗r)(λd2−ᾱL0/d)v.
Note also that

∑
k µ(Ω◦rk ∩ Ξ∗cr ) = µ(Ω∗r ∩ Ξ∗cr ). Therefore,

‖f0 − f̂0‖vv,µ .
R∑
r=1

2L0∑
k=1

{
µ(Ω◦rk ∩ Ξ∗r)

(
λd2−ᾱL0/d

)v
+ µ(Ω◦rk ∩ Ξ∗cr )‖f0‖v∞

}
≤ µ([0, 1]p)

(
λd2−ᾱL0/d

)v
+ ‖f0‖v∞

R∑
r=1

µ(Ω∗r ∩ Ξ∗cr ).

(20)

This leads to the assertion in (17). Now, to verify the first part of (ii), it suffices to show
that

∑R
r=1 Lebp(Ω

∗
r ∩Ξ∗cr ) . (ε̄n/‖f0‖∞)v for Lebp the Lebesgue measure on a p-dimensional

space. For each r, we only need to consider the case Ξ∗r ( Ω∗r , as Lebp(Ω
∗
r∩Ξ∗cr ) is maximized

in this case. Then Ω∗r ∩ Ξ∗cr is not a box, but a p-dimensional orthogonal polyhedron (for
example, with a rectangular hole). One can easily see that

Lebp(Ω
∗
r ∩ Ξ∗cr ) ≤

p∑
j=1

Leb1([Ω∗r ∩ Ξ∗cr ]j)
∏
k 6=j

len([Ω∗r ]k).
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It should noticed that [Ω∗r ∩ Ξ∗cr ]j may not be an interval, but can be an empty set or
a union of two isolated intervals. Since Leb1([Ω∗r ∩ Ξ∗cr ]j) = 0 for j /∈ S(X∗) ⊆ S0 and
maxj Leb1([Ω∗r ∩ Ξ∗cr ]j) ≤ 2cn, the last expression is bounded by

|S(X∗)|max
j

Leb1([Ω∗r ∩ Ξ∗cr ]j)
∏
k 6=j

len([Ω∗r ]k)

 ≤ 2cn|S(X∗)|vol(Ω∗r)
minj len([Ω∗r ]j)

,

where we use the notation vol(·) to denote the volume of a box. Since len([Ω∗r ]j) ≥ len([Ξ∗r ]j)−
2cn for every j,

R∑
r=1

Lebp(Ω
∗
r ∩ Ξ∗cr ) ≤ 2cn|S(X∗)|

minr,j len([Ξ∗r ]j)− 2cn
≤ 3cn|S(X∗)|

minr,j len([Ξ∗r ]j)
, (21)

for every small cn > 0. It follows from this that
∑R

r=1 Lebp(Ω
∗
r ∩ Ξ∗cr ) . (ε̄n/‖f0‖∞)v if

cn . (ε̄n/‖f0‖∞)vminr,j len([Ξ∗r ]j)/|S(X∗)|. The first part of (ii) is verified.
Now we verify the second part of (ii). Similar to (17), we first show that when f0 ∈

ΓAᾱ,d,pλ (X) ∩ C([0, 1]p), for any finite measure µ and any v ≥ 1,

‖f0 − f̂0‖v,µ . ε̄n, if c
vminr,j αrj
n

R∑
r=1

µ(Ω∗r ∩ Ξ∗cr ) . (ε̄n/(λ|S(X∗)|))v. (22)

We start from the identity in (18). Similar to the above, one can observe that the integral
term in (18) is bounded by

µ(Ω◦rk ∩ Ξ∗r)

(
λ

d∑
j=1

len([Ω◦rk]s0,j )
αrj

)v
+

∫
Ω◦rk∩Ξ∗cr

|f0(x)− f0(yrk)|vdµ(x). (23)

Using x∗ ∈ clo(Ω◦rk ∩ Ξ∗r) in (12), the second term of (23) is bounded by

2v−1

∫
Ω◦rk∩Ξ∗cr

(|f0(x)− f0(x∗)|v + |f0(x∗)− f0(yrk)|v)dµ(x)

≤ 2v−1µ(Ω◦rk ∩ Ξ∗cr )

(λ|S(X∗)|cminr,j αrj
n

)v
+

(
λ

d∑
j=1

len([Ω◦rk]s0,j )
αrj

)v ,

where the inequality holds by (13) combined with the fact that x, x∗ ∈ clo(Ξ∗r′) and x∗, yrk ∈
clo(Ξ∗r) for some r′ 6= r. Hence, (23) is further bounded by a constant multiple of

µ(Ω◦rk)
(
λd2−ᾱL0/d

)v
+ µ(Ω◦rk ∩ Ξ∗cr )

(
λ|S(X∗)|cminr,j αrj

n

)v
,

and we have that

‖f0 − f̂0‖vv,µ .
R∑
r=1

2L0∑
k=1

{
µ(Ω◦rk)

(
λd2−ᾱL0/d

)v
+ µ(Ω◦rk ∩ Ξ∗cr )

(
λ|S(X∗)|cminr,j αrj

n

)v}
≤ µ([0, 1]p)

(
λd2−ᾱL0/d

)v
+
(
λ|S(X∗)|cminr,j αrj

n

)v R∑
r=1

µ(Ω∗r ∩ Ξ∗cr ).

(24)
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This leads to the assertion in (22). Now, to verify the second part of (ii), we take the Lebesgue

measure for µ. Then using the bound in (21), we have that (λ|S(X∗)|cminr,j αrj
n )v

∑R
r=1 Lebp(Ω

∗
r∩

Ξ∗cr ) . ε̄vn if c
1+vminr,j αrj
n . (ε̄n/λ)vminr,j len([Ξ∗r ]j)/|S(X∗)|v+1. This proves the assertion.

Verification of (iii): We again use the result in (17). Now, take PZ for µ. Then, it can be
seen that split-points can be picked up such that there are no zi on ∪r(Ω∗r ∩Ξ∗cr ) by choosing
the points closest to the boundaries in every split. Since we have

∑R
r=1 PZ(Ω∗r ∩ Ξ∗cr ) = 0 in

this case, (iii) easily follows.

A.2 Proof of Lemma 1

To prove Lemma 1, we first give the following lemma which shows that a regular grid is dense
and regular for arbitrary inputs under mild conditions.

Lemma 3 (Regular grid, general case). For a regular grid Z, we have the following asser-
tions.

(i) For any S ⊆ {1, . . . , p} and any S-chopped flexible tree partition Y = (Ψ1, . . . ,ΨJ) with

J ≥ 2, Z is (Y, 1/b
1/p
n )-dense if minr,j len([Ψr]j) ≥ b−1/p

n .

(ii) For any S ⊆ {1, . . . , p}, α ∈ (0, 1]d, Ψ ⊆ [0, 1]p, and L = blog2(b
1/p
n minj len([Ψ]j)− 1)c

with any constant M > 0, Z is (Ψ, α, L, S)-regular if minr,j len([Ψr]j) ≥ 3b
−1/p
n .

Proof. Verification of (i): Consider the p-dimensional checkerboard
∏p
j=1[(ij−1)/b

1/p
n , ij/b

1/p
n ],

ij = 1, . . . , bn. Note that each point zi in Z is located at the center of each box of this checker-

board. Since the mesh-size of the checkerboard is 1/b
1/p
n , there exists an S-chopped Z-tree

partition T such that Υ(Y, T ) ≤ 1/b
1/p
n if minr,j len([Ψr]j) ≥ 1/b

1/p
n . The assertion easily

follows.
Verification of (ii): The assumption minr,j len([Ψr]j) ≥ 3b

−1/p
n is made to ensure that

there is at least one split-point that is sufficiently far away from the boundaries of Ψ in every
coordinate. Observe that for any box Ψ ⊆ [0, 1]p, we obtain

b̃j(Z,Ψ) ≤ b1/pn len([Ψ]j) ≤ b̃j(Z,Ψ) + 1, j = 1, . . . , p. (25)

Thus, in every coordinate, midpoint-splits can occur bb1/pn minj len([Ψ]j)c − 1 times without
choosing the leftmost and rightmost split-points (these two points may produce too small

cells). This allows us to choose L = blog2(b
1/p
n minj len([Ψ]j)− 1)c for an anisotropic k-d tree

(note that blog(bxc)c = blog(x)c, x > 0).
For any Ψ ⊆ [0, 1]p and a splitting coordinate j ∈ S, a mid-point split choose db̃j(Z,Ψ)/2eth

split-candidate in [Z]j ∩ int([Ψ]j) as a split-point τj . The resulting two cells have at most
bb̃j(Z,Ψ)/2c split-points in coordinate j. Therefore, using (25),

max
k

len([Ω◦k]sj ) ≤
b̃j(Z,Ψ)2−lj + 1

b
1/p
n

≤ len([Ψ]sj )2
−lj + 1/b1/pn

≤ len([Ψ]sj )

(
2−lj +

1

b
1/p
n minr,j len([Ψr]j)

)
.
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Since L ≤ log2(b
1/p
n minj len([Ψ]j) − 1) ≤ log2(b

1/p
n minj len([Ψ]j)) − 1 and lj ≤ L for every

j = 1, . . . , d, the last expression is bounded by

len([Ψ]sj )(2
−lj + 21−L) ≤ 3len([Ψ]sj )2

−lj .

This leads to the assertion.

Now, we prove Lemma 1 below.

Proof of Lemma 1. If R = 1, it is obvious that Z is (X∗, 0)-dense. If R > 1, by (i) of

Lemma 3, Z is (X∗, 1/b
1/p
n )-dense since b

1/p
n minr,j len([Ξ∗r ]j) � 1. Then, there exists an

S0-chopped Z-tree partition approximating X∗, denoted by T ∗ = (Ω∗1, . . . ,Ω
∗
R), such that

Υ(X∗, T ∗) ≤ 1/b
1/p
n .

Observe that minr,j len([Ω∗r ]j) ≥ minr,j len([Ξ∗r ]j) − 2/b
1/p
n . This inequality gives us

b
1/p
n minr,j len([Ω∗r ]j) � 1 since b

1/p
n minr,j len([Ξ∗r ]j) � 1. Therefore, by (ii) of Lemma 3,

Z is (Ω∗r , αr, Lr, S0)-regular for Lr = blog2(b
1/p
n minj len([Ω∗r ]j) − 1)c, r = 1, . . . , R. To

conclude that Z is (Ω∗r , αr, L0, S0)-regular for r = 1, . . . , R, we only need to show that
L0 ≤ minr Lr. Since 2L0 � (n(λd)2/(R log n))d/(2ᾱ+d), L0 can be chosen to be 2L0 ≤
C1(n(λd)2/(R log n))d/(2ᾱ+d) for small enough C1 > 0 as desired. Thus, a sufficient condition

for L0 ≤ minr Lr is (n(λd)2/(R log n))d/(2ᾱ+d) . b
1/p
n minj len([Ω∗r ]j). Since minr,j len([Ω∗r ]j) ≥

minr,j len([Ξ∗r ]j)−2/b
1/p
n , it suffices to show that (n(λd)2/(R log n))d/(2ᾱ+d) . b

1/p
n minr,j len([Ξ∗r ]j)

as soon as b
1/p
n minr,j len([Ξ∗r ]j)� 1.

A.3 Proof of Lemma 2

Proof of Lemma 2. Since PZ(Ω∗r) = PZ(Ξ∗r) & R−1 and R � n, the assumption in (F)
implies that Z is (Ω∗r , αr, Lr, S0)-regular for Lr = blog2(cnPZ(Ω∗r))c, for some C1 > 0, r =
1, . . . , R. It remains to show that L0 ≤ minr Lr. Recall that 2L0 � (n(λd)2/(R log n))d/(2ᾱ+d).
Since L0 can be chosen to be 2L0 ≤ C2(n(λd)2/(R log n))d/(2ᾱ+d) for small enough C2 > 0
as desired, a sufficient condition for L0 ≤ minr Lr is (n(λd)2/(R log n))d/(2ᾱ+d) . nPZ(Ω∗r)
no matter what C1 is. Using that PZ(Ω∗r) & R−1, the inequality is translated into λd .
(n/R)ᾱ/d

√
log n.

A.4 Proof of Theorem 2

We deploy the standard theory on posterior contraction (Ghosal et al., 2000; Ghosal and
van der Vaart, 2007). The general theory requires enough prior mass around the true pa-
rameters. To be in line with this, we first show that the approximating tree partition is
supported with sufficient prior mass.

Lemma 4 (Prior concentration). Let T̂ be the Z-tree partition defined in Section 4.2. Under
Assumptions (A5) and (A7), log Π(T̂ ) & −K̂ log n− d log p.

Proof. We will obtain a lower bound of Π(T̂ ). Since this depends on splitting proportions
drawn from a Dirichlet prior, we first restrict the proportions to the set

V1 =

η ∈ Sp : ηj ≥
1

2d
, j ∈ S0,

∑
j /∈S0

ηj ≤
1

2d

 .
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Fix η∗ = (η∗1, . . . , η
∗
p)
> ∈ Sp such that η∗j = 1/d, j ∈ S0, and η∗j = 0, j /∈ S0. Then it

can be easily shown that V1 ⊇ {η ∈ Sp : ‖η − η∗‖1 ≤ 1/(2d)}. By (55) of Lemma 8, it
follows that Π(V1) ≥ e−C1d log p for some C1 > 0. Recall that the first R− 1 splits of T̂ form
T ∗ = (Ω∗1, . . . ,Ω

∗
R), the approximating tree partition of X∗, and the remaining splits generate

T ◦r , the tree partition of Ω∗r constructed by an anisotropic k-d tree, r = 1, . . . , R. Hence, we
can write

Π(T̂ ) ≥ e−C1d log pΠ(T̂ |V1)

= e−C1d log pΠ(T ∗ is a subtree of T̂ |V1)
R∏
r=1

Π(T ◦r |Ω∗r , V1).

We first focus on the prior probability Π(T ∗ is a subtree of T̂ |V1). To generate T ∗, the
root node is subdivided R−1 times in a top-down manner. Since each node splits with prob-
ability ν`+1 for depth `, this happens with probability at least ν(R−1) maxr dep(Ω∗r) no matter
what the partition is. Note also that for every split, there are at most max1≤j≤p bj(Z)
splitting points and a splitting coordinate j is chosen by ηj , j ∈ S0, which is at least
1/(2d) on V1. Hence the prior probability of choosing the correct split is bounded below
by 1/(2dmax1≤j≤p bj(Z)) for every split. This gives us a lower bound:

Π(T ∗ is a subtree of T̂ |V1) ≥ ν(R−1) maxr dep(Ω∗r)

(2dmax1≤j≤p bj(Z))R−1
.

It follows that log Π(T ∗ is a subtree of T̂ |V1) & −R log n since log(2dmax1≤j≤p bj(Z)) .
log n by (A5) and maxr dep(Ω∗r) . log n by (A7).

Now, we obtain a lower bound of Π(T ◦r |Ω∗r , V1). In splitting each Ω∗r , observe that 2k cells
split at depth k = 0, . . . , L0 − 1, and each cell splits with probability νdep(Ω∗r)+k+1 at depth
k. Note also that closing each of the terminal nodes is of probability at least 1− ν and there
are 2L0 terminal nodes. Hence, similar to above,

Π(T ◦r |Ω∗r , V1) ≥ (1− ν)2L0

L0−1∏
k=0

(
νdep(Ω∗r)+k+1

2dmax1≤j≤p bj(Z)

)2k

= (1− ν)2L0 ν
(dep(Ω∗r)+1)(2L0−1)+(L0−2)2L0+2

(2dmax1≤j≤p bj(Z))2L0−1
,

where we used the formulae
∑a−1

k=0 2k = 2a−1 and
∑a−1

k=0 k2k = (a−2)2a+ 2. This gives that∑R
r=1 log Π(T ◦r |Ω∗r , V1) & −R2L0 log(2dmax1≤j≤p bj(Z)) − R2L0 maxr dep(Ω∗r) − RL02L0 &

−R2L0 log n since L0 . log n.
Putting everything together, we thus obtain log Π(T̂ ) & −R2L0 log n − d log p. Since

K̂ = R2L0 , this verifies the assertion.

Now we prove Theorem 2 below.

Proof of Theorem 2. We write ρ2
n((f1, σ

2
1), (f2, σ

2
2)) = ‖f1 − f2‖2n + |σ2

1 − σ2
2|2 for any f1, f2 :

Rp 7→ R and any σ2
1, σ

2
2 ∈ (0,∞). By Lemma 1 in the supplementary material of Salomond

(2018), if the εn-covering number of Θj,n = {(f, σ2) : jεn ≤ ρn((f, σ2), (f0, σ
2
0)) ≤ (j + 1)εn}
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is bounded by eCnε
2
nj

2
for some C > 0, there exists a test function ϕn such that for some

K1 > 0 and every large j,

E0ϕn → 0, sup
(f,σ2)∈Θj,n

Ef,σ2(1− ϕn) ≤ e−K1nε2nj
2
.

We write F∗ = ∪EFE , where the union is taken over all E generated by a given Z. By
Theorem 8.l2 of Ghosal and van der Vaart (2017), we only need to verify that there exists a
sieve Θn ⊆ F × (0,∞) such that for some c̄ > 0,

Π(Bn) ≥ e−c̄nε2n , (26)

logN(εn,Θn, ρn) . nε2n, (27)

Π((f, σ2) /∈ Θn)� e−c̄nε
2
n , (28)

where Bn = {(f, σ2) :
∑n

i=1K(p0,i, pf,σ2,i) ≤ nε2n,
∑n

i=1 V (p0,i, pf,σ2,i) ≤ nε2n}.
We first verify (26). By direct calculations,

1

n

n∑
i=1

K(p0i, pi) =
1

2
log

(
σ2

σ2
0

)
− 1

2

(
1− σ2

0

σ2

)
+
‖f − f0‖2n

2σ2
,

1

n

n∑
i=1

V (p0i, pi) =
1

2

(
1− σ2

0

σ2

)2

+
σ2

0‖f − f0‖2n
σ2

.

Using the Taylor expansion, it is easy to see that for any εn → 0, there exists a constant
C1 > 0 such that

Bn ⊇ {(f, σ2) : ‖f − f0‖n ≤ C1εn, |σ2 − σ2
0| ≤ C1εn}.

First, note that log Π(σ2 : |σ2 − σ2
0| ≤ C1εn) & − log n if σ2

0 lies on a compact subset of

(0,∞). We will construct a good approximating ensemble denoted by Ê = (T̂ 1, . . . , T̂ T ). By
restricting the function space to the one constructed by Ê , we obtain

Π(f ∈ F∗ : ‖f − f0‖n ≤ C1εn) ≥ Π(Ê)Π(f ∈ FÊ : ‖f − f0‖n ≤ C1εn). (29)

Assumption (A6) says that for a given split-net Z there exists a Z-tree partition T̂ producing
f̂0 ∈ FT̂ satisfying ‖f0 − f̂0‖n . ε̄n. An approximating ensemble Ê can be constructed by

setting T̂ 1 to be T̂ and T̂ t, t = 2, . . . , T , to be root nodes with no splits, i.e., T̂ t = ([0, 1]p),
t = 2, . . . , T . Then,

log π(Ê) =

T∑
t=1

log π(T̂ t) = log π(T̂ 1) + (T − 1) log(1− ν) & −nε2n,

by Lemma 4. It remains to bound the second term of (29). By (A6), we have ‖f − f0‖n .
‖f − f̂0‖n + εn for some f̂0 ∈ FT̂ . We can construct f̂0 as in the proof of Theorem 1.

We denote this f̂0 by f
0,T̂ ,β̂, where β̂ is the corresponding step-heights, to emphasize the

dependence on T̂ and β̂. Now we want to express f
0,T̂ ,β̂ using the approximating ensemble Ê

with corresponding step-heights B̂. Since all trees in Ê are the root nodes except for the first

one T̂ 1, every step-heights vector B for Ê has the form B = (β1>, β2, . . . , βT )> ∈ RK̂+T−1
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with β1 ∈ RK̂ and βt ∈ R, t = 2, . . . , T . Hence, letting B̂ = (β̂>, 0, . . . , 0)>, we can write
f

0,T̂ ,β̂ = f
0,Ê,B̂ for f

0,Ê,B̂ defined with the ensemble components (Ê , B̂). Putting the bounds
together, for some C2 > 0,

Π
(
f ∈ FÊ : ‖f − f0‖∞ ≤ C1εn

)
≥ Π

(
f ∈ FÊ : ‖f − f

0,Ê,B̂‖∞ ≤ C2εn

)
. (30)

For any step-heights B1 = (β1>
1 , β2

1 , . . . , β
T
1 )>, B2 = (β1>

2 , β2
2 , . . . , β

T
2 )> ∈ RK̂+T−1 with Ê ,

we write fÊ,B1
, fÊ,B2

∈ FÊ to denote two additive tree functions that lie on the same partition

ensemble Ê . Then, one can easily see that

‖fÊ,B1
− fÊ,B2

‖∞ =

∥∥∥∥∥β1
1 +

T∑
t=2

βt1 − β1
2 −

T∑
t=2

βt2

∥∥∥∥∥
∞

≤ ‖β1
1 − β1

2‖1 +
T∑
t=2

|βt1 − βt2|

≤ ‖B1 −B2‖2
√
K̂∗,

where K̂∗ = K̂ + T − 1. It follows that (30) is bounded below by

Π

(
B ∈ RK̂∗ : ‖B − B̂‖2 ≤ C2εn/

√
K̂∗

)
.

Recall that the eigenvalues of the covariance matrix for a normal prior is bounded below and

above. This means that there exists an invertible matrix D ∈ RK̂∗×K̂∗ such that DB has a
product of independent standard normal priors. Following the computations in page 216 of
Ghosal and van der Vaart (2007), the last display is further bounded below by

Π

(
B ∈ RK̂∗ : ‖D(B − B̂)‖2 ≤ C2εnσ

−1
max(D−1)/

√
K̂∗

)
≥ 2−K̂∗/2e−‖DB̂‖

2
2Π

(
B ∈ RK̂∗ : ‖DB‖2 ≤ C2εnσ

−1
max(D−1)/

√
2K̂∗

)
,

(31)

where σmax(D−1) is the spectral norm of D−1, which is bounded by the assumption. Since
the induced prior for ‖DB‖22 is a chi-squared distribution with degree of freedom K̂∗, we

obtain that for ε̃n = εnσ
−1
max(D−1)/

√
K̂∗ . εn,

Π(B ∈ RK̂∗ : ‖DB‖2 ≤ C2ε̃n/
√

2) ≥ 2/K̂∗

2K̂∗Γ(K̂∗/2)
(C2ε̃n)K̂∗e−C

2
2 ε̃

2
n/4.

The logarithm of the right-hand side is bounded below by a constant multiple of −(K̂ +

T ) log n − ε̃2n & −nε2n. It only remains to bound e−‖DB̂‖
2
2 in (31). Observe that ‖β̂‖∞ =

‖f
0,T̂ ,β̂‖∞ ≤ ‖f0‖∞, where the inequality follows from our choice of f̂0 = f

0,T̂ ,β̂ (see the proof

of Theorem 1). Therefore,

‖DB̂‖22 ≤ σ2
max(D)‖β̂‖22 ≤ σ2

max(D)K̂‖β̂‖2∞ . K̂ log n,
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as soon as ‖f0‖∞ .
√

log n. Putting everything together, we conclude that there exists a
constant c̄ such that Π(Bn) ≥ e−c̄nε2n .

Next we verify the entropy condition (27). We denote by ES,K1,...,KT the collection of

E = (T 1, . . . , T T ) with given S,K1, . . . ,KT ; that is, each T t is an S-chopped Z-tree partition

of size Kt. With given E and M > 0, we first define the function spaces F (1)
E,M = {fE,B ∈

FE : ‖B‖∞ ≤ M} and F (2)
E,M = {fE,B ∈ FE : ‖B‖∞ > M} such that F (1)

E,M ∪ F
(2)
E,M = FE . We

also define

F (`)

s̄n,K̄n,M
:=

⋃
E∈E

S,K1,...,KT
:|S|≤s̄n,Kt≤K̄n,t=1,...,T

F (`)
E,M , ` = 1, 2, (32)

for K̄n � nε2n/ log n and s̄n � nε2n/ log p. That is, F (`)

s̄n,K̄n,M
is the collection of all F (`)

E,M

such that Kt ≤ K̄n and |S| ≤ s̄n. We take Θn = F (1)

s̄n,K̄n,nM1
× (n−M2 , eM2nε2n) for large

M1,M2 > 0. First it is easy to see that logN(εn, (n
−M2 , eM2nε2n), |·|) . nε2n. We also obtain

that

N
(
εn,F (1)

s̄n,K̄n,nM1
, ‖·‖n

)
≤

∑
S:|S|≤s̄n

∑
(K1,...,KT ):Kt≤K̄n,t=1,...,T

∑
E∈E

S,K1,...,KT

N
(
εn,F (1)

E,nM1
, ‖·‖∞

)
.

(33)

For any given E and B1, B2 ∈ R
∑T
t=1K

t
,

‖fE,B1 − fE,B2‖∞ = sup
x∈[0,1]p

∣∣∣∣∣∣
T∑
t=1

Kt∑
k=1

(βt1k − βt2k)1(x ∈ Ωt
k)

∣∣∣∣∣∣ ≤
(

T∑
t=1

Kt

)
‖B1 −B2‖∞.

Observe that the cardinality of the set ES,K̄1,...,K̄T is equal to
∏T
t=1 |TS,Kt,Z | ≤ |TS,K̄n,Z |

T .
Hence, (33) is further bounded by

(K̄n)T ×N
(

εn
TK̄n

,
{
B ∈ RTK̄n : ‖B‖∞ ≤ nM1

}
, ‖·‖∞

) ∑
S:|S|≤s̄n

|TS,K̄n,Z |
T . (34)

Observe that |TS,K̄n,Z | ≤ (|S|max1≤j≤p bj)
K̄n since all splits are restricted to S and each one

has at most max1≤j≤p bj split points. It follows that

∑
S:|S|≤s̄n

|TS,K̄n,Z |
T ≤

s̄n∑
s=1

(
p

s

)(
s max

1≤j≤p
bj

)TK̄n
≤ s̄nps̄n

(
s̄n max

1≤j≤p
bj

)TK̄n
.

Therefore, (34) is further bounded by (K̄n)T snp
s̄n(s̄n max1≤j≤p bj)

TK̄n(3TK̄nn
M1/εn)TK̄n .

This shows that the entropy, the logarithm of the covering number, is bounded by a constant
multiple of s̄n log p+ K̄n log n . nε2n as soon as max1≤j≤p bj . log n. This verifies (27).

Next, we verify (28). First, it is easy to see that Π(σ2 /∈ (n−M2 , eM2nε2n))ec̄nε
2
n → 0 if

M2 is large enough, using the tail probabilities of inverse gamma distributions. Now we
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show that Π(F∗ \ F (1)

s̄n,K̄n,nM1
)ec̄nε

2
n → 0. Note first that using the tail probability of normal

distributions,

Π
(
F (2)

s̄n,K̄n,nM1

)
≤

∑
S:|S|≤s̄n

∑
(K1,...,KT ):Kt≤K̄n,t=1,...,T

∑
E∈E

S,K1,...,KT

Π
(
F (2)
E,M
)

≤ (K̄n)T s̄np
s̄n

(
s̄n max

1≤j≤p
bj

)TK̄n
2TK̄ne

−n2M1/2.

The right most side is o(e−c̄nε
2
n) as soon as max1≤j≤p bj . log n and M1 > 1/2. Now observe

that

Π
(
F∗ \ (F (1)

s̄n,K̄n,nM1
∪ F (2)

s̄n,K̄n,nM1
)
)

≤
T∑
t=1

Π(Kt > K̄n) + Π(S : s > s̄n|Kt ≤ K̄n, t = 1, . . . , T ).
(35)

The prior satisfies log Π(Kt > K̄n) . −K̄n log K̄n for every t = 1, . . . , T (see Lemma 5.1 and
Corollary 5.2 of Ročková and Saha (2019)). Using that K̄n � nε2n/ log n and εn & n−1/2, we
obtain −K̄n log K̄n . −K̄n log n. To bound the second term of the right-hand side of (35),
we define the set

V2 =

η ∈ Sp : min
S:|S|=s̄n

∑
j /∈S

ηj ≥ κn

 ,

for κn specified below. By (56) of Lemma 8, it can be shown that the prior satisfies Π(V2) ≤
e−C(ξ−1)s̄n log p−log κn . Hence,

Π(S : s > s̄n|Kt ≤ K̄n, t = 1, . . . , T ) ≤ e−C(ξ−1)s̄n log p−log κn

+ Π(S : s > s̄n|Kt ≤ K̄n, t = 1, . . . , T, V c
2 ).

The term Π(S : s > s̄n|Kt ≤ K̄n, t = 1, . . . , T, V c
2 ) is interpreted as the prior probability

that splits occur along more than s̄n coordinates with at most TK̄n splits given V c
2 . If η is

available, this probability is

1−
∑

S:|S|≤s̄n

∑
j∈S

ηj

TK̄n

≤ 1−

 max
S:|S|≤s̄n

∑
j∈S

ηj

TK̄n

.

Conditional on V c
2 , the last expression is further bounded by 1 − (1 − κn)TK̄n ≤ κnTK̄n.

Choose κn = e−(c̄+1)nε2n , K̄n = bM3nε
2
n/ log nc, and s̄n = bM3nε

2
n/ log pc for a sufficiently

large M3 > 0. Then, a union bound for (35) gives Π(F∗ \ F (1)

s̄n,K̄n,nM1
)� e−c̄nε

2
n .

A.5 Proof of Theorem 3

Our proof is similar to the proof of Theorem 3.1 in Yang and Tokdar (2015), which is based
on the Le Cam equation (Birgé and Massart, 1993; Wong and Shen, 1995; Barron et al.,
1999). The minimax lower bound of nonparametric regression can be obtained by solving
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the Le Cam equation with the metric entropy of the target function space (Yang and Barron,
1999). That is, the minimax lower bound γ̂n is the solution to logD(γ̂n,F , ‖·‖2,Q) = nγ̂2

n

for the target function space F . We will show that the solution satisfies γ̂n = Mdγn for
some Md > 0 depending on d. This requires suitable upper and lower bounds of the metric

entropy. Below we write HAᾱ,dλ,M (X) = {h ∈ HAᾱ,dλ (X) : ‖h‖∞ ≤ Mλ} for M > 0. (We only
directly obtain the lower bound of the minimax rate, and hence λ needs not be bounded; see
Theorem 6 of Yang and Barron (1999).)

In the following two lemmas, we first provide entropy estimates for the d-dimensional
(non-sparse) piecewise heterogeneous anisotropic Hölder space. While an upper bound of
the metric entropy is well known for isotropic classes (e.g., Theorem 2.7.1 of van der Vaart
and Wellner (1996)), we believe that there is no available result on more complicated function
space in the literature, even for the simple anisotropic classes in Definition 1. We hence first
formalize this in the following lemma. We obtain the metric entropy bound for the space

HAᾱ,d1,M (X), which is not worse than that for HAᾱ,d1,M (X) ∩ C([0, 1]d). This result implies that
the Le Cam equation gives the same lower bound for the two spaces.

Lemma 5 (Covering number, upper bound). For d > 0, R > 0, a partition X = (Ξ1, . . . ,ΞR)

of [0, 1]d, and a smoothness parameter Aᾱ ∈ AR,dᾱ for ᾱ ∈ (0, 1] such that log len([Ξr]j) &
−1/αrj, 1 ≤ r ≤ R, 1 ≤ j ≤ d, there exist constants ε0 > 0 and M0 > 1 such that for any
ε < ε0,

logN
(
ε,HAᾱ,d1,M (X), ‖·‖∞

)
≤ (M0d/ε)

d/ᾱ. (36)

Proof. Let C1 > 0 be a constant such that log len([Ξr]j) ≥ −C1/αrj for every r and j by
assumption. For a sufficiently small C2 > 0, choose δ ∈ (0,min{e−C1 , C2/d}) such that
minr,j len([Ξr]j)δ

−1/αrj > 1. On each clo(Ξr), consider a grid that is a Cartesian product∏d
j=1{ILrj , ILrj +urj , I

L
rj +2urj , . . . , I

L
rj + len([Ξr]j)}, where urj = len([Ξr]j)/dlen([Ξr]j)δ

−1/αrje
is the mesh-size and ILrj is the left-boundary of Ξr in coordinate j. Then for each r, we can

index the grid as G̃r = {x`r ∈ clo(Ξr), ` = 1, . . . , m̃r} with m̃r =
∏d
j=1(1+dlen([Ξr]j)δ

−1/αrje).
One can easily see that m̃r ≤

∏d
j=1(2 + len([Ξr]j)δ

−1/αrj ) ≤ vol(Ξr)3
dδ−d/ᾱ.

For every h ∈ HAᾱ,d1,M (X), we define the vector

Gh =
(
bh(x1

1)/δc, . . . , bh(xm̃1
1 )/δc, . . . , bh(x1

R)/δc, . . . , bh(xm̃RR )/δc
)>

.

Note that for every x = (x1, . . . , xd)
> ∈ Ξr with given r, there exists x`r = (x`r1, . . . , x

`
rd)
> ∈

G̃r such that
∑d

j=1 |xj−x`rj |αrj ≤ dδ since urj ≤ δ1/αrj . Hence for such x and x`r, all functions

h1, h2 ∈ H
Aᾱ,d
1,M (X) such that Gh1 = Gh2 satisfy

|h1(x)− h2(x)| ≤ |h1(x`r)− h2(x`r)|+ 2

d∑
j=1

|xj − x`rj |αrj ≤ δ + 2dδ.

Since this holds for every 1 ≤ r ≤ R, it follows that ‖h1−h2‖∞ ≤ 3dδ for any h1, h2 such that
Gh1 = Gh2. This means that, whenever 3dδ < ε0 for some small constant ε0 > 0, the covering

number N(3dδ,HAᾱ,d1,M (X), ‖·‖∞) is bounded by the number of possible vectors Gh for h that
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ranges over HAᾱ,d1,M (X). Without loss of generality, we assume that (x`r)
m̃r
`=1 is appropriately

sorted such that for every ` > 1, there exists `′ < ` such that
∑d

j=1 |x`
′
rj − x`rj |αrj ≤ δ. For

the enumeration, we begin with the first element of Gh, which is defined with x1
1 ∈ G̃1. Since

‖h‖∞ ≤ M , the number of possible values of bh(x1
1)/δc does not exceed 2M/δ + 1. For the

remainder defined with x`1 ∈ G̃1, 2 ≤ ` ≤ m̃1, there exists `′ < ` such that

|bh(x`
′

1 )/δc − bh(x`1)/δc|

≤ δ−1|h(x`
′

1 )− h(x`1)|+ |h(x`
′

1 )/δ − bh(x`
′

1 )/δc|+ |h(x`1)/δ − bh(x`1)/δc|

≤ δ−1
d∑
j=1

|x`′j − x`j |αrj + 2 ≤ 3.

It follows that for a given bh(x`
′

1 )/δc, the number of possible values of bh(x`1)/δc is at most 7,
which is the case for every ` > 1. Putting the bounds together, the number of possible values

of the first m1 elements of Gh is bounded by (2M/δ+1)7m̃1−1. Next, since h ∈ HAᾱ,d1,M (X) can
be discontinuous at the boundaries of the pieces of X, the (m̃1+1)th element Gh, defined with
x1

2 ∈ G̃2, has no restriction. Hence the number of possible values of bh(x1
2)/δc at most 2M/δ+1

similar to the case with r = 1 above. The number of possible values of bh(x`2)/δc is at most
7 for every 2 ≤ ` ≤ m̃2. This concludes that the number of possible values of the next m̃2

elements ofGh is bounded by (2M/δ+1)7m̃2−1. Concatenating this for all r, one can easily see
that the number of possible vectors Gh is at most

∏R
r=1(2M/δ+1)7m̃r−1 = (2M/δ+1)R7m̃−R.

Taking ε = 3dδ,

logN(ε,HAᾱ,d1,M (X) ∩ C([0, 1]d), ‖·‖∞) ≤ R log(6Md/ε+ 1) + 3d(3d/ε)d/ᾱ log 7.

Since log(6Md/ε + 1) . (6Md/ε)d/ᾱ and logR . d/ᾱ (by the condition log len([Ξr]j) &
−1/αrj , 1 ≤ r ≤ R, 1 ≤ j ≤ d), the last expression is bounded by (M0d/ε)

d/ᾱ for some
M0 > 0. In order to complete the proof, it only remains to show that there exists a small
constant ε0 > 0 such that ε = 3dδ < ε0. This is easily satisfied with a sufficiently small
C2 > 0 since δ < C2/d.

Lemma 6 (Packing number, lower bound). For d > 0, R > 0, a partition X = (Ξ1, . . . ,ΞR)

of [0, 1]d, and a smoothness parameter Aᾱ ∈ AR,dᾱ for ᾱ ∈ (0, 1] such that log len([Ξr]j) &
−1/αrj, 1 ≤ r ≤ R, 1 ≤ j ≤ d, there exist constants ε1 > 0 and M1 > 1 such that for any

ε < ε1/d, there are N ≥ exp{1/(M1dε)
d/ᾱ} functions hi ∈ H

Aᾱ,d
1,M (X)∩C([0, 1]d), i = 1, . . . , N ,

and h0 = 0 satisfying ∫
[0,1]d

hi(x)dxj = 0, 0 ≤ i ≤ N, 1 ≤ j ≤ d, (37)

‖hi − hk‖2 ≥ ε, 0 ≤ i ≤ k ≤ N. (38)

Proof. Let C1 ≥ log 8 be a constant such that log len([Ξr]j) ≥ −C1/αrj for every r and j by
assumption. Choose a constant δ ∈ (0,min{e−C1 ,M}] such that len([Ξr]j)δ

−1/αrj1, 1 ≤ r ≤
R, 1 ≤ j ≤ d. On each Ξr, consider a grid that is a Cartesian product

∏d
j=1{ILrj+urj/2, I

L
rj+

3urj/2, I
L
rj + 5urj/2, . . . , I

L
rj + len([Ξr]j)− urj/2}, where urj = len([Ξr]j)/dlen([Ξr]j)δ

−1/αrje
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is the mesh-size and ILrj is the left-boundary of Ξr in coordinate j. (Compare with the grid

used in the proof of Lemma 5.) Then we can index each grid as Gr = {x`r ∈ Ξr, ` = 1, . . . ,mr}
with mr =

∏d
j=1dlen([Ξr]j)δ

−1/αrje. Combining all x`(r) for all r, we can then index the full

grid by G = {x`, ` = 1, . . . ,m} with m =
∑R

r=1mr. Observe that mr ≥ vol(Ξr)δ
−d/ᾱ, and

hence m ≥ δ−d/ᾱ.
We define the kernel K : Rd 7→ [−1/2, 1/2] as

K(x) =
∑

a=(a1,...,ad)>∈{0,1}d
Ka(x), (39)

for

Ka(x) = (−1)
∑d
j=1 aj

{
1

2
− max

1≤j≤d

∣∣∣∣(−1)ajxj −
1

2

∣∣∣∣} d∏
j=1

1(0 ≤ (−1)ajxj ≤ 1). (40)

Observe that each Ka is in the shape of a hyper-pyramid which is disjointly supported on
a quadrant of [−1, 1]d, and hence K is supported on [−1, 1]d. By Lemma 9, we obtain∫
K(x)dx = 0 and ‖K‖22 = 2d/[2(d+ 1)(d+ 2)].

For each 1 ≤ ` ≤ mr and 1 ≤ r ≤ R, we define the shifted and scaled kernel function

φ`r(x) =
δ

4
K

(
x1 − x`(r)1
ur1/2

, . . . ,
xd − x`(r)d
urd/2

)
,

which is supported on X `r =
∏d
j=1[x`(r)j − urj/2, x

`
(r)j + urj/2]. Since |K(x) − K(y)| ≤∑d

j=1 |xj − yj | for every x, y ∈ [−1, 1]d by Lemma 9, we obtain that for every x, y on the

support X `r ,

|φ`r(x)− φ`r(y)| ≤ δ

2

d∑
j=1

∣∣∣∣xj − yjurj

∣∣∣∣ ≤ δ

2

d∑
j=1

∣∣∣∣xj − yjurj

∣∣∣∣αrj ≤ d∑
j=1

|xj − yj |αrj ,

where we used the inequalities x ≤ xa for any x ∈ [0, 1] and a ∈ [0, 1], and urj ≥ 1/(2δ−1/αrj )
as soon as len([Ξr]j)δ

−1/αrj ≥ 1/2 (note that bxc ≤ 2x for x ≥ 1/2). This implies that

φ`r ∈ H
αr,d
1 (X `r ) for every 1 ≤ ` ≤ mr and 1 ≤ r ≤ R. For each binary vector ω̃r =

(ω̃1
r , . . . , ω̃

mr
r )> ∈ {0, 1}mr , define the continuous function hω̃r =

∑mr
`=1 ω̃

`
rφ
`
r supported on

Ξr. Since
∫
φ`r(x)dxj = 0 for every j due to Lemma 9 and each φ` is a shifted copy of

another, hωr satisfies
∫
hω̃r(x)dxj = 0 for every j and hω̃r ∈ H

αr,d
1 (Ξr). For m ≥ δ−d/ᾱ, we

write ω = (ω1, . . . , ωm)> = (ω̃>1 , . . . , ω̃
>
R)> ∈ {0, 1}m and define hω =

∑R
r=1 hω̃r . Then, since

‖hω‖∞ = maxr,`‖φ`r‖∞ ≤ δ/8 ≤M and each hω̃r is zero at all points on the boundary of Ξr,

it is easy to see that hω ∈ H
Aᾱ,d
1,M (X) ∩ C([0, 1]d) and

∫
hω(x)dxj = 0. We also have that for

any ω, ω′ ∈ {0, 1}m,

‖hω − hω′‖22 ≥
m∑
`=1

(ω` − ω′`)2 min
r,`

∫
[φ`r(x)]2dx = ρ(ω, ω′)

(
δ

4

)2 ‖K‖22
2d

min
r

d∏
j=1

urj , (41)

where ρ(ω, ω′) =
∑m

`=1 1(ω` 6= ω′`) is the Hamming distance between ω and ω′. Since
m ≥ δ−d/ᾱ ≥ δ−1 ≥ eC1 > 8, the Gilbert-Varshamov bound (Lemma 2.9 of Tsybakov
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(2008)) says that there exist N ≥ 2m/8 binary strings ω(1), . . . , ω(N) ∈ {0, 1}m such that
ρ(ω(`), ω(`′)) ≥ m/8, 0 ≤ ` < `′ ≤ N , with ω(0) = 0. Since minr

∏d
j=1 urj ≥ 1/(2δ−d/ᾱ)

and ‖K‖22 = 2d/[2(d + 1)(d + 2)] by Lemma 9, the lower bound in (41) gives that for every
0 ≤ ` < `′ ≤ N ,

‖hω(`) − hω(`′)‖22 ≥
m

8

(
δ

4

)2 1

2(d+ 1)(d+ 2)
× 1

2δ−d/ᾱ
≥ 2−10

(
δ

d

)2

.

Letting ε = 2−5δ/d, the previous lower bound gives ‖hω(`) − hω(`′)‖2 ≥ ε while N ≥ 2m/8 ≥
exp(δ−d/ᾱ(log 2)/8) ≥ exp(1/(29dε)d/ᾱ). Since δ is a constant, this holds for every ε < ε1/d
for some ε1 > 0.

Lemma 7 (Entropy with sparsity). For d > 0, λ > 0, R > 0, a partition X = (Ξ1, . . . ,ΞR)

of [0, 1]d, and a smoothness parameter Aᾱ ∈ AR,dᾱ for ᾱ ∈ (0, 1] such that, there exist ε2 > 0
and M2 > 1 such that for any ε < ε2 and ε′ < ε2/d,

logD
(
ε,Γ

Aᾱ,d,p
λ,M (X), ‖·‖2

)
≤
(M2dλ

ε

)d/ᾱ
+ log

(
p

d

)
, (42)

logD
(
ε′,Γ

Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), ‖·‖2

)
≥
( λ

M2dε′

)d/ᾱ
+ log

(
p

d

)
. (43)

Proof. We only need to verify the assertion for λ = 1 since D(ε, λF , ‖·‖2) = D(ε/λ,F , ‖·‖2)
for any set F . We first verify the upper bound (42). For every ε < ε0, Lemma 5 gives

logD(ε,HAᾱ,d1,M (X), ‖·‖2) ≤ logN(ε/2,HAᾱ,d1,M (X), ‖·‖2) ≤ (2M0d/ε)
d/ᾱ. Since Γ

Aᾱ,d,p
1,M (X) is a

union of
(
p
d

)
many HAᾱ,d1,M (X), the assertion easily follows.

Next, we verify (43). By Lemma 6, for every ε′ < ε1/d, there are functions h0 = 0,

hi ∈ H
Aᾱ,d
1,M (X)∩C([0, 1]d), 1 ≤ i ≤ N satisfying (37) and (38), with N ≥ exp{1/(M1dε

′)d/ᾱ}.
This means that for any S ⊆ {1, . . . , p} such that |S| = d, we have that W p

Shi ∈ Γ
Aᾱ,d,p
1,M (X)∩

C([0, 1]p) for every such hi , 0 ≤ i ≤ N . Therefore,

W(ε′) :=
⋃

S⊆{1,...,p}:|S|=d

{W p
Shi : 1 ≤ i ≤ N} ⊆ Γ

Aᾱ,d,p
1,M (X) ∩ C([0, 1]p).

Now, for any S 6= S′ ⊆ {1, . . . , p} and 1 ≤ i ≤ k ≤ N , observe that ‖W p
Shi −W

p
S′hk‖2 =

(‖hi‖22 + ‖hk‖22)1/2 ≥ ε′ by (38) since 〈W p
Shi,W

p
S′hk〉 = 0 due to (37), where we used h0 = 0.

Also for any S ⊆ {1, . . . , p}, it is easy to see that ‖W p
Shi−W

p
Shk‖2 = ‖hi−hk‖2 ≥ ε′ by (38).

These imply that W(ε′) is ε′-separated, and hence the packing number D(ε′,Γ
Aᾱ,d,p
1,M (X) ∩

C([0, 1]p), ‖·‖2) is bounded below by the cardinality of W(ε′), which is
(
p
d

)
N . This leads to

the assertion.

Now we prove Theorem 3 below.

Proof of Theorem 3. By Theorem 1 (combined with Theorem 6) of Yang and Barron (1999),

the minimax lower bound γ̂n is the solution to logD(γ̂n,Γ
Aᾱ,d,p
λ,M (X)∩C([0, 1]p), ‖·‖2,Q) = nγ̂2

n.

(We only pursue the lower bound as the upper bound requires the target space Γ
Aᾱ,d,p
λ,M (X) ∩

C([0, 1]p) to be uniformly bounded; see Theorem 6 of Yang and Barron (1999).) We will
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show that the solution γ̂n satisfies γ̂n = Mdγn for some Md > 0 depending on d. Assume
that d is not increasing too fast such that γn � 1/d. We use the relation N(ε,F , d) ≤
D(ε,F , d) ≤ N(ε/2,F , d) between packing and covering numbers for a metric space (F , d).
Since ‖·‖2,Q ≤

√
q‖·‖2, we obtain that

logD
(

max{1, 2
√
q}M2dγn,Γ

Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), ‖·‖2,Q

)
≤ logN

(
M2dγn,Γ

Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), ‖·‖2

)
≤ logD

(
M2d(λd/ᾱ/n)ᾱ/(2ᾱ+d),Γ

Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), ‖·‖2

)
.

Since γn � 1/d, (42) in Lemma 7 shows that the rightmost side is further bounded by
nγ2

n ≤ max{1, 4q}M2
2d

2nγ2
n. Since D(ε,F , d) is nondecreasing in ε, the upper bound implies

that γ̂n ≤ max{1, 2
√
q}M2dγn.

For the other direction, let

κn = 2 max

{
(λd/ᾱ/n)ᾱ/(2ᾱ+d),

√
1

n
log

(
p

d

)}
≥ γn.

Since ‖·‖2,Q ≥ √q‖·‖2, we obtain that

logD
(

min{1,√q/2}γn/(2M2d),Γ
Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), ‖·‖2,Q

)
≥ logD

(
κn/(2M2d),Γ

Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), ‖·‖2

)
.

(44)

Since κn ≤ 2γn � 1/d, we can use (43) in Lemma 7 to find a lower bound of the last

expression. If (λd/ᾱ/n)ᾱ/(2ᾱ+d) ≥
√
n−1 log

(
p
d

)
, the right-hand side of (44) is equal to

logD
(

(λd/ᾱ/n)ᾱ/(2ᾱ+d)/(M2d),Γ
Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), ‖·‖2

)
≥ nγ2

n

If (λd/ᾱ/n)ᾱ/(2ᾱ+d) <
√
n−1 log

(
p
d

)
, (44) is equal to

logD

(√
1

n
log

(
p

d

)/
(M2d),Γ

Aᾱ,d,p
λ,M (X) ∩ C([0, 1]p), ‖·‖2

)
≥
(

λ√
n−1 log

(
p
d

))d/ᾱ + log

(
p

d

)
> nγ2

n.

We thus conclude that (44) is bounded below by min{1, q/4}nγ2
n/(4M

2
2d

2), which implies
γ̂n ≥ min{1,√q/2}γn/(2M2d). Therefore, d−1γn . γ̂n . dγn.

A.6 Proof of Theorems 4–7

This section provides proofs of Theorems 4–7. The proofs are largely based on the proof of
Theorem 2. We often refer to the reader to the proof of Theorem 2 rather than showing all
details.
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Proof of Theorem 4. Let pf,σ2 be the density of model (8) with f and σ2. By Lemma B.1 of
Xie and Xu (2018), the Hellinger distance ρH satisfies

‖f1 − f2‖22,Q + |σ2
1 − σ2

2|2 . ρ2
H(pf1,σ2

1
, pf2,σ2

2
) . ‖f1 − f2‖1,Q + |σ2

1 − σ2
2|2, (45)

if f1, f2, log σ1, log σ2 are uniformly bounded (we use variance parameters in place of standard
deviations; both are identical up to constants under the boundedness assumption). Hence,
it suffices to show the assertion with respect to the Hellinger distance.

By the well-known theory of posterior contraction (e.g., Theorem 2.1 of Ghosal et al.

(2000)), we need to verify that there exists Θn ⊆ F × [C
−1
2 , C2] such that for some c̄ > 0,

Π(Bn) ≥ e−c̄nε2n , (46)

logN(εn,Θn, ρH) . nε2n, (47)

Π((f, σ2) /∈ Θn)� e−c̄nε
2
n , (48)

similar to (26)–(28), where Bn = {f : K(p0, pf,σ2) ≤ ε2n, V (p0, pf,σ2) ≤ ε2n}. Using (45), the
conditions (47) and (48) can be similarly verified as in the proof of Theorem 2; only difference
is that we use truncated priors, so (48) is even more easily satisfied. For (46), note that by
Lemma B.2 of Xie and Xu (2018),

max
{
K(p0, pf,σ2), V (p0, pf,σ2)

}
. ‖f − f0‖22,Q + |σ2 − σ2

0|,

since ‖f0‖∞ and | log σ0| are bounded and the priors are truncated. Hence, there exists a
constant C1 > 0 such that

Bn ⊇ {(f, σ2) : ‖f − f0‖2,Q ≤ C1εn, |σ2 − σ2
0| ≤ C1ε

2
n}.

Note that ‖f − f0‖2,Q . ‖f − f0‖2 if the density of Q is bounded. It is easy to see that
log Π(σ2 : |σ2−σ2

0| ≤ C1ε
2
n) & − log n since | log σ2

0| is bounded. The rest of the proof follows
similarly to that of Theorem 2.

Proof of Theorem 5. It is well known that the Hellinger distance possesses an exponentially
powerful local test with respect to both the type-I and type-II errors (e.g., Section 7 of Ghosal
et al. (2000) or Lemma 2 of Ghosal and van der Vaart (2007)). Therefore by the general
posterior contraction theory, it suffices to show that there exists Θn ⊆ F such that for some
c̄ > 0,

Π(Bn) ≥ e−c̄nε2n , (49)

logN(εn/36,Θn, ρH) . nε2n, (50)

Π(f /∈ Θn)� e−c̄nε
2
n , (51)

where Bn = {f : K(p0, pf ) ≤ ε2n, V (p0, pf ) ≤ ε2n}. The last condition (51) follows directly
from the proof of Theorem 2, so we only need to verify (49) and (50).

By Lemma 3.1 of van der Vaart and van Zanten (2008), for any measurable f, g,

K(pf , pg) . ‖f − g‖2∞e‖f−g‖∞(1 + ‖f − g‖∞),

V (pf , pg) . ‖f − g‖2∞e‖f−g‖∞(1 + ‖f − g‖∞)2,

ρH(pf , pg) ≤ ‖f − g‖∞e‖f−g‖∞/2.

(52)
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The first two assertions imply that there exists C1 > 0 such that Bn ⊇ {f : ‖f−f0‖∞ ≤ C1εn}
if εn → 0. Hence we follow the calculation in the proof of Theorem 2 to conclude that there
exists a constant c̄ > 0 such that Π(Bn) ≥ e−c̄nε

2
n . The last assertion of (52) enables us

to work with the supremum norm in the calculation of the Hellinger covering number. The
entropy calculation in Theorem 2 also verifies (50), completing the proof.

Proof of Theorem 6. Denote by pf (x, y) the density of model (11) and by p0(x, y) the true
density. We also write f0 = H−1(ϕ0). From the fact that |pf (0|x) − p0(0|x)| = |pf (1|x) −
p0(1|x)| = |H(f(x)) − H(f0(x))|, it follows that ‖pf − p0‖2 =

√
2‖H(f) − H(f0)‖2,Q. The

L2-norm is bounded by a multiple of the Hellinger distance as pf and p0 are uniformly
bounded, (see, for example, Lemma B.1 of Ghosal and van der Vaart (2017)). Hence, it
suffices to show the contraction rate results with respect to the Hellinger distance. This
means that the assertion can be verified if there exists Θn ⊆ F satisfying (49)–(51) for some
c̄ > 0. By Lemma 2.8 of Ghosal and van der Vaart (2017), K(p0, pf ) . ‖f − f0‖22,Q and

V (p0, pf ) . ‖f − f0‖22,Q. We also have that ρH(pf , pg) . ‖f − g‖2,Q for every measurable f, g
by the same lemma. Similar to the proof of Theorem 4, the proof is completed by following
that of Theorem 2.

Proof of Theorem 7. It suffices to verify (26)–(28) for the given model. Following the proof
of Theorem 2, one can easily see that (26) is verified as soon as

log Π(Ê) + log Π(f ∈ FÊ : ‖f − f0‖n ≤ C1ε
∗
n) & −n(ε∗n)2, (53)

for an approximating ensemble Ê . Assumption (A6) says that for each 1 ≤ t ≤ T0, there
exists a Z-tree partition T̂ t such that ‖f̂0t − f0t‖n . ε̄t,n for some f̂0t ∈ FT̂ t . We index

Ê = (T̂ 1, . . . , T̂ T ) with T̂ t = ([0, 1]p), t = T0 + 1, . . . , T . Then,

log π(Ê) =

T0∑
t=1

log π(T̂ t) + (T − T0) log(1− ν) & −
T0∑
t=1

K̂t log n−
T0∑
t=1

dt log p & −n(ε∗n)2,

by Lemma 4. Constructing f̂0t as in the proof of Theorem 1, we denote every f̂0t by
f

0t,T̂ t,β̂t , where β̂t is the corresponding step-heights. Then the approximator of f0 can

be expressed as f
0,Ê,B̂ =

∑T0
t=1 f0t,T̂ t,β̂t with the ensemble components (Ê , B̂), where B̂ =

(β̂1>, . . . , β̂T0>, 0, . . . , 0)> ∈ RK̂∗ with K̂∗ =
∑T0

t=1 K̂
t + T − T0. This gives us that

‖f − f0‖∞ ≤ ‖f − f0,Ê,B̂‖∞ +

T0∑
t=1

‖f
0t,T̂ t,β̂t − f0t‖∞ . ‖f − f

0,Ê,B̂‖∞ +

T0∑
t=1

εt,n.

Therefore, using
∑T0

t=1 εt,n ≤
√
T0ε
∗
n, we obtain that

Π(f ∈ FÊ : ‖f − f0‖∞ ≤ C1ε
∗
n) ≥ Π

(
f ∈ FÊ : ‖f − f

0,Ê,B̂‖∞ ≤ C2ε
∗
n

)
. (54)

For any B1 = (β1>
1 , . . . , βT0>

1 , βT0+1
1 , . . . , βT1 )>, B2 = (β1>

2 , . . . , βT0>
2 , βT0+1

2 , . . . , βT2 )> ∈ RK̂∗ ,
we write fÊ,B1

, fÊ,B2
∈ FÊ to denote two additive tree functions that lie on the same partition

ensemble Ê . From (2), it is easy to see that ‖fÊ,B1
− fÊ,B2

‖∞ ≤ ‖B1 − B2‖2K̂1/2
∗ . Since

K̂∗ log n .
∑T0

t=1 K̂
t log n . n(ε∗n)2, one can follow the proof of Theorem 2 to lower bound

the logarithm of (54) by a constant multiple of −n(ε∗n)2. Combined with the lower bound
of π(Ê), this verifies (53). The conditions in (27) and (28) follow directly from the proof of
Theorem 2, but with the rate ε∗n for the additive regression.
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B Auxiliary results

The following lemma is a slight modification of Theorem 2.1 of Yang and Dunson (2014). We
provide its complete proof to make the result self-sufficient. Similar results are also available
in the literature (e.g., Lemma G.13 of Ghosal and van der Vaart (2017)).

Lemma 8 (Concentration of Dirichlet priors). Suppose that η ∈ Sp has a Dirichlet prior in
(3) with ζ > 0 and ξ > 1. For any η∗ ∈ Sp such that

∑p
j=1 1(η∗j 6= 0) = s and any ε ∈ (0, 1),

there exists a constant C > 0 such that

Π(‖η − η∗‖1 ≤ ε) ≥ exp{−Cξs log(p/ε)}, (55)

Π

(
min
S:|S|=s

∑
j /∈S

ηj ≥ ε

)
≤ exp{−C(ξ − 1)s log p− log ε}. (56)

Proof. We first prove (55). Without loss of generality, we assume that the index set of
nonzero entries of η∗ is {1, 2, . . . , s − 1, p}, i.e., η∗j = 0, j = s, s + 1, . . . , p − 1. By the

inequality |ηp − η∗p| = |
∑p−1

j=1 ηj −
∑p−1

j=1 η
∗
j | ≤

∑p−1
j=1 |ηj − η∗j |, observe that ‖η − η∗‖1 ≤

2
∑p−1

j=1 |ηj − η∗j | = 2
∑s−1

j=1 |ηj − η∗j |+ 2
∑p−1

j=s ηj . Hence, for b0 = ε/(4s) and b1 = ε/(4p− 4s),

S = {η ∈ Sp : |ηj − η∗j | ≤ b0, j = 1, . . . , s− 1, ηj ∈ (0, b1], j = s, . . . , p− 1}
⊆ {η ∈ Sp : ‖η − η∗‖1 ≤ ε}.

Using this, we obtain that

Π(‖η − η∗‖1 ≤ ε) ≥ Π(S)

=

∫
S

Γ(ζ/pξ−1)

Γp(ζ/pξ)

p−1∏
j=1

η
ζ/pξ−1
j

(
1−

p−1∑
j=1

ηj

)ζ/pξ−1

dη1 . . . dηp−1

≥ Γ(ζ/pξ−1)

Γp(ζ/pξ)


s−1∏
j=1

∫ min{1,η∗j+b0}

max{0,η∗j−b0}
η
ζ/pξ−1
j dηj



p−1∏
j=s

∫ b1

0
η
ζ/pξ−1
j dηj

 ,

where we used the fact that ηp ≤ 1 and ζ/pξ − 1 < 0 for large enough p. Since the Taylor
expansion of Γ gives that xΓ(x) = 1− γ0x+O(x2) for the Euler-Mascheroni constant γ0, we
have that Γ(x) � 1/x for every small enough x. Therefore, the last display is bounded below
by a constant multiple of

(ζ/pξ)p

ζ/pξ−1
(2b0)s−1

(
pξ

ζ
b
ζ/pξ

1

)p−s
= ζs−1p−ξ(s−1)−1

( ε
2s

)s−1
(

ε

4p− 4s

)ζp−(ξ−1)(1−s/p)

≥ ζs−1p−ξ(s−1)−1
( ε

2s

)s−1
(
ε

4p

)ζ
,

where for the inequality we used the fact that ξ ≥ 1. The logarithm of the rightmost side
leads to the desired assertion.
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Now, we verify (56). Consider a Dirichlet process DP(ζ/pξ−1, Q0) with concentration
parameter ζ/pξ−1 and uniform measure Q0 on [0, 1]. Suppose a random measure P ∼
DP(ζ/pξ−1, Q0). Then for the intervals Ij = [j − 1)/p, j/p), j = 1, . . . , p, we have

(P (I1), . . . , P (Ip)) ∼ Dir(ζ/pξ, . . . , ζ/pξ).

This allows us to define η as η = (P (I1), . . . , P (Ip))> using the Dirichlet process above. The
stick-breaking representation of a Dirichlet process gives an expression P =

∑∞
k=1wkδzk for

zk ∼ Q0 and

wk = vk

k−1∏
j=1

(1− vj), vk ∼ Beta(1, ζ/pξ−1).

For every k, let jk be the index such that zk ∈ Ijk . Then it follows that

max
S:|S|≤s

∑
j∈S

ηj ≥
s∑

k=1

ηjk =
s∑

k=1

P (Ijk) =
∑

1≤`<∞:z`∈∪sk=1Ijk

w` ≥
s∑

k=1

wk,

where the last inequality holds since zk ∈ Ijk , k = 1, . . . , s. This gives that

min
S:|S|=s

∑
j /∈S

ηj ≤ 1−
s∑

k=1

wk = 1−
s∑

k=1

vk

k−1∏
j=1

(1− vj) =
s∏
j=1

(1− vj),

where the last equality can easily be verified by induction. Letting v̄j = 1−vj ∼ Beta(ζ/pξ−1, 1),
j = 1, . . . , s, we have

Π

(
min
S:|S|=s

∑
j /∈S

ηj ≥ ε

)
≤ Π

(
s∏
j=1

v̄j ≥ ε

)
≤ ζs

ε(ζ + pξ−1)s
≤ ε−1ζsp−s(ξ−1),

using the Markov inequality. The rightmost side verifies the assertion.

The next lemma formalizes the properties of the kernel function used in finding an esti-
mate packing number for the function space in our minimax study.

Lemma 9 (Packing kernel). The kernel function K defined in (39) and (40) satisfies

(i)
∫
K(x)dx = 0 and

∫
K2(x)dx = 2d/[2(d+ 1)(d+ 2)];

(ii) |K(x)−K(y)| ≤
∑d

j=1 |xj − yj | for every x, y ∈ [−1, 1]d.

Proof. We first verify (i). Every Ka in (40) is a shifted copy of ±K(0,...,0)>(x), depending

on the sign of (−1)
∑d
j=1 aj . Hence,

∫
Ka(x)dx =

∫
K(0,...,0)>(x)dx if

∑d
j=1 aj is even, and∫

Ka(x)dx = −
∫
K(0,...,0)>(x)dx if

∑d
j=1 aj is odd. Note that |{a :

∑d
j=1 aj = k}| =

(
d
k

)
.

Therefore,

∫
K(x)dx =


bd/2c∑
k=0

(
d

2k

)
−
bd/2c−1∑
k=0

(
d

2k + 1

)
∫
K(0,...,0)>(x)dx = 0,
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since
∑d

k=0

(
d
k

)
= 2d and

∑bd/2c
k=0

(
d
2k

)
= 2d−1.

Also, since each Ka is disjointly supported on each of the 2d quadrants of [−1, 1]d, we
obtain ∫

K2(x)dx =
∑

a=(a1,...,ad)>∈{0,1}d

∫
K2
a(x)dx = 2d

∫
K2

(0,...,0)>(x)dx.

A simple direct calculation gives∫
K2

(0,...,0)>(x)dx =

∫
[0,1]d

{
1

2
− max

1≤j≤d

∣∣∣∣xj − 1

2

∣∣∣∣}2

dx

=
1

4
− 2d

∫
[1/2,1]d

max
1≤j≤d

∣∣∣∣xj − 1

2

∣∣∣∣ dx+ 2d
∫

[1/2,1]d
max

1≤j≤d

∣∣∣∣xj − 1

2

∣∣∣∣2 dx.
Using the change of variable followed by the use of a uniform random variable Uj on [0, 1],
it is easy to see that

2d
∫

[1/2,1]d
max

1≤j≤d

∣∣∣∣xj − 1

2

∣∣∣∣ dx =
1

2

∫
[0,1]d

max
1≤j≤d

xjdx =
1

2
E max

1≤j≤d
Uj =

d

2(d+ 1)
,

2d
∫

[1/2,1]d
max

1≤j≤d

∣∣∣∣xj − 1

2

∣∣∣∣2 dx =
1

4

∫
[0,1]d

max
1≤j≤d

x2
jdx =

1

4
E max

1≤j≤d
U2
j =

d

4(d+ 2)
.

Putting everything together, we verify that
∫
K2(x)dx = 2d/[2(d+ 1)(d+ 2)].

Now we verify (ii). For given x = (x1, . . . , xd)
> ∈ [−1, 1]d and y = (y1, . . . , yd)

> ∈
[−1, 1]d, define z(0) = x, z(d) = y and z(j) = (y1, . . . , yj , xj+1, . . . , xd)

>, j = 1, . . . , d. Let

a(j) = (a
(j)
1 , . . . , a

(j)
d )> ∈ {0, 1}d be the binary vector such that z(j) ∈ {x : 0 ≤ (−1)a

(j)
k xk ≤

1, k = 1, . . . , d}; hence a(j) defines the quadrant which z(j) belongs to. Using the fact that
K(z(j)) = Ka(j)(z(j)), we obtain

|K(x)−K(y)| ≤
d∑
j=1

|K(z(j−1))−K(z(j))| =
d∑
j=1

|Ka(j−1)(z(j−1))−Ka(j)(z(j))|. (57)

Since all elements of z(j−1) and z(j) are the same except for the jth one, either they belong
to the same quadrant or two contiguous quadrants. If z(j−1) and z(j) are contained in the
same quadrant, i.e., a(j−1) = a(j) = (a∗1, . . . , a

∗
d)
>, then

|Ka(j−1)(z(j−1))−Ka(j)(z(j))| =
∣∣∣∣ max
1≤k≤d

∣∣∣∣(−1)a
∗
kz

(j−1)
k − 1

2

∣∣∣∣− max
1≤k≤d

∣∣∣∣(−1)a
∗
kz

(j)
k −

1

2

∣∣∣∣∣∣∣∣
≤ max

1≤k≤d

∣∣∣(−1)a
∗
k(z

(j−1)
k − z(j)

k )
∣∣∣

= |xj − yj |,

where we used the inequalities |max f −max g| ≤ max |f − g| and ||s| − |t|| ≤ |s− t|. If each

of z(j−1) and z(j) is contained in each of two contiguous quadrants, then a
(j−1)
j 6= a

(j)
j and

a
(j−1)
k = a

(j)
k , k 6= j. Since max1≤k≤d |(−1)a

(j−m)
k z

(j−m)
k − 1/2| ≤ 1/2 for m = 0, 1, we obtain
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that

|Ka(j−1)(z(j−1))−Ka(j)(z(j))| = 1− max
1≤k≤d

∣∣∣∣(−1)a
(j−1)
k z

(j−1)
k − 1

2

∣∣∣∣− max
1≤k≤d

∣∣∣∣(−1)a
(j)
k z

(j)
k −

1

2

∣∣∣∣
≤ 1−

∣∣∣∣(−1)a
(j−1)
j xj −

1

2

∣∣∣∣− ∣∣∣∣(−1)a
(j)
j yj −

1

2

∣∣∣∣ .
(58)

Because a
(j−1)
j , a

(j)
j ∈ {0, 1} but a

(j−1)
j 6= a

(j)
j , the rightmost side of (58) is equal to either

1 − |xj − 1/2| − |yj + 1/2| or 1 − |xj + 1/2| − |yj − 1/2|. One may easily check that 1 −
|s + 1/2| − |t − 1/2| ≤ |s − t| for every s, t ∈ R by splitting up the domain R2. This
concludes that (58) is bounded by |xj−yj |. Plugging in the bounds into (57), we obtain that

|K(x)−K(y)| ≤
∑d

j=1 |xj − yj |. Since this holds for every x, y ∈ [−1, 1]d, (ii) is verified.
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Ročková, V. (2020). On semi-parametric Bernstein-von Mises theorems for BART. In The
37th International Conference on Machine Learning.
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