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Abstract

This paper develops a Bayesian computational platform at the interface between
posterior sampling and optimization in models whose marginal likelihoods are diffi-
cult to evaluate. Inspired by adversarial optimization, namely Generative Adversarial
Networks (GAN) [32], we reframe the likelihood function estimation problem as a clas-
sification problem. Pitting a Generator, who simulates fake data, against a Classifier,
who tries to distinguish them from the real data, one obtains likelihood (ratio) esti-
mators which can be plugged into the Metropolis-Hastings algorithm. The resulting
Markov chains generate, at a steady state, samples from an approximate posterior
whose asymptotic properties we characterize. Drawing upon connections with empir-
ical Bayes and Bayesian mis-specification, we quantify the convergence rate in terms
of the contraction speed of the actual posterior and the convergence rate of the Clas-
sifier. Asymptotic normality results are also provided which justify the inferential
potential of our approach. We illustrate the usefulness of our approach on examples
which have posed a challenge for existing Bayesian likelihood-free approaches.

Keywords: Approximate Bayesian Computation, Classification, Generative Adversarial
Networks, Likelihood-free Inference, Metropolis-Hastings Algorithm, Markov Chain Monte
Carlo.

∗Assistant Professor in Econometrics and Statistics; Liew Family Junior Faculty Fellow and Richard N.
Rosett Faculty Fellow at the Booth School of Business, University of Chicago

†Associate Professor in Econometrics and Statistics and James S. Kemper Faculty Scholar at the Booth
School of Business, University of Chicago. The author gratefully acknowledges the support from the
James S. Kemper Faculty Fund at the Booth School of Business and the National Science Foundation
(Grant No. NSF DMS-1944740).

1



1 Introduction

Many contemporary statistical applications require inference for models which are easy

to simulate from but whose likelihoods are impossible to evaluate. This includes implicit

(simulator-based) models [17], defined through an underlying generating mechanism, or

models prescribed through intractable likelihood functions.

Statistical inference for intractable models has traditionally relied on some form of like-

lihood approximation (see [33] for a recent excellent survey). For example, [17] propose

kernel log-likelihood estimates obtained from simulated realizations of an implicit model.

Approximate Bayesian Computation (ABC) [7, 56, 65] is another simulation-based ap-

proach which obviates the need for likelihood evaluations by (1) generating fake data X̃θ

for parameter values θ sampled from a prior, and (2) weeding out those pairs (X̃θ, θ) for

which X̃θ has low fidelity to observed data. The discrepancy between observed and fake

data is evaluated by first reducing the two datasets to a vector of summary statistics and

then measuring the distance between them. Both the distance function and the summary

statistics are critical for inferential success. While eliciting suitable summary statistics often

requires expert knowledge, automated approaches have emerged [9, 11, 34]. Notably, [24]

proposed a semi-automated approach that approximates the posterior mean (a summary

statistic that guarantees first-order accuracy) using a linear model regressing parameter

samples onto simulated data. Subsequently, [38] elaborated on this strategy using deep

neural networks which are expected to yield better approximations to the posterior mean.

Beyond subtleties associated with summary statistics elicitation, ABC has to be deployed

with caution for Bayesian model choice [44, 59]. Synthetic likelihood (SL) [55, 72] is another

approach for carrying out inference in intractable models by constructing a proxy Gaussian

likelihood for a vector of summary statistics. Implicit in the success of both ABC and SL

is the assumption that the generating process can produce simulated summary statistics

that adequately represent the observed ones. If this compatibility is not satisfied (e.g. in

misspecified models), both SL [25] and ABC [27] can provide unreliable estimates. Besides

SL, a wide range parametric surrogate likelihood models have been suggested including nor-

malising flows, Gaussian processes or neural networks [10, 21, 33, 51]. Avoiding the need
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for summary statistics, [34] proposed to use discriminability of the observed and simulated

data as a discrepancy measure in ABC. Their accepting/rejecting mechanism separates

samples based on a discriminator’s ability to tell the real and fake data apart. Similarly as

their work, our paper is motivated by the observation that distinguishing two data sets is

usually easier if they were simulated with very different parameter values. However, instead

of deploying this strategy inside ABC, we embed it directly inside the Metropolis-Hastings

algorithm using likelihood approximations obtained from classification.

The Metropolis-Hastings (MH) method generates ergodic Markov chains through an

accept-reject mechanism which depends in part on likelihood ratios comparing proposed

candidate moves and current states. For many latent variable models, the marginal likeli-

hood is not available in closed form, making direct application of MH impossible (see [16]

for examples). The pseudo-marginal likelihood method [3] offers a remedy by replacing

likelihood evaluations with their (unbiased) estimates. Many variants of this approach

have been proposed including the inexact MCWM method (described in [48] and [3]) and

its elaborations that correct for bias [49], reduce the variance of the likelihood ratio estima-

tor [16] or make sure that the resulting chain produces samples from the actual (not only

approximate) posterior [6]. The idea of using likelihood approximations within MH dates

back to at least [49] and has been implemented in a series of works (see e.g [50] and [6] and

references therein). Our approach is fundamentally different from typical pseudo-marginal

MH algorithms since it does not require a hierarchical model where likelihood estimates

are obtained through simulation from conditionals of latent data. Our method can be thus

applied in a wide range of generative models (where forward simulation is possible) and

other scenarios (such as diffusion processes [36]) where PM methods would be cumbersome

or time-consuming to implement (as will be seen later in our examples).

Inspired by adversarial optimization, namely the Generative Adversarial Networks (GAN)

[32], we reframe the likelihood (ratio) estimation problem as a classification problem us-

ing the ‘likelihood-ratio trick’ [14, 21, 66]. Similarly as with GANs, we pit two agents (a

Generator and a Classifier) against one another. Assessing the similitude between the fake

data, outputted by the Generator, and observed data, the Classifier provides likelihood
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estimators which can be deployed inside MH. The resulting algorithm provides samples

from an approximate posterior. GANs have been successful in learning distributions over

complex objects, such as images, and have been coupled with MH in [68] to sample from

the likelihood. Their method is an elaboration of the discriminator rejection sampling [5]

which uses an importance sampling post-processing step using information from a trained

discriminator. These two strategies are very different from our proposal here which is con-

cerned with posterior inference about model parameters in a likelihood-free environment.

Our contributions are both methodological and theoretical. We develop a personifica-

tion of Metropolis-Hastings (MH) algorithm for intractable likelihoods based on Classifi-

cation, further referred to as MHC. We consider two variants: (1) a fixed generator design

which may yield biased samples, and (2) a random generator design which may yield un-

biased samples with increased variance. We then describe how and when the two can be

combined in order to provide posterior samples with an asymptotically correct location

and spread. Our theoretical analysis consists of new convergence rate results for a poste-

rior residual (an approximation error) associated with the Classifier. These rates are then

shown to affect the rate of convergence of the stationary distribution, in a similar way as

the ABC tolerance level affects the convergence rate of ABC posteriors [26]. Theoretical

characterizations of related pseudo-marginal (PM) methods have been, so far, limited to

convergence properties of the Markov chain such as mixing rates [3, 16]. Here, we pro-

vide a rigorous asymptotic study of the stationary distribution including convergence rates

(drawing upon connections to empirical Bayes and Bayesian misspecification), asymptotic

normality results and, in addition, polynomial mixing time characterizations of the Markov

chain.

To illustrate that our MHC procedure can be deployed in situations when sampling

from conditionals of latent data (required for PM) is not practical or feasible, we consider

two examples. The first one entails discretizations of continuous-time processes which are

popular in finance [13, 36]. The second one is a population-evolution generative model

where PM is not straightforward and where ABC methods need strong informative priors

and high-quality summaries. In both examples, we demonstrate that MHC offers a reliable
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practical inferential alternative which is straightforward to implement. We also show very

good performance on a Bayesian model choice example (where ABC falls short) and on

the famous Ricker model (Section 7.7 in the Appendix) [57] analyzed by multiple authors

[24, 33, 72].

The paper is structured as follows. Section 2 and 3 introduce the classification-based

likelihood ratio estimator and the MHC sampling algorithm. Section 4 then describes the

asymptotic properties of the stationary distribution. Section 5 shows demonstrations on

simulated data and, finally, Section 6 wraps up with a discussion.

Notation The following notation will be used throughout the manuscript. We employ

the operator notation for expectation, e.g., P0f =
∫
fdP0 and Pθmf = 1

m

∑m
i=1 f(Xθ

i ). The

ε-bracketing number N[](ε,F , d) of a set F with respect to a premetric d is the minimal

number of ε-brackets in d needed to cover F .1 The δ-bracketing entropy integral of F

with respect to d is J[](δ,F , d) :=
∫ δ

0

√
1 + logN[](ε,F , d)dε. We denote the usual Hellinger

semi-metric for independent observations as d2
n(θ, θ′) = 1

n

∑n
i=1

∫
(√pθ,i −

√
pθ′,i)2dµi. Next,

K(p(n)
θ0 , p

(n)
θ ) = ∑n

i=1K(pθ0,i, pθ,i) denotes the Kullback-Leibler divergence between product

measures and V2(f, g) =
∫
f | log(f/g)|2dµ. Define 〈a, b〉 = ∑d

i=1 aibi for a, b ∈ Rd.

2 Likelihood Estimation with a Classifier

Our framework consists of a series of i.i.d. observations {Xi}ni=1 ∈ X realized from a

probability measure Pθ0 indexed by a parameter θ0 ∈ Θ which is endowed with a prior

Πn(·). We assume that Pθ, for each θ ∈ Θ, admits a density pθ. Our objective is to draw

observations from the posterior density given X(n) = (X1, . . . , Xn)′ defined through

πn(θ | X(n)) = p
(n)
θ (X(n))π(θ)∫

Θ p
(n)
ϑ (X(n)) dΠ(ϑ)

, (2.1)

where p(n)
θ = ∏n

i=1 pθ(Xi). Our focus is on situations where the likelihood p(n)
θ is too costly

to evaluate but can be readily sampled from.

We develop a Bayesian computational platform at the interface between sampling and

optimization inspired by Generative Adversarial Networks (GAN) [32]. The premise of
1A premetric on F is a function d : F × F → R such that d(f, f) = 0 and d(f, g) = d(g, f) ≥ 0.
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GAN’s is to discover rich distributions over complex objects arising in artificial intelligence

applications through simulation. The learning procedure consists of two entities pitted

against one another. A Generator aims to deceive an Adversary by simulating samples that

resemble the observed data while, at the same time, the Adversary learns to tell the fake

and real data apart. This process iterates until the generated data are indistinguishable by

the Adversary. While GAN’s have found their usefulness in simulating from distributions

over images, here we forge new connections to Bayesian posterior simulation.

Similarly as with GAN’s, we assume a Generator transforming a set of latent variables

X̃ ∈ X̃ to collect samples from Pθ through a known deterministic mapping Tθ : X̃ → X ,

i.e. Tθ(X̃) ∼ Pθ for X̃ ∼ P̃ for some distribution P̃ on X̃ . This implies that we can draw

a single set of m observations X̃(m) and then filter them through Tθ to obtain a sample

X̃
(m)
θ = Tθ(X̃(m)) from Pθ for any θ ∈ Θ. Being able to easily draw samples from the model

suggests the intriguing possibility of learning density ratios ‘by-comparison’ [47]. Indeed,

the fact that density ratios can be computed by building a classifier that compares two

data sets [14, 21] has lead to an emergence of a rich ecosystem of algorithms for model-free

inference [12, 35, 51, 53, 66]. Many of these machine learning procedures are based on

variants of the ‘likelihood ratio trick’ (LRT) which builds a surrogate classification model

for the likelihood ratio. We embed the LRT within a classical Bayesian sampling algorithm

and furnish our procedure with rigorous frequentist-Bayesian inferential theory.

Our approach relies on the simple fact that a cross-entropy classifier (used by the

Adversary in the GAN framework) can be deployed to obtain an estimator of the likelihood

ratio [32]. Recall that the classification problem with the cross-entropy loss is defined

through

max
D∈D

[
1
n

n∑
i=1

logD(Xi) + 1
m

m∑
i=1

log(1−D(Xθ
i ))
]
, (2.2)

where D is a set of measurable classification functions D : X → (0, 1) (1 for ‘real’ and 0

for ‘fake’ data) and where Xθ
i = Tθ(X̃i) for X̃i ∼ P̃ for i = 1, . . . ,m are the ‘fake’ data

outputted by the Generator. If an oracle were to furnish the true model pθ0 , it is known

that the population solution to (2.2) is the ‘Bayes classifier’ (see [32, Proposition 1])

Dθ(X) := pθ0(X)
pθ0(X) + pθ(X) for X ∈ X . (2.3)
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Reorganizing the terms in (2.3), the likelihood can be written (see e.g. [66]) in terms of

the discriminator function as

p
(n)
θ (X(n)) = p

(n)
θ0 (X(n)) exp

(
n∑
i=1

log 1−Dθ(Xi)
Dθ(Xi)

)
. (2.4)

The oracle discriminator Dθ(·) depends on pθ0 but can be estimated by simulation. Indeed,

one can deploy the Generator to simulate the fake data X̃
(m)
θ = Tθ(X̃(m)) and train a

Classifier to distinguish them from X(n). The Classifier outputs an estimator D̂θ
n,m, for

which we will see examples, and which can be plugged into (2.4) to obtain the following

likelihood estimator

p̂
(n)
θ (X(n)) = p

(n)
θ0 (X(n)) exp

 n∑
i=1

log
1− D̂θ

n,m(Xi)
D̂θ
n,m(Xi)

 = p
(n)
θ (X(n))euθ(X(n)), (2.5)

where

uθ(X(n)) :=
n∑
i=1

(
log

1− D̂θ
n,m

1−Dθ

− log
D̂θ
n,m

Dθ

)
(2.6)

will be further referred to as the log-posterior residual. In other words, (2.5) is a determin-

istic functional of auxiliary random variables X̃(m) and the observed data X(n), and can be

computed (up to a norming constant) from D̂θ
n,m. The posterior density πn(θ | X(n)) can

be then estimated by replacing Dθ with D̂θ
n,m in the likelihood expression to obtain

π̂n,m(θ | X(n)) := exp
(

n∑
i=1

log
1− D̂θ

n,m(Xi)
D̂θ
n,m(Xi)

)
π(θ) ∝ πn(θ | X(n))euθ(X(n)). (2.7)

Two observations ought to be made. First, the estimator (2.7) targets the posterior

density only up to a norming constant. This will not be an issue in Bayesian algorithms

involving posterior density ratios (such as the Metropolis-Hastings algorithm considered

here). Second, the estimator (2.7) performs exponential tilting of the original posterior,

where the quality of the approximation crucially depends on the statistical properties of

uθ(X(n)). Note that uθ(X(n)) depends also on the latent data X̃(m)
θ . We devote the entire

Section 4.1 to statistical properties of uθ(X(n)). The idea of estimating likelihood ratios

via discriminative classifiers is very natural and has emerged in various contexts including

hypothesis testing [14] and posterior density estimation [66].
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3 Metropolis Hastings via Classification

The Metropolis-Hastings (MH) algorithm is one of the mainstays of Bayesian computation.

The deployment of unbiased likelihood estimators within MH has shown great promise in

models whose likelihoods are not available [3, 4, 7]. In the previous section, we have

suggested how classification may be deployed to obtain estimates of likelihood ratios. This

suggests a compelling question: Can we deploy these classification-based estimators within

MH? This section explores this intriguing possibility and formalizes an MH variant that

we further refer to as MHC, Metropolis Hastings via Classification.

Our objective is to simulate values from an (approximate) posterior distribution Πn(· |X(n))

with a density πn(θ |X(n)) ∝ p
(n)
θ (X(n))π(θ) over (Θ,B) using the MH routine. Recall that

MH simulates a Markov chain according to the transition kernel K(θ, θ′) := ρ(θ, θ′)q(θ′ |

θ) + δθ(θ′)
∫

Θ(1− ρ(θ, θ̃))q(θ̃ | θ)dθ̃, where

ρ(θ, θ′) := min
{
p

(n)
θ′ (X(n))π(θ′)
p

(n)
θ (X(n))π(θ)

q(θ | θ′)
q(θ′ | θ) , 1

}
. (3.1)

and where q(· | θ) is a proposal density generating candidate values θ′ for the next move.

It is often the case in practice that we cannot directly evaluate p(n)
θ (X(n)) but have

access to its (unbiased) estimator (see [19] for a recent overview). In Bayesian contexts, an

unbiased likelihood estimator can be constructed using importance sampling [6] or particle

filters [2, 3] via data augmentation through the introduction of auxiliary latent variables,

say X̃(m)
θ . This method has been named the pseudo-marginal approach [3]. In its simplest

form (Monte Carlo Within Metropolis (MCWM) [3, 48]), this method requires indepen-

dently simulating m replicates of the auxiliary data for each likelihood evaluation at each

iteration. Other variants have been suggested where latent data are recycled from the pre-

vious iterations (Grouped Independence MH (GIMH) described in [7]) or using correlated

latent variables for the numerator and the denominator of the acceptance ratio [16].

In this work, we propose replacing p(n)
θ in the acceptance ratio (3.1) with the classification-

based likelihood estimator (2.5) outlined in Section 2. This estimator, similarly as with

the pseudo-marginal (PM) method, also relies on the introduction of latent variables X̃(m)
θ .

However, unlike with PM methods we do not require an explicit hierarchical model where
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sampling from the conditional distribution of the latent data is feasible. Later in Section

5.2 we show an example of a generative model, where our approach fares superbly while

the PM approach is not straightforward, if at all possible. As we have seen earlier, our

likelihood estimator can be rewritten in terms of the estimated discriminator as

p̂
(n)
θ (X(n)) ∝ exp

 n∑
i=1

log
1− D̂θ

n,m(Xi)
D̂θ
n,m(Xi)

 . (3.2)

The evaluation of p̂(n)
θ (X(n)) can be carried out by merely computing D̂θ

n,m(Xi) where D̂θ
n,m

is a trained classifier distinguishing X(n) from X̃
(m)
θ . Putting the pieces together, one can

replace the intractable likelihood ratio in the acceptance probability (3.1) with

ρu(θ, θ′) := min

 p̂
(n)
θ′ (X(n))π(θ′)
p̂

(n)
θ (X(n))π(θ)

q(θ | θ′)
q(θ′ | θ) , 1

 . (3.3)

Note that the proportionality constant in the likelihood expression (3.2) cancels out in

(3.3), allowing ρu(θ, θ′) to be directly computable. We consider two variants. The first

one, called a fixed generator design, assumes that the randomness of D̂θ
n,m, for each given

θ and X(n), is determined by latent variables X̃(m) shared by all steps of the algorithm.

This corresponds to the case when m auxiliary data points X̃(m)
θ = {X̃θ

i }mi=1 are obtained

through a deterministic mapping X̃θ
i = Tθ(X̃i) for some X̃i ∼ P̃ that are not changed

throughout the algorithm. The second version, called a random generator design, assumes

that the underlying latent variables variables X̃(m) = {X̃i}mi=1 are refreshed at each step.

While the difference between these two versions is somewhat subtle, we will see important

bias-variance implications (discussed in more detail below). While technically our MHC

sampling procedure follows the footsteps of a standard MH algorithm, we still find it useful

to summarize the computations in an algorithm box (see Table 1).

3.1 Fixed Generator MHC

It is natural to inquire whether and how the likelihood approximation affects the stationary

distribution of the resulting Markov chain. Due to the exponential tilt euθ(X(n)) in the

likelihood approximation (2.5), Algorithm 1 (Table 1) does not yield the correct posterior

πn(θ | X(n)) at its steady state. Indeed, under standard assumptions (see Section 7.3.1 of
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INPUT
Draw X̃ = {X̃i}mi=1 ∼ P̃

Initialize θ(0) and generate X̃θ(0) = {X̃θ(0)
i }mi=1 according to X̃θ(0)

i = Tθ(0)(X̃i) .
LOOP

For t = 1, . . . , T repeat steps C(1)-(3), R and U.
Algorithm 1: Fixed Generator

C(1): Given θ(t), generate θ′ ∼ q(· | θ(t)).
C(2): Generate X̃θ′ = {X̃θ′

i }mi=1 according to X̃θ′
i = Tθ′(X̃i).

C(3): Compute D̂θ′
n,m from X(n) and X̃θ′ and compute p̂θ(X(n)) in (3.2).

C(4) With ρu(· , ·) in (3.3), set θ(t+1) =

θ′ with probability ρu(θ(t), θ′),
θ(t) with probability 1− ρu(θ(t), θ′).

Algorithm 2: Random Generator
C(1): Given θ(t), generate θ′ ∼ q(· | θ(t)) and X̃ ′ ∼ q̃(X̃ ′ | X̃(t))
C(2): Generate X̃θ′ = {X̃θ′

i }mi=1 according to X̃θ′
i = Tθ′(X̃ ′i)

C(3): Compute D̂θ′
n,m from X(n) and X̃θ′ and compute p̂θ(X(n)) defined in (3.2).

C(4): With ρu(· , ·) in (3.5), set (θ(t+1), X̃(t+1)) =

(θ′, X̃ ′) with probability ρ̃u(θ, X̃; θ′, X̃ ′),
(θ(t), X̃(t)) with probability 1− ρ̃u(θ, X̃; θ′, X̃ ′).

OUTPUT
Samples θ(1), . . . , θ(T )

Table 1: Metropolis-Hastings via Classification.

[58]), the stationary distribution of the Markov chain, conditional on X̃(m), writes as (see

e.g. Theorem 7.2 in [58])

π?n(θ |X(n)) = p
(n)
θ (X(n))× euθ(X(n)) × π(θ)∫

Θ p
(n)
θ (X(n))× euθ(X(n)) × π(θ)dθ

. (3.4)

We do not view this property as unsurmountable. Other approximate MH algorithms

(e.g the MCWM pseudo-marginal method) also do not yield πn(θ | X(n)) at stationarity

[3]. However, the samples generated by Algorithm 1 will be distributed according an

approximate posterior (3.4) whose statistical properties we describe in detail in Section 4.

In Section 3.4, we further quantify the speed of MHC convergence in large samples under

the assumption of asymptotic normality. As will be seen in Section 4, the exponential tilt

induces certain bias where the pseudo-posterior (3.4) concentrates around a projection of

the true parameter θ0. Despite the bias, the curvature of the approximate posterior can be

shown to match the curvature of the actual posterior (under differentiability assumptions

in Section 4.1). The random generator version, introduced in the next section, works the
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other way around. It can lead to a correct location (no bias) but at the expense of enlarged

variance.

3.2 Random Generator MHC

The random generator variant proceeds as Algorithm 1 but refreshes X̃(m) ∼ P̃ at each

step before computing the acceptance ratio. For simplicity, we have dropped the subscript

m in X̃(m) while describing the algorithm in Table 1. The acceptance probability now also

involves X̃ and writes as

ρ̃u(θ, X̃; θ′, X̃ ′) = min
{
p̂

(n)
θ′ (X(n))π(θ′)
p̂

(n)
θ (X(n))π(θ)

q(θ | θ′)
q(θ′ | θ)

q̃(X̃ | X̃ ′)
q̃(X̃ ′ | X̃)

, 1
}
. (3.5)

To glean more insights into this variant, it is helpful to regard (θ(t), X̃(t)) jointly as a

Markov chain with an augmented proposal density q(θ′, X̃ ′ | θ, X̃) = q(θ′ | θ)q̃(X̃ ′ | X̃)

where q̃(X̃ ′ |X̃) possibly depends on X̃. In order to make the dependence on X̃ in uθ(X(n))

more transparent, we will denote the posterior residual defined in (2.6) with uθ(X(n), X̃)

going forward. It can be seen that the marginal stationary distribution of the augmented

Markov chain under Algorithm 2 equals

π̃?n(θ |X(n)) :=
∫
π?n(θ |X(n))dX̃, (3.6)

where π?n(θ |X(n)) was defined earlier in (3.4) and depends on X̃ through uθ(X(n), X̃). The

following characterization will be useful for establishing statistical properties of π̃?n(θ |X(n))

later in Section 4. From (3.4), we can write

π̃?n(θ |X(n)) ∝ p
(n)
θ (X(n))× eũθ(X(n)) × π(θ) (3.7)

where

ũθ(X(n)) = log
∫

euθ(X(n),X̃)dX̃. (3.8)

Assuming almost-sure positivity of the joint proposal density q(θ′, X̃ ′ | θ, X̃), it can be

verified (e.g. from Corollary 4.1 in [67]) that the marginal distribution of θ(t) after t steps of

Algorithm 1 converges in total variation to π̃?n(θ |X(n)). Interestingly, from (3.7) we can see

that the stationary distribution (3.6) from Algorithm 2 has the same functional form as the
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Algorithm 3: Bias Correction

(1) Generate a sample {θ(t)
1 }Tt=1 using Algorithm 1

(2) Generate a sample {θ(t)
2 }Tt=1 using Algorithm 2

(3) Debias {θ(t)
1 } using {θ

(t)
2 }, i.e. construct a sample {θ(t)} by

θ(t) := θ
(t)
1 − 1

T

∑T
s=1 θ

(s)
1 + 1

T

∑T
s=1 θ

(s)
2 .

Table 2: Bias Correction with Algorithm 3.

stationary distribution (3.4) from Algorithm 1. The only difference is replacing uθ(X(n))

with an averaged-out version ũθ(X(n)) in (3.8). Integration may inflate the stationary

distribution (3.6) by making it more spread-out compared to the fixed generator sampler.

However, the exponential tilting factor ũθ(X(n)) is averaged out. While uθ(X(n)) in (2.6)

is fixed in X̃ (creating a non-vanishing bias term), uθ(X(n)) in (3.8) can average out to 0

(depending on q̃(· | ·)), erasing the bias and yielding the actual posterior as the stationary

distribution.

3.3 Debiasing

Algorithm 1 and 2 can be combined to produce a more realistic representation of the true

posterior. We mentioned that Algorithm 1, under the differentiability assumptions, has the

same curvature as the actual posterior but has a non-vanishing shift. Algorithm 2, on the

other hand, has a reduced bias due to the averaging aspect in (3.8). We can thus diminish

the bias of the fixed generator design by shifting the location towards the mean of samples

obtained with the random generator. This leads to a hybrid procedure summarized in

Table 2. While Algorithms 1 and 2 can be deployed as a standalone, the de-biasing variant

might increase the quality of the samples. Note that if ũθ(X(n)) = 0, Algorithm 2 will

be unbiased yielding the actual posterior as its stationary distribution. In Section 4.1 we

theoretically justify Algorithm 3 by providing sufficient conditions under which it yields

samples from an object which has the same limit as the actual posterior.
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3.4 Mixing Properties of MHC

A critical issue for MCMC algorithms is the determination of the number of iterations

needed for the result to be approximately a sample from the distribution of interest. This

section sheds light on the mixing rate of Algorithm 1. Under standard assumptions on

q(· | ·) (such as positivity almost surely, see Corollary 4.1 in [67]), the distribution of the

MHC Markov chain after t steps will converge to π?n(θ |X(n)) from any initialization in Θ in

total variation as t→∞. [46] derive necessary and sufficient conditions for the Metropolis

algorithms (with independent or symmetric candidate distributions) to converge at a geo-

metric rate to a prescribed continuous distribution. [8] studied the speed of convergence of

MH when both n→∞ and d→∞ where θ ∈ Θ ⊂ Rd.

We can reformulate their sufficient conditions for showing polynomial mixing times of

MHC. Recall that the stationary distribution π?n(θ | X(n)) of the MHC sampler in (3.4)

normalized to a compact set K ⊂ Θ, writes as Π?
K(B) =

∫
B π

?
n(θ | X(n))/

∫
K π

?
n(θ | X(n)).

We are interested in bounding the number of steps needed to draw a random variable from

Π∗K with a given precision. We denote with Π∗tK the distribution obtained after t steps of

the MHC algorithm starting from Π∗0K . It is known (see e.g. [42]) that the total variation

distance between Q and Qt can be bounded by ‖Π∗K − Π∗tK‖TV ≤
√
M(1 − φ2/2)t, where

M is a constant which depends on the initial distribution Π∗0K and φ is the conductance of

the Markov chain defined, e.g., in (3.13) in [8]. To obtain bounds on the conductance, the

Markov chain needs to transition somewhat smoothly (see assumption D1 and D2 in [8]).

These assumptions pertain to the continuity of the transitioning measure and are satisfied

by the Gaussian random walk with a suitable choice of the proposal variance (see Section

3.2.4 in [8]) The following Lemma summarizes Theorem 2 of [8] in the context of Algorithm

1 under asymptotic normality assumptions examined in more detail in Section 4.2.3.

Lemma 3.1. (Mixing Rate) Under Assumptions (7.9)-(7.10) and a Gaussian random walk

q(· |·) satisfying Lemma 4 of [8], the global conductance φ of the Markov chain obtained from

Algorithm 1 satisfies 1/φ = O(d) in P
(n)
θ0 -probability. In addition, the minimal number of

MCMC iterations needed to achieve ‖Π∗K−Π∗tK‖TV < ε is O(d2 log(M/ε)) for some suitable

constant M depending on the initial distribution Π∗0K .
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MHC thus attains bounds on the mixing rate that are polynomial in d (i.e. rapid

mixing) under suitable Bernstein-von Mises conditions formalized later in Section 4.2.3.

This section investigates how fast the Markov chain converges to its target π?n(θ |X(n)) as

the number of iterations t grows. In Section 4.2.1 (resp. Section 4.2.2), we investigate

a fundamentally different question. We assess the speed at which the target π?n(θ | X(n))

shrinks around the truth θ0 (resp. a Kullback-Leibler projection) as n grows.

4 Theory for MHC

We now shift attention from the computational aspects of MHC to its potential as a sta-

tistical inference procedure. To understand the qualitative properties of the MHC scheme,

we provide an asymptotic study of its stationary distribution (convergence rates in Section

4.2 and asymptotic normality in Section 4.2.3), drawing upon its connections to empirical

Bayes methods (Section 4.2.1) and Bayesian misspecification (Section 4.2.2). Before delv-

ing into the stationary distribution, however, we first derive rates of convergence for the

posterior residual uθ(X(n)) in (2.6) which plays a fundamental role.

4.1 Convergence of the Posterior Residual

We denote the sample objective function in (2.2) withMθ
n,m(D) := Pn logD+Pθm log(1−D),

where we employed the operator notation for expectation, e.g., Pnf = 1
m

∑m
i=1 f(Xi) and

Pθmf = 1
m

∑m
i=1 f(Xθ

i ). Throughout this section, we will use a simplified notation uθ instead

of uθ(X(n)) and similarly for pθ and p
(n)
θ . We denote by P the probability measure that

encompasses all randomness, e.g., as OP (1).2 The estimated Classifier is seen to satisfy

D̂θ
n,m := max

D∈Dn
Mθ

n,m(D)

where Dn constitutes a sieve of classifiers that expands with the sample size and that is not

too rich (as measured by the bracketing entropy N[](ε,F , d)). In practice, the estimator

D̂θ
n,m can be obtained by deploying a variety of classifiers ranging from logistic regression to

deep learning (see Assumption 3 in [39] for a sieve construction using neural network classi-

fiers). The discrepancy between two classifiers will be measured by a Hellinger-type distance
2We may think of this P as the “canonical representation” [70, Problem 1.3.4].
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(see [39] and [52] for more discussion) dθ(D1, D2) :=
√
hθ(D1, D2)2 + hθ(1−D, 1−Dθ)2,

where hθ(D1, D2) =
√

(Pθ0 + Pθ)(
√
D1 −

√
D2)2. The rate of convergence of the Classifier

was previously established by [39] under assumptions reviewed below. In the following, we

denote with Dθn,δ := {D ∈ Dn : dθ(D,Dθ) ≤ δ} the neighborhood of the oracle classifier

within the sieve.

Assumption 1. Assume that n/m converges and that an estimator D̂θ
n,m exists that satis-

fies Mθ
n,m(D̂θ

n,m) ≥ Mθ
n,m(Dθ) − OP (δ2

n) for a nonnegative sequence δn. Moreover, assume

that the bracketing entropy integral3 satisfies J[](δn,Dθn,δn , dθ) . δ2
n

√
n and that there exists

α < 2 such that J[](δ,Dθn,δ, dθ)/δα is decreasing in δ.

Under Assumption 1, for a given θ ∈ Θ, [39] conclude (see their Theorem 1) the following

convergence rate result for the classifier: dθ(D̂θ
n,m, Dθ) = OP (δn). While [39] focused mainly

on the convergence of D̂θ
n,m, here we move the investigation further by establishing the rate

of convergence of uθ(·)/n as well as its limiting shape. To this end, we assume the following

support compatibility assumption, a refinement of the bounded likelihood ratio condition

in nonparametric maximum likelihood (Theorem 3.4.4 in [70] and Lemma 8.7 in [28]).

Assumption 2. There existsM > 0 such that for every θ ∈ Θ, Pθ0(pθ0/pθ) and Pθ0(pθ0/pθ)2

are bounded by M and

sup
D∈Dθ

n,δn

Pθ0

(
Dθ

D

∣∣∣∣∣ Dθ

D
≥ 25

16

)
< M, sup

D∈Dθ
n,δn

Pθ0

(
1−Dθ

1−D

∣∣∣∣∣ 1−Dθ

1−D ≥
25
16

)
< M

for δn in Assumption 1. The brackets in Assumption 1 can be taken so that Pθ0
(√

u
`
−1

)2
=

O(dθ(u, `)2) and Pθ0
(√

1−`
1−u − 1

)2
= o(dθ(u, `)).

The following Theorem will be crucial for understanding theoretical properties of our

MHC sampling algorithm, where the rate of convergence of uθ(·)/n will be seen to affect

the rate of convergence of the stationary distribution of our Markov chains.

Theorem 4.1. Let Assumptions 1 and 2 hold for a given θ ∈ Θ, then

uθ/n = Pn
(

log
1− D̂θ

n,m

1−Dθ

− log
D̂θ
n,m

Dθ

)
= OP (δn).

3See the notation section
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Proof. Section 7.1 in the Appendix.

One seemingly pessimistic conclusion from Theorem 4.1 is that uθ(·) does not vanish.

[39] shows that if the true likelihood ratio has a low-dimensional representation and an

appropriate neural network is used for the discriminator, the rate δn depends only on the

underlying dimension and not on the original dimension of Xi. In spite of the non-vanishing

tilting term uθ(X(n)), it turns out that Algorithm 1 can be refined (de-biased) to produce

reasonable samples as long as D̂θ
n,m estimates the score well (see Section 3.3). In the sequel,

we show quadratic approximability for uθ at a much faster rate than Theorem 4.1 when

the model and the classifier are differentiable in some suitable sense.

Assumption 3 (Differentiability of pθ). There exists θ0 ∈ Θ ⊂ Rd such that P0 = Pθ0.

The model {pθ} is differentiable in quadratic mean at θ0, that is, there exists a measurable

function ˙̀
θ0 : X → Rd such that4

∫ [√
pθ0+h −

√
pθ0 − 1

2h
′ ˙̀
θ0
√
pθ0

]2

= o(‖h‖2).

This is a classical assumption (see e.g. Section 5.5 of [69]) which implies local asymptotic

normality. Going back to (2.5), we write p̂θ(X(n)) = ∏n
i=1 p̂θ(Xi), where

p̂θ = pθ0
1− D̂θ

n,m

D̂θ
n,m

(4.1)

is an estimator of pθ that is possibly unscaled so that
∫
p̂θ may not be one. The scaling

constant will be denoted by cθ :=
∫
p̂θ. In general, p̂θ is not observable since pθ0 is not

available. From (2.6), we can see that uθ = nPn log 1−D̂θn,m
D̂θn,m

− nPn log 1−Dθ
Dθ

= nPn log p̂θ
pθ0
−

nPn log pθ
pθ0

and, under Assumption 3, van der Vaart [69, Theorem 7.2] derives convergence

of the second term above in the local neighborhood of θ0. In Theorem 4.2 below, we derive

convergence of the first term under the a similar assumption.

Assumption 4 (Differentiability of p̂θ).

(i) The estimator p̂θ in (4.1) is differentiable in quadratic mean in probability at θ0 with a

cubic rate, that is,
∫ [√

p̂θ0+h −
√
p̂θ0 − 1

2h
′ ˙̀
θ0

√
p̂θ0
]2

= OP (‖h‖3), where ˙̀
θ0 : X → Rd

is the score function in Assumption 3.
4Integration is understood with respect to some dominating measure.
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(ii) Dependence of Pn and p̂θ is asymptotically ignorable in the sense that for every com-

pact K ⊂ Rd, in outer probability,

sup
h∈K

∣∣∣∣∣n(Pn − Pθ0)
(√√√√ p̂θ0+h/

√
n

p̂θ0
− 1− h′ ˙̀θ0

2
√
n

)∣∣∣∣∣ −→ 0,

sup
h∈K

∣∣∣∣∣n(Pn − Pθ0)
(√√√√ p̂θ0+h/

√
n

p̂θ0
− 1

)2∣∣∣∣∣ −→ 0.

(iii) The scaling factor is asymptotically linear in the sense that there exists a sequence

of Rd-valued random variables ċn,θ0 such that for every compact K ⊂ Rd, in outer

probability, suph∈K
∣∣∣n(cθ0+h/

√
n − cθ0

)
−
√
nh′ċn,θ0

∣∣∣→ 0.

Assumption 4 (i) requires that p̂θ estimates the score well and is smoother than once

differentiable. If p̂θ is twice differentiable in θ, then it holds with OP (‖h‖4). Assumption 4

(ii) requires that the dependence of Pn and p̂θ be ignored asymptotically. If Pn and p̂θ were

independent, it would follow from Chebyshev’s or Markov’s inequality. Assumption 4 (iii)

requires that the quadratic curvature of the scaling constant vanishes asymptotically. In

general, Assumption 4 is not verifiable since the likelihood is not available. To develop

intuition behind this assumption, we verify that it holds for a toy normal location-scale

model example in Section 7.5 in the Appendix. With Assumption 4, the estimated log

likelihood asymptotes to a quadratic function that has the oracle curvature but a different

center.

Theorem 4.2. Let pθ and p̂θ satisfy Assumptions 3 and 4 and
∫

(
√
p̂θ0 −

√
pθ0)2 = OP (δ2

n)

for some δn = o(n−1/4). Then, for every compact K ⊂ Rd, in outer probability,

sup
h∈K

∣∣∣∣∣nPn log
p̂θ0+h/

√
n

p̂θ0
+ 1

2h
′Iθ0h −

√
nPnh′ ˙̀θ0 +

√
nP̂θ0h

′ ˙̀
θ0 −

√
nh′ċn,θ0

∣∣∣∣∣ −→ 0

Proof. Section 7.2 in the Appendix.

Remark 1. Recall that the true log-likelihood ratio locally approaches a quadratic curve

−1
2h
′Iθ0h +

√
nPnh′ ˙̀θ0. The linear term h′

√
n(ċn,θ0 − P̂θ0 ˙̀

θ0) in (4.2) shifts the center of

the quadratic curve but not the curvature.

One important implication of Theorem 4.2 is linearity of uθ.
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Corollary 4.3. (Linear uθ) Under assumptions of Theorem 4.2 we have

uθ0+h/
√
n − uθ0 = h′

√
n(ċn,θ0 − P̂θ0 ˙̀

θ0) + oP (1). (4.2)

Proof. Follows from van der Vaart [69, Theorem 7.2] and Theorem 4.2.

We revisit linearity of uθ later in Section 4.2.2 (Example 1) as one of the sufficient

conditions for the Bernstein-von Mises theorem. Corollary 4.3 has a very important conse-

quence regarding the limiting shape of the stationary distribution π?n(θ |X(n)) for Algorithm

1 defined in (3.4). It shows that π?n(θ |X(n)) approaches a biased normal distribution with

the same variance as the true posterior. In addition, we have seen in Section 3.2 that the

stationary distribution π̃?n(θ |X(n)) of Algorithm 1 defined in (3.7) is averaged over the bias.

Therefore, if E[ċn,θ0 − P̂θ0 ˙̀
θ0 | X] = 0, then the stationary distribution of Algorithm 3 (in

Table 2) converges to the correct normal posterior, i.e. it has the same limit as the actual

posterior πn(θ |X(n)). Theorem 4.2 thus provides a theoretical justification for de-biasing

suggested in Section 3.3.

4.2 Posterior Concentration Rates

Having quantified the convergence rate of the posterior residual uθ(X(n)) in Theorem 4.1,

we are now ready to explore the convergence rate of the entire stationary distribution

without necessarily imposing differentiability assumptions.

4.2.1 Empirical Bayes Lens

Recall that the MHC sampler does not reach πn(θ |X(n)) in steady state. Recall that the

stationary distribution (using the fixed generator) takes the form

Π?
n(B |X(n)) =

∫
B p

(n)
θ /p

(n)
θ0 × euθ × π(θ)dθ∫

Θ p
(n)
θ /p

(n)
θ0 × euθ × π(θ)dθ

. (4.3)

In the random design, we simply replace uθ in (4.3) with ũθ defined in (3.8). Interestingly,

(4.3) can be viewed as an actual posterior under a tilted prior with a density π∗(θ) ∝ euθπ(θ).

This shifted prior depends on the data X(n) (through uθ(X(n))) and thereby (4.3) can be

loosely regarded as an empirical Bayes (EB) posterior. While EB uses plug-in estimators

of prior hyper-parameters, here the data enters the prior in a less straightforward manner.

We further the EB connection later in Remark 2.
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We first assess the quality of the posterior approximation (4.3) through its concentra-

tion rate around the true parameter value θ0 using the traditional Hellinger semi-metric

dn(θ, θ′). The rate depends on the interplay between the concentration of the actual poste-

rior5 Πn(θ |X(n)) and the rate at which the residual uθ(X(n)) in (2.6) diverges. Recall that

the rate of uθ(·)/n was established earlier in Theorem 4.1. The following Theorem uses

assumptions on prior concentration around θ0 using the typical Kullback-Leibler neighbor-

hood Bn(θ0, ε) =
{
θ ∈ Θ : K(p(n)

θ0 , p
(n)
θ ) ≤ nε2, 1

n

∑n
i=1 V2(pθ0(Xi), pθ(Xi)) ≤ ε2

}
.

Theorem 4.4. Consider the pseudo-posterior distribution Π?
n defined through (4.3). Sup-

pose that the prior Πn(·) satisfies conditions (3.2) and (3.4) in [29] for a sequence εn → 0

such that nε2
n →∞. In addition, let C̃n be such that

P
(n)
θ0

(
sup
θ∈Θ
|uθ(X(n))/n| > C̃nε

2
n

)
= o(1) (4.4)

and assume that for sets Θn ⊂ Θ the prior satisfies

Πn(Θ\Θn)
Πn(Bn(θ0, εn)) = o(e−2(1+C̃n)nε2n). (4.5)

Then we have, for any Mn →∞ such that C̃n = o(Mn),

P
(n)
θ0

[
Π?
n(θ : dn(θ, θ0) > Mnεn |X(n))

]
= o(1) as n→∞.

Proof. The proof is a minor modification of Theorem 4 in [29] and is postponed until

Section 7.3 in the Appendix.

Theorem 4.4 shows that the concentration rate of the pseudo-posterior nearly matches

the concentration rate of the original posterior εn (this is implied by condition (3.2), (3.4)

and a variant of (4.5) according to Theorem 4 of [29]) up to an inflation factor C̃n which

depends on the rate of uθ(X(n))/n. If C̃n = O(1) in (4.4), the rate of the actual posterior

and pseudo-posterior will be the same.

5Using the usual notion [29], we say that the posterior Πn(· |X(n)) concentrates around θ0 at the rate

εn (satisfying εn → 0 and nε2
n → ∞ ) if Pθ0Πn[θ ∈ Θ : dn(θ, θ0) > Mεn |X(n)] → 0 as n → ∞ where M

possibly depends on n.
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Remark 2. (Connection to Empirical Bayes) Since Π?
n(· |X(n)) can be regarded as an EB

posterior, we could alternatively apply techniques of [18] and [61] to quantify the convergence

rate in Theorem 4.4.

Remark 3. (Random Generator) Recall that the stationary distribution π̃?n(θ |X(n)) of the

random generator MHC version can be written as (4.3) where uθ is replaced with ũθ from

(3.8). Theorem 4.4 holds also for the random generator where C̃n is obtained from (4.4)

with ũθ instead of uθ. Due to the averaging aspect, we might expect this C̃n to be smaller

in the random generator design.

Theorem 4.4 describes the behavior of the pseudo-posterior around the truth θ0. We

learned that the rate is artificially inflated due a bias inflicted by the likelihood approx-

imation, where Π?
n(· | X(n)) may not shrink around θ0 when εn is faster than the rate δn

established in Theorem 4.1. This suggest that the truth may not be the most natural

centering point for the posterior to concentrate around. A perhaps more transparent ap-

proach is to consider a different (data-dependent) centering which will allow for a more

honest reflection of the contraction speed devoid of any implicit bias. We look into model

misspecification for guidance about reasonable centering points.

4.2.2 Model Misspecification Lens

In Section 4.2.1, we reframed the stationary distribution (3.4) as an empirical Bayes pos-

terior by absorbing the term euθ(X(n)) inside the prior. This section pursues a different

approach, absorbing euθ(X(n)) inside the likelihood instead. This leads a mis-specified model

P̃
(n)
θ prescribed by the following likelihood function

p̃
(n)
θ (X(n)) = p

(n)
θ (X(n))euθ(X(n))

Cθ
where Cθ =

∫
X
p

(n)
θ (X(n))euθ(X(n))dX(n). (4.6)

Defining π̃(θ) ∝ π(θ)Cθ, we can rewrite (3.4) as a posterior density under a mis-specified

likelihood and the modified prior π̃(θ) as

π?n(θ |X(n)) = p̃
(n)
θ (X(n))π̃(θ)∫

Θ p̃
(n)
θ (X(n))π̃(θ)dθ

. (4.7)
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Since the model p̃(n)
θ is mis-specified (i.e. P (n)

θ0 is not of the same form as P̃(n) = {P̃ (n)
θ : θ ∈

Θ}), the posterior will concentrate around the point θ∗ defined as

θ∗ = arg min
θ∈Θ
−P (n)

θ0 log[p̃(n)
θ /p

(n)
θ0 ] (4.8)

which corresponds to the element P̃ (n)
θ∗ ∈ P̃(n) that is closest to P

(n)
θ0 in the KL sense

[40]. Unlike in the iid data case studied, e.g., in [40] and [15], our likelihood (4.6) is

not an independent product due to the non-separability of the function uθ(X(n)). The

following Theorem 4.5 quantifies concentration in terms of a KL neighborhoods around

P̃
(n)
θ∗ defined as B(ε, P̃ (n)

θ∗ , P
(n)
θ0 ) =

{
P̃

(n)
θ ∈ P̃(n) : K(θ∗, θ0) ≤ nε2, V (θ∗, θ0) ≤ nε2

}
,where

K(θ∗, θ0) ≡ P
(n)
θ0 log p̃

(n)
θ∗

p̃
(n)
θ

and V (θ∗, θ0) = P
(n)
θ0

∣∣∣∣log p̃
(n)
θ∗

p̃
(n)
θ

−K(θ∗, θ0)
∣∣∣∣2.

Theorem 4.5. Denote with Q(n)
θ a measure defined through dQ(n)

θ =
p

(n)
θ0
p̃

(n)
θ∗

dP (n)
θ and let d(·, ·)

be a semi-metric on P(n). Suppose that there exists a sequence εn > 0 satisfying εn → 0

and nε2
n →∞ such that for every ε > εn there exists a test φn (depending on ε) such that

for every J ∈ N0

P
(n)
θ0 φn . e−nε2/4 and sup

P̃
(n)
θ

:d(P̃ (n)
θ

,P̃
(n)
θ∗ )>Jε

Q
(n)
θ (1− φn) ≤ e−nJ2ε2/4. (4.9)

Let B(ε, P̃ (n)
θ∗ , P

(n)
θ0 ) be as before and let Π̃n(θ) be a prior distribution with a density π̃(θ) ∝

Cθπ(θ). Assume that there exists a constant L > 0 such that, for all n and j ∈ N,

Π̃n

(
θ ∈ Θ : jεn < d(P̃ (n)

θ , P̃
(n)
θ∗ ) ≤ (j + 1)εn

)
Π̃n

(
B(ε, P̃ (n)

θ∗ , P
(n)
θ0 )

) ≤ enε2nj2/8. (4.10)

Then for every sufficiently large constant M , as n→∞,

P
(n)
θ0 Π?

n

(
P̃

(n)
θ : d(P̃ (n)

θ , P̃
(n)
θ∗ ) ≥Mεn |X(n)

)
→ 0. (4.11)

Proof. Section 7.4 in the Appendix.

Remark 4. For iid data, [40] introduce a condition involving entropy numbers under mis-

specification which implies the existence of exponential tests for a testing problem that

involves non-probability measures. Since we have a non-iid situation, we assumed the exis-

tence of tests directly.
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Remark 5. (Friendlier Metrics) In parametric models indexed by θ in a metric space

(Θ, d), it is more natural to characterize the posterior concentration in terms of d(·, ·)

rather than the Kullback-Leibler divergence6. Section 5 of [40] clarifies how Theorem 4.5

can be reformulated in terms of some metric d(·, ·) on Θ.

4.2.3 Bernstein-von Mises Theorem

The Bernstein-von Mises (BvM) theorem asserts that the posterior distribution of a param-

eter in a suitably regular finite-dimensional model is approximately normally distributed

as the number of observations grows to infinity. More precisely, if θ → pθ is appropriately

smooth and identifiable and the prior Πn(·) puts positive mass around the true parameter

θ0, then the posterior distribution of
√
n(θ − θ̂n) tends to N(0, I−1

θ0 ) for most observations

X(n), where θ̂n is an efficient estimator and Iθ is the Fisher information matrix of the model

at θ. In this section, we want to understand the effect of the tilting factor euθ(X(n)) on the

limiting shape of the pseudo-posterior in (3.4) that is proportional to πn(θ |X(n))euθ(X(n)).

Exponential tilting is particularly intuitive for linear uθ(X(n)) and for Gaussian posteriors.

Example 1. (Linear uθ) Suppose that the posterior πn(θ | X(n)) is Gaussian with some

mean µ and covariance Σ. This holds approximately in regular models according to the BvM

theorem (Theorem 10.1 in [69]). Assume that there exists an invertible mapping τ : Θ→ Θ

such that θ = τ(θ̄) where the density for θ̄ satisfies πn(θ |X(n))euθ(X(n))dθ ∝ π∗n(θ̄ |X(n))dθ̄.

Assuming the following linear form (justified in Remark 4.3)

uθ(X(n)) = a∗(X(n)) + θ′u∗(X(n)) (4.12)

we obtain θ̄ ∼ N (µ + Σu∗(X(n)),Σ). In this case, the mapping τ satisfies θ = τ(θ̄) =

θ̄−Σu∗(X(n)), implying a location shift. We had concluded a similar property below Theorem

4.2 at the end of Section 4.1.

Example 1 reveals how the behavior of u∗(X(n)) affects the centering of the posterior

limit (under linearity and Gaussianity) and how it may prevent BvM from occurring when

θ̂n+ 1
n
I−1
θ0 u

∗(X(n)) is not an asymptotically efficient estimator. We now turn to more precise
6Hellinger neighborhoods are less appropriate for misspecified models
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statements by recollecting the BvM phenomenon under misspecification in LAN models

[41]. The centering and the asymptotic covariance matrix will be ultimately affected by θ∗

in (4.8).

Lemma 4.6. (Bernstein von-Mises) Assume that the posterior (4.7) concentrates around

θ∗ at the rate ε∗n and that for every compact K ⊂ Rd

sup
h∈K

∣∣∣∣∣∣log
p̃

(n)
θ∗+ε∗nh(X

(n))
p̃

(n)
θ∗ (X(n))

− h′Ṽθ∗∆̃n,θ∗ −
1
2h
′Ṽθ∗h

∣∣∣∣∣∣→ 0 in P (n)
θ0 -probability (4.13)

for some random vector ∆̃n,θ∗ and a non-singular matrix Ṽθ∗. Then the pseudo-posterior

converges to a sequence of normal distributions in total variation at the rate ε∗n, i.e.

sup
B

∣∣∣∣Π∗n (ε∗−1
n (θ − θ∗) ∈ B |X(n)

)
−N∆̃n,θ∗ ,Ṽθ∗

(B)
∣∣∣∣→ 0 in P (n)

θ0 -probability.

Proof. Follows from Theorem 2.1 of [41].

It remains to examine the assumption (4.13). For iid data, [41] derived sufficient

conditions (Lemma 2.1) for (4.13) to hold. Due to the non-separability of the term uθ(X(n)),

the mis-specified model cannot be regarded as arriving from an iid experiment. In Lemma

7.4 in the Appendix (Section 7.6) we nevertheless provide intuition for when (4.13) is

expected to hold if uθ(X(n)) is linear. Recall that in Remark 4.3 we have concluded that

under differentiability, the posterior residual uθ(X(n)) does converge to a linear function

in θ. In Section 7.6 in the Appendix, we formulate alternative BvM conditions which are

sufficient for rapid mixing in Lemma 3.1.

5 MHC in Action

To whet reader’s appetite, we present MHC performance demonstrations in three examples

which we found challenging for pseudo-marginal (PM) approaches and ABC. The first one

(the CIR model) exemplifies data arising as discretizations of continuous-time process for

which likelihood inference can be problematic [37]. We show that, compared with PM,

MHC is not only far more straightforward to implement but also more scalable. The

second demonstration involves a generative model (Lotka-Volterra) for which no explicit
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hierarchical model exists, precluding from direct application of PM methods. We thus

compare MHC with ABC, showing that ABC techniques may fall short without a very

informative prior and suitable summary statistics. Lastly, we consider a Bayesian model

selection example where ABC faces challenges. More examples are shown in the Appendix

where we show bias-variance tradeoffs between fixed and random generator variants on a

toy normal location-scale model and the Ricker model [57].

5.1 The CIR Model

The CIR model [13] is prescribed by the stochastic differential equation

dXt = β(α−Xt)dt+ σ
√
XtdWt

where Wt is the Brownian motion, α > 0 is a mean-reverting level, β > 0 is the speed of

the process and σ > 0 is the volatility parameter. This process is an integral component of

the Heston model [36] where it is deployed for modelling instantaneous variances. We want

to perform Bayesian inference for the parameters θ = (α, β, σ)′ of this continuous-time

Markov process which is observed at discrete time points tj = j∆ for j = 1, . . . , T . We

will assume that there are n independent observed realizations xi = (xi1, . . . , xiT )′ of this

discretized series for 1 ≤ i ≤ n. It has been acknowledged that if the data are recoded

at discrete times, parametric inference using the likelihood can be difficult, partially due

to the fact that the likelihood function is often not available [37]. A natural Bayesian

inferential platform for such problems is the MH algorithm where the likelihood function

can be replaced with its approximation (e.g. using the analytical closed-form likelihood

approximations [1] as described in [63]). [62] perform a delicate Bayesian analysis of this

model using two approximate (‘pseudo-marginal’) MH algorithms: the MCWM algorithm

(defined in [48] and discussed in [6] and [3]) and GIMH algorithm introduced in [6]. Here,

we compare MHC with the MCWM variant, referring to [62] for a detailed analysis of the

CIR model using GIMH.

One common approach in the literature for Bayesian estimation of diffusion models

[22, 23] is to consider estimation on the basis of discrete measurements as a classic missing-

data problem (see [22] and [60] for irreducible diffusion contexts). The idea is to introduce
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latent observations between every two consecutive data points. The time-step interval [0,∆]

is thus partitioned into M sub-intervals, each of length h = ∆/M . The granularity M

should be large enough so that the grid is sufficiently fine to yield more accurate likelihood

approximations. With the introduction of latent variables, the pseudo-marginal approach

naturally comes to mind as a possible inferential approach. The MCWM variant (described

in Section 3 of [62]) alternates between simulating θ, conditionally on the missing data

blocks, say U , and then updating U , given θ. We will be using the following enumeration

for the missing data U = (uijkm): we have a replicate index 1 ≤ i ≤ n, a discrete time

index 0 ≤ j ≤ T , an index of the intermittent auxiliary series 1 ≤ m ≤ M and an index

1 ≤ k ≤ K for the number of replications inside MCWM. Given θ, one can generate

the missing data using the Modified Brownian Bridge (MBB) sampler [20]. Denote with

X = [x1, . . . ,xn]′ an n × (T + 1) matrix of observations where xi0 = x0 is the initial

condition. The CIR model is an interesting test bed for both MCWM and our MHC

approach, because the transition density is actually known (i.e. non-central χ2 [13]). We

can thereby make comparisons with an exact algorithm which constructs the likelihood from

the exact transition function. The likelihood can be, however, stochastically approximated

as

π̂(X|θ) =
n∏
i=1

T−1∏
j=0

π̂(xij+1 | xij, θ), where π̂(xij+1 | xij, θ) = 1
N

N∑
k=1

RM(uijk ), (5.1)

where uijk = (uijk0, . . . , u
ij
kM)′ ∈ RM+1 is the kth sample of the brownian bridge (described in

(3) in [62]) stretching from uijk0 = xij and uijkM = xij+1 and where

RM(uijk ) =

∏M−1
m=0 φ

(
uijkm+1;uijkm + hβ(α− uijkm) , σ

√
huijkm

)
∏M−2
m=0 φ

(
uijkm+1;uijkm + xij+1−uijkm

M−m , σ
√
h(M −m− 1)/(M −m)uijkm

)
where φ(x;µ, σ) denotes the normal density with a mean µ and a standard deviation σ.

Regarding the choice ofM and N , [64] provide asymptotic arguments for choosing N = M2

and[62] make thorough comparisons for various choices of M,N and also implement the

(’exact’ version having the correct stationary distribution) GIMH (see their Section 4) which

recycles latent data U . There are some delicate issues regarding dependency between σ

and U in GIMH and we refer the reader to [64] for further details.
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Figure 1: Plots of the exact and estimated log-likelihood function (up to a constant) for MCWM

(upper panel using N = M2 = 25) and MHC (lower panel using fixed and random generators).

Log-Likelihood slice over (Left) α keeping (β0, σ0), (Middle) over β fixing (α0, σ0) and (Right)

over σ keeping (α0, β0).

The true data consist of n = 100 samples generated using the package sde (using the

function sed.sim with ‘rcCIR’ initialized at x0 = 0.1) using ∆ = 1 and T = 500 and

using7 θ0 = (0.07, 0.15, 0.07)′. In order to implement MHC, we use the LASSO-regularized

logistic regression (using an R package glmnet with a value λ chosen by 10-fold cross-

validation) using the entire series xi as predictors. While using the entire series is useful

for identifying the location parameter α, capturing more subtle aspects of the series such

as speed of fluctuation and spread are needed to identify (β, σ). To this end, we add

summary statistics (mean, log-variance, auto-correlations at lag 1 and 2 as well as the first

3 principal components of X) yielding the total of 507 predictors (denoted with zi). We

consider both fixed and random generators where, for the fixed variant, we fix the random

seed before generating fake data which essentially corresponds to having a deterministic

generative mapping.
7These values are close to parameter estimates found for FedFunds data analyzed in Stramer and Bognar

(2011).
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Figure 2: Smoothed posterior densities obtained for the CIR model by simulation using exact

MH and MHC using nrep = 1 (green) and nrep = 5 (blue). Vertical lines are the true values.

We compare the MCWM likelihood approximations obtained in MCWM (using (5.1))

with various choices N = M2 with the exact one using the explicit transition distribution

(top panel in Figure 1). We can see that, even for a small value of N = 2, the likelihood

approximation seems to have a correct shape and is peaked close to the true values (marked

by vertical dotted lines). The plots show likelihood slices along each parameter, one at a

time, fixing the others at their true values. The approximation quality improves for M = 5

and N = M2. The lower panel in Figure 1 portrays our classification-based log-likelihood

(ratio) estimates η = ∑n
i=1 log[(1−D̂(zi))/D̂(zi)] for the fixed and random generators. The

curves are nicely wrapped around the true values (perhaps even more so than for MCWM)

with no visible systematic bias (even for the fixed generator). While, in the fixed case

(solid lines), we would expect entirely smooth curves, recall that our classifier is based on

cross-validation which introduces some randomness (thereby the wiggly estimate). The

wigglyness can be alleviated by averaging over (nrep) many fake data replicates (dotted

lines). The random generator (dashed lines) yields slightly more variable curves compared

to the fixed design, as was expected. These plots indicate that MHC ‘pseudo-likelihood’

contains relevant inferential information.

To implement the exact MH, MCWM and MHC (with nrep ∈ {1, 5}), we adopt the

same prior settings as in [62], where π(θ) = I(0,1)(α)I(0,∞)(β)σ−1I(0,∞)(σ). We also use their
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Figure 3: Smoothed posterior densities obtained by simulation using MCWM (with N = M2)

for M = 2 (MCWM1 green) and M = 5 (MCWM2 blue). Vertical lines are the true values.

Method α β σ AR Time

ᾱ l u β̄ l u σ̄ l u

MH Exact 0.0693 0.683 0.703 0.1558 0.1507 0.1608 0.07 0.696 0.704 9.1 3.3

Alg1 (nrep = 1) 0.0691 0.0644 0.0735 0.1505 0.1374 0.1636 0.0703 0.0669 0.0734 16.8 4.6

Alg2 (nrep = 1) 0.0691 0.0644 0.0741 0.1476 0.1353 0.1632 0.693 0.0667 0.0725 10.7 4.9

Alg1 (nrep = 5) 0.0698 0.0667 0.0725 0.1468 0.1377 0.1574 0.0699 0.676 0.725 7.8 13.9

Alg2 (nrep = 5) 0.0691 0.0665 0.0715 0.1468 0.1366 0.1571 0.0691 0.0674 0.0714 5.6 13.9

MCWM (M = 2) 0.0693 0.0658 0.0733 0.1469 0.1287 0.1632 0.067 0.0657 0.0684 13.1 15.9

MCWM (M = 5) 0.0694 0.0662 0.723 0.1538 0.1423 0.1634 0.0689 0.0676 0.0698 10.1 238.6

Table 3: Posterior means and 95% credible interval boundaries (lower (l) and upper (u)).

AR is the acceptance rate and Time is computing time (in hours) for 10 000 iterations

random walk proposals.8 All three algorithms are initialized at the same perturbed truth

and ran for 10 000 iterations with a burnin period 1 000. Smoothed posterior densities

obtained by simulation using the exact MH and MHC are in Figure 2 (random generator

using nrep ∈ {1, 5} where fixed generator is portrayed in Figure 18 in the Appendix).

The trace-plots of 10 000 iterations are depicted in Figure 19 in the Appendix, where

we can see that the random generator variant yields smaller acceptance rates (especially
8With probability 2/3 propose a joint move (α?, β?) by generating α? ∼ U(α − 0.01, α + 0.01) and

β? ∼ U(β − 0.01, β + 0.01) and with probability 1/3 propose σ? ∼ U(σ − 0.01, σ + 0.01). To increase the

acceptance rate of the exact MH algorithm, we change the window from 0.01 to 0.005.
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for σ) which masks the fact that the random generator sampler generally yields more

spread-out posterior approximations. Smoothing out the likelihood ratio by averaging

over nrep repetitions reduces variance where fixed and random generators seem to yield

qualitatively similar results in this example (this is why we have not used the de-biasing

variant here). Histograms (together with the demarkation of 95% credible set) are in Figure

21 in the Appendix. Compared with the smoothed densities obtained from MCWM (using

N = M2 withM ∈ {2, 5} in Figure 3) we can see that MHC yields posterior reconstructions

that are wrapped more closely around the true values. Increasing M , MCWM yields

posterior reconstructions that are getting closer to the actual posterior (not necessarily

centered more narrowly around the truth). Recall, however, that MCWM generates Markov

chains whose invariant distribution is not necessarily the exact posterior. The posterior

summaries (means and 95% credible intervals) are reported in Table 3. Interestingly, both

MCWM intervals for σ do not include the true value 0.07 and the MCWM computation is

considerably slower relative to MHC.

5.2 Lotka-Volterra Model

The Lotka-Volterra (LV) predator-prey model [71] describes population evolutions in ecosys-

tems where predators interact with prey. The model is deterministically prescribed via

a system of first-order non-linear ordinary differential equations with four parameters

θ = (θ1, . . . , θ4)′ controlling (1) the rate rt1 = θ1XtYt of a predator being born, (2) the

rate rt2 = θ2Xt of a predator dying, (3) the rate rt3 = θ3Yt of a prey being born and (4)

the rate rt4 = θ4XtYt of a prey dying. Given the initial population sizes X0 (predators)

and Y0 (prey) at time t = 0, the process can be simulated from exactly using the Gillespie

algorithm [31]. In particular, this algorithm samples times to an event from an exponential

distribution (with a rate ∑4
j=1 r

t
j) and then picks one of the 4 reactions with probabilities

proportional to their individual rates rtj. Despite easy to sample from, the likelihood for

this model is unavailable which makes this model a natural candidate for ABC [54] and

other likelihood-free methods [45, 51]. It is not entirely obvious, however, how to implement

the pseudo-marginal approach since there is no explicit hierarchical model structure with a

conditional likelihood, given latent data, which could be marginalized through simulation
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(c) θ = (0.01, 0.8, 1, 0.01)′

Figure 4: Lotka-Volterra realizations for three choices of θ

to obtain a likelihood estimate.

In our experiments, each simulation is started at X0 = 50 and Y0 = 100 simulated over

20 time units and recorded observations every 0.1 time units, resulting in a series of T = 201

observations each. We plot n = 20 time series realizations for three particular choices of θ in

Figure 4 which differ in the second argument θ2 with larger values accentuating the cyclical

behavior. Slight shifts in parameters result in (often) dramatically different trajectories.

Typical behaviors include (a) predators quickly eating all the prey and then slowly decaying

(as in Figure 4b), (b) predators quickly dying out and then the prey population sky-

rocketing. For certain carefully tuned values θ, the two populations exhibit oscillatory

behavior. For example, in Figure 4a and 4c we can see how the value θ2 determines the

frequency of the population renewal cycle. We rely on the ability of the discriminator to

tell such different shapes apart. The real data (n = 20) is generated under the scenario (a)

with θ0 = (0.01, 0.5, 1, 0.01)′.

ABC analyses of this model reported in the literature have relied on various summary

statistics9 including the mean, log-variance, autocorrelation (at lag 1 and 2) of each series

as well as their cross-correlation [51]. To see whether these summary statistics are able to
9In addition to the summary statistics suggested in [51], we have also considered the classification

accuracy ABC summary statistic CA = 1
n+m

(∑n
i=1 D̂(xi) +

∑m
j=1(1− D̂(x̃j)

)
proposed by [34]. This

ABC version did not provide much better results.
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capture the oscillatory behavior (at different frequencies) and distinguish it from exploding

population growth, we have plotted the squared ‖ · ‖2 distance of the summary statistics10

(i.e. the ABC tolerance threshold ε) relative to the real data for a grid of values θ2, fixing

the rest at the true values θ0
1 = 0.01, θ0

3 = 1, θ0
4 = 0.01 (see Figure 5a). We can see

a V-shaped evolution of ε reaching a minimum near the true value θ0
2 = 0.5, especially

for nrep = 20. This creates hope that ABC based on these summary statistics has the

capacity to provide a reliable posterior reconstruction. Contrastingly, in Figure 5b we have

plotted the estimated log-likelihood η ≡ ∑n
i=1 log[(1− D̂(xi))/D̂(xi)] (as a function of θ2)

where xi = (X i
1, . . . , X

i
T , Y

i
1 , . . . , Y

i
T )′ after training the LASSO-penalized logistic regression

classifier on m = n fake data observations x̃i = (X̃ i
1, . . . , X̃

i
T , Ỹ

i
1 , . . . , Ỹ

i
T )′ for 1 ≤ i ≤ m

using the cross-validated penalty λ (using the R package glmnet). Similarly as for ABC,

we plot η for a single realization of fake data as well as the average η over nrep many

replications. We can see the curve peak around the true value θ0
2 (even for nrep = 1),

indicating that the estimated log-likelihood contains relevant information which could be

exploited within MH. We can also see that only a small range of values θ2 will provide

fake data that are compatible with the real data. In addition, we have seen only a small

subset of parameters to give rise to the oscillatory behavior and, thus, we expect sharply

peaked posteriors around the true values. This intuition is confirmed by heat-map plots

of the estimated likelihood η as a function of (θ2, θ3)′ (Figure 6a) and as a function of

(θ1, θ4)′ (Figure 6b), keeping the remaining parameters at the truth. In Figure 6b, we can

see a sharp spike (approximating a point-mass) around the true value at θ1 = θ4 = 0.01

in a otherwise vastly flat landscape. This peculiar likelihood property may require a very

careful consideration of initializations and proposal densities for MH and the prior domain

for ABC.

In order to facilitate ABC analysis, we have used an informative uniform prior θ ∼ U(Ξ)

with a restricted domain Ξ = [0, 0.1]× [0, 1]× [0, 2]× [0, 0.1] so that the procedure does not

waste time sampling from unrealistic parameter values. These values were chosen based

on a visual inspection of simulated evolutions, where we have seen only a limited range of
10Out of curiosity, we have considered a single fake dataset as well as the average tolerance over nrep

fake data replications.
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Figure 5: Lotka-Volterra model. ABC discrepancy ε and the log-likelihood ‘estimator’ η.
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Figure 6: Lotka-Volterra model. Estimated log-likelihood for a grid of parameters.

values to yield periodic behavior. In a pilot ABC run, we rank M = 10 000 ABC samples

based on ε in an ascending manner and report the histogram of the first r = 100 samples

(Figure 7, the upper panel). We can see that ABC was able to narrow down the region

of interest for (θ1, θ4), but is still largely uninformative about parameters (θ2, θ3) with

histograms stretching from the boundaries of the prior domain. Given how narrow the

range of likely parameter values is (according to Figure 6), the likelihood of encountering

such values even under the restricted uniform prior is still quite negligible. We thereby

tried many more ABC samples (M = 100 000 which took 47.46 hours) only to find out that
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Figure 7: ABC analysis of the Lotka-Volterra model. Upper panel uses M = 10 000 and r = 100

whereas the lower panel uses M = 100 000 and r = 1 000. Vertical red lines mark the true values.

the histograms (top r = 1 000 samples) did not improve much (Figure 7, the lower panel).

The hostile likelihood landscape will create problems not only for ABC but also for

Metropolis-Hastings. Indeed, initializations that are too far from the likelihood domain

may result in Markov chains wandering aimlessly in the vast plateaus for a long time.

Rather than competing with ABC, a perhaps more productive strategy is to combine the

strengths of both. We have thereby used the pilot ABC run (the closest 100 samples out

of M = 10 000 which took roughly 4 hours) to obtain ABC approximated posterior means

θ̂ = (0.015, 0.55, 1.31, 0.012)′. We use these to initialize our MHC procedure to accelerate

convergence (i.e. prevent painfully long burn-in). To implement MHC, we define a Gaussian

random walk proposal for log-parameter values with a proposal standard deviation 0.05 and

deploy the same prior as for the ABC method. We use the random generator variant here,

where the fixed one can be implemented (for example) by fixing the random seed prior

generating the fake data. The trace-plots after M = 10 000 iterations (which took roughly

3 hours) and histograms of the parameters (after the burn-in period 1 000) are portrayed
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θ0
1 = 0.01 θ0

2 = 0.5 θ3 = 1 θ4 = 0.01

Method θ̄ l u θ̄ l u θ̄ l u θ̄ l u

ABC1 0.015 0.003 0.038 0.554 0.037 0.985 1.315 0.189 1.955 0.012 0.004 0.029

ABC2 0.016 0.003 0.042 0.604 0.087 0.980 1.259 0.205 1.971 0.013 0.003 0.024

MHC 0.01 0.008 0.014 0.531 0.41 0.685 1.029 0.791 1.301 0.010 0.007 0.014

Table 4: Posterior summary statistics using ABC1 (M = 10 000 and r = 100), ABC2

(M = 100 000 and r = 1 000) and MHC (M = 10 000 with burnin 1 000). θ̄ denotes

posterior mean, l and u denote the lower and upper boundaries of 95% credible intervals.

in Figure 8. We can see reasonable mixing where the acceptance probability was 0.17. The

histograms report much sharper concentration around true values (compared to ABC in

Figure 6) and were obtained under considerable less time (again compared to ABC with

M = 100 000). The posterior summaries (mean θ̄ and 95% credible intervals (l, u) are

compared in Table 4. We can see that MHC posterior mean not only accurately estimates

the true parameters, but the 95% credible intervals are much tighter and thereby perhaps

more informative for inference. We believe that MHC (in collaboration with ABC pilot run)

provided an inferential framework which was not attainable using neither ABC (with our

choice of summary statistics), nor the pseudo-marginal method. Potentially more fruitful

ABC results could be obtained by instead deploying Wasserstein distance between the

empirical distributions of real and fake data [9], in particular its curve-matching variants

tailored for dependent data. Other possible distances that are useful for time series include

Skorokhod distance [43] or transportation distances (see [9] for related references).

5.3 Bayesian Model Selection

The performance of summary statistic-based methods is ultimately sensitive to the quality

of summary statistics whose selection can be a delicate matter. One such instance is model

selection, where it is known that when ABC may fail even when the summary statistic is

sufficient for each of the models considered [59]. Our method does not require a summary

statistic but a sieve of discriminators that can adapt to the oracle discriminator in the limit.
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Figure 8: MHC analysis of the Lotka-Volterra model. Upper panel portrays MCMC trace

plots (with M = 10 000) where the histograms (without the burnin 1 000) are in the lower

panel.

This creates hope that our method can tackle model selection problems. To illustrate this

point we consider a toy model choice problem considered in [59]. The actual data follows

Xi ∼ N(0, 1) for i = 1, . . . , n = 500. We have two candidate models P1,µ = N(µ, 1) and

P2,µ = N(µ, 1 + 3/
√
n) to choose from. We let the parameters be θ := (m,µ), where

m ∈ {1, 2} is the model indicator and µ is unknown mean with a prior N(0, 1). The model

is assigned a uniform prior, i.e. P (m = 1) = P (m = 2) = 0.5. Following the traditional

Bayesian model selection formalism, we collect evidence for model m = 1 with a Bayes

factor

B12 := πn(m = 1 | X)
πn(m = 2 | X) .

The Bayes factor is the ratio of the marginal likelihoods (or posterior probabilities) of

m = 1 over m = 2. The actual Bayes factor value is B12 = 9, indicating strong evidence

in favor of m = 1. The Bayes factor will be estimated by the ratio of the frequencies
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Figure 9: Trace plots of sampled models using: (Left) MH with the true likelihood ratio, (Middle)

ABC with s(X(n)) = X̄n and (Right) fixed generator MHC.

of the posterior samples given by ABC or our method. Since our parameter of interest

m is discrete, there is no de-biasing for this example. [59] in their Lemma 2 show that

when the summary statistic is ∑iXi, the Bayes factor estimated by ABC asymptotes to

1. This is equivalent to choosing the model with a coin toss. For our method, we use the

logistic regression on regressors (1, Xi, X
2
i ), which can mimic the oracle discriminator. The

trace plots of sampled models for exact MH, MHC and ABC are provided in Figure 9.

Table 5 summarizes the posterior model frequencies. The true posterior probabilities are

πn(m = 1 | X) ≈ 0.9 and πn(m = 2 | X) ≈ 0.1, so the Bayes factor is 9. The “Oracle MH”

is the Metropolis-Hastings with the true likelihood, in which 84.4% of the posterior draws

choose model 1. Algorithms 1 and 2 choose model 1 respectively 93.2% and 70% of the

times. ABC based on the sum, on the other hand, chooses the model randomly. Finally,

Figure 17 in Appendix gives the estimated log-likelihood ratio for each model. In terms of

µ, we again see that Algorithm 1 is slightly biased with the correct shape and Algorithm

2 is less biased but more dispersed on average.

6 Discussion

This paper develops an approximate Metropolis-Hastings (MH) posterior sampling method

for when the likelihood is not tractable. By deploying a Generator and a Classifier (simi-

larly as in Generative Adversarial Networks [32]), likelihood ratio estimators are obtained

which are then plugged into the MH sampling routine. One of the main distinguishing
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Posterior Oracle MH Algorithm 1 Algorithm 2 ABC

Model 1 90% 422 466 350 252

Model 2 10% 78 34 150 248

Bayes factor 9.00 5.41 13.71 2.33 1.02

Table 5: “Posterior” column gives the posterior probability of each model, πn(m = j | X).

Other columns give the frequencies of the corresponding sample of size 500. “Oracle MH”

refers to the Metropolis-Hastings algorithm with the true likelihood. “ABC” is based on

the summary statistics s(X) = X̄n.

features of our work (relative to other related approaches [53]) is that we consider two

variants: (1) a fixed generator design yielding biased samples, and (2) a random generator

yielding more dispersed samples. We provide a thorough frequentist characterization of

the stationary distribution including convergence rates and asymptotic normality. Under

suitable differentiability assumptions, we conclude that correct shape and location can be

recovered by deploying a debiasing combination of the fixed and random generator variants.

We demonstrate a very satisfactory performance on non-trivial time series examples which

render existing techniques (such as PM or ABC) less practical. Along with our theoret-

ical development, we also establish a new bound on the Kullback-Leibler divergence and

variation by possibly non-divergent multiples of the Hellinger distance (Lemma 7.1). This

lemma will be of independent interest to prove sharper rates of posterior contraction in

models with unbounded likelihood ratios, compared to using previously known results.
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7 Appendix

7.1 Proof of Theorem 4.1

The following lemma bounds the Kullback-Leibler divergence and variation by possibly

non-diverging multiples of the Hellinger distance.11 This can be used to derive sharper

rates of posterior contraction in models with unbounded likelihood ratios [see 30, p. 199

and Appendix B].

Lemma 7.1. For probability measures P and P0 such that P0(p0/p) < ∞, let M :=

infc≥1 cP0(p0
p
| p0
p
≥ [1 + 1

2c ]
2) where P0(· | A) = 0 if P0(A) = 0. For k ≥ 2, the following

hold.

(i) −P0 log p
p0
≤ (3 +M)h(p, p0)2.

(ii) P0| log p
p0
|k ≤ 2k−1Γ(k + 1)(2 +M)h(p, p0)2.

(iii) P0| log p
p0
− P0 log p

p0
|k ≤ 22k−1Γ(k + 1)(2 +M)h(p, p0)2.

(iv) ‖1
2 log p

p0
‖2
P0,B ≤ (2 +M)h(p, p0)2.

(v) ‖1
4(log p

p0
− P0 log p

p0
)‖2
P0,B ≤ (2 +M)h(p, p0)2.

Here, ‖f‖P,B :=
√

2P (e|f | − 1− |f |) is the Bernstein “norm”.

Proof. (iv) Using e|x|− 1− |x| ≤ (ex− 1)2 for x ≥ −1
2 and e|x|− 1− |x| < ex− 3

2 for x > 1
2 ,∥∥∥∥log

√
p
p0

∥∥∥∥2

P0,B
≤ 2P0

(√
p
p0
− 1

)2
1

{
p
p0
≥ 1

e

}
+ 2P0

(√
p0
p
− 3

2

)
1

{
p0
p
> e

}
.

The first term is bounded by 2h(p, p0)2. For every c ≥ 1,

P0

(√
p0
p
− 3

2

)
1

{
p0
p
> e

}
≤ P0

(√
p0
p
− 1− 1

2c

)
1

{√
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p
≥ 1 + 1

2c

}
= P0

(√
p0
p
≥ 1 + 1

2c

)[
P0

(√
p0
p
− 1

∣∣∣∣ √p0
p
≥ 1 + 1

2c

)
− 1

2c

]
.

11Lemma 7.1 (iv) first appeared in Kaji et al. [39, Lemma 5]. We reproduce the proof here as it is used

to prove other statements.

45



Since x− 1
2c ≤

c
2x

2 for every x,

P0

(√
p0
p
− 1

∣∣∣∣ √p0
p
≥ 1 + 1

2c

)
− 1

2c ≤
c
2

[
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)
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√
p
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]2 ∣∣∣∣ √p0
p
≥ 1 + 1

2c

)
by the Cauchy-Schwarz inequality. Then the result follows.

(i) Write −P0 log p
p0

= P0( p
p0
− 1− log p

p0
) +P (p0 = 0). With 1

x
− 1− log 1

x
< 2(
√
x− 3

2)

for every x ≥ 3,

P0
(
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− 1− log p
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The second term is bounded as above. For the first term, observe that
P0( p

p0
− 1− log p

p0
)1{ p

p0
> 1

3}

P0(1−
√
p/p0)21{ p

p0
> 1

3}
≤ sup

p/p0>1/3

p
p0
− 1− log p

p0

(1−
√
p/p0)2

< 3.

With P (p0 = 0) =
∫

(√p−√p0)2
1{p0 = 0} follows the result.

(ii) Since ex − 1 − x ≥ xk/Γ(k + 1) for k ≥ 2 and x ≥ 0,12 P0| log p
p0
|k ≤ 2k−1Γ(k +

1)‖1
2 log p

p0
‖2
P0,B. Then, apply (iv).

(iii) By the triangle and Hölder’s inequalities, for k ≥ 1, P0| log p
p0
− P0 log p

p0
|k ≤

[(P0| log p
p0
|k)1/k + P0 log p

p0
]k ≤ 2kP0| log p

p0
|k. Then, use (ii).

(v) By the convexity of e|x|−1−|x| and Jensen’s inequality, ‖1
4(log p

p0
−P0 log p

p0
)‖2
P0,B ≤

1
2‖

1
2 log p

p0
‖2
P0,B + 1

2‖P0
1
2 log p

p0
‖2
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1
2 log p

p0
‖2
P0,B. With (iv) follows the result.

Proof of Theorem 4.1. For D ∈ D, write Pn(log 1−D
1−Dθ

− log D
Dθ

) as

P0 log 1−D
1−Dθ

− P0 log D
Dθ

+ (Pn − P0) log 1−D
1−Dθ

− (Pn − P0) log D
Dθ
.

Let W1 :=
√

D
Dθ
− 1, W2 :=

√
1−D
1−Dθ

− 1, and δ := dθ(D,Dθ). By Taylor’s theorem,

log(1 + x) = x − 1
2x

2 + 1
2x

2R(x) where R(x) = O(x) as x → 0. Therefore, P0 log D
Dθ

=

2P0W1 − P0W
2
1 + P0W

2
1R(W1). Note that P0W

2
1 = P0(

√
D/Dθ − 1)2 = hθ(D,Dθ)2. Since

W 2
1 ≥ 0, this implies that W1(Xi)2 = OP (δ2) and W1(Xi) = oP (1). Also,

2P0W1 =
[
2P0

√
D(p0+pθ)
√
p0

−
∫
D(p0 + pθ)−

∫
p0

]
+ (P0 + Pθ)(D −Dθ)

= −hθ(D,Dθ)2 + (P0 + Pθ)(D −Dθ).

12Γ(k − 1) ≥
∫∞
x
yk−2e−ydy ≥ xk−2e−x implies d2

dx2 (ex − 1− x) ≥ d2

dx2x
k/Γ(k + 1).
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Note that (P0 +Pθ)|D−Dθ| ≤ (P0 +Pθ)(
√
D+
√
Dθ)|
√
D−
√
Dθ| ≤ 2

√
2hθ(D,Dθ) by the

Cauchy-Schwarz inequality. Next, for 1/5 ≤ c < 1,

|P0W
2
1R(W1)| ≤ P0W

2
1 |R(W1)|1{W1 ≤ −c}+ P0W

2
1 |R(W1)|1{W1 > −c}

≤ P0(−R(W1)1{W1 ≤ −c}) + P0W
2
1 |R(−c) ∨R(W1)|.

Since R(x) < 1 and R(W1) = oP (1), the second term is o(δ2) for every c by the dominated

convergence theorem. By the diagonal argument, there exists a sequence c → 1 for given

D → Dθ such that the second term remains o(δ2). Since 0 < −R(x) < −2 log(1 + x) for

x ≤ −1
5 ,

P0(−R(W1)1{W1 ≤ −c}) ≤ P0
(
log Dθ

D
1{W1 ≤ −c}

)
= P0

(
D
Dθ

log Dθ
D
· Dθ
D
1{W1 ≤ −c}

)
≤ sup

x≥(1−c)−2
| 1
x

log x| · P0
(
Dθ
D
1{W1 ≤ −c}

)
.

The first term is o(1) as c → 1. The second term is bounded by P0(Dθ
D
1{W1 ≤ −1

5}) =

P0(W1 ≤ −1
5)P0(Dθ

D
| Dθ

D
≥ 25

16) ≤ P0(W1 ≤ −1
5)M by Assumption 2. By Markov’s

inequality, P0(W1 ≤ −1
5) ≤ 25P0W

2
1 = O(δ2). Thus, |P0W

2
1R(W1)| = o(δ2). Altogether,

we have P0 log D
Dθ

= O(δ).

Next, write P0 log 1−D
1−Dθ

= 2P0W2 − P0W
2
2 + P0W

2
2R(W2). By the Cauchy-Schwarz

inequality,

P0W2 ≤
√
P0

p0
pθ
· hθ(1−D, 1−Dθ) ≤

√
Mδ,

P0W
2
2 ≤

√
(P0 + Pθ)

(
p0
pθ

)2
(
√

1−D −
√

1−Dθ)2 · hθ(1−D, 1−Dθ).

Since D and Dθ are bounded by 0 and 1,

(P0 + Pθ)
(
p0
pθ

)2
(
√

1−D −
√

1−Dθ)2 ≤ P0
(
p0
pθ

)2
+ P0

p0
pθ
≤ 2M.

Therefore, by the dominated convergence theorem, the LHS is o(1) and hence P0W
2
2 = o(δ).

This also implies W2(Xi) = oP (1), W 2
2 (Xi) = oP (δ), and R(W2(Xi)) = oP (1). Next,

similarly as before, for 1/5 ≤ c < 1,

|P0W
2
2R(W2)| ≤ P0(−R(W2)1{W2 ≤ −c}) + P0W

2
2 |R(−c) ∨R(W2)|.
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There exists a sequence c→ 1 such that the second term is o(δ). Also,

P0(−R(W2)1{W2 ≤ −c}) ≤ sup
x≥(1−c)−2

| 1
x

log x| · P0(1−Dθ
1−D 1{W ≤ −c}).

The first term is o(1) as c → 1. The second term is bounded by P0(W2 ≤ −1
5)M

by Assumption 2. By Markov’s inequality, P0(W2 ≤ −1
5) ≤ 25P0W

2
2 = O(δ). Thus,

|P0W
2
2R(W2)| = o(δ). Altogether, we have P0 log 1−D

1−Dθ
= O(δ).

Next, we bound E∗ supD∈Dθ
n,δn
|
√
n(Pn−P0) log D

Dθ
|. Under Assumption 2, an analogous

argument as Lemma 7.1 (iv) yields that
∥∥∥1

2 log D
Dθ

∥∥∥2

P0,B
≤ 2(1 +M)hθ(D,Dθ)2 = O(δ2). By

van der Vaart and Wellner [70, Lemma 3.4.3], we have

E∗ sup
D∈Dθ

n,δn

∣∣∣√n(Pn − P0) log D
Dθ

∣∣∣ . J
(

1 + J
δ2√n

)
.

for J = J[](δ, {log D
Dθ

: D ∈ Dθn,δn}, ‖ · ‖P0,B). Note that a δ-bracket in Dθn,δn induces a Cδ-

bracket in {log D
Dθ
} for some constant C since

∥∥∥log u
Dθ
− log `

Dθ

∥∥∥2

P0,B
≤ 4P0

(√
u/` − 1

)2
=

O(dθ(u, `)2) by Assumption 2. Therefore, J ≤ J[](δ,Dθn,δn , dθ) and hence J(1+ J
δ2√n) . δ2√n

by Assumption 1.

Finally, we bound E∗ supD∈Dθ
n,δn
|
√
n(Pn − P0) log 1−D

1−Dθ
|. As in Lemma 7.1 (iv), we

obtain ρ2 :=
∥∥∥1

2 log 1−D
1−Dθ

∥∥∥2

P0,B
≤ 2(1 + M)P0W

2
2 = o(δ). Therefore, by van der Vaart

and Wellner [70, Lemma 3.4.3], E∗ supD∈Dθ
n,δn
|
√
n(Pn − P0) log 1−D

1−Dθ
| . J

(
1 + J

δ2√n

)
for

J = J[](ρ, {log 1−D
1−Dθ

: D ∈ Dθn,δn}, ‖ · ‖P0,B). With a δ-bracket in Dθn,δn , Assumption 2

implies
∥∥∥log 1−`

1−Dθ
− log 1−u

1−Dθ

∥∥∥2

P0,B
≤ 4P0

(√
(1− `)/(1− u) − 1

)2
= o(δ). Therefore, the

expectation of the supremum is of order o(δ
√
n).

7.2 Proof of Theorem 4.2

Let hn be a bounded sequence and θn := θ0+ hn√
n
andWn :=

√
p̂θn/p̂θ0−1. Since log(1+x) =

x− 1
2x

2 + 1
2x

2R(x) for R(x) = O(x), nPn log p̂θn
p̂θ0

= 2nPnWn− nPnW 2
n + nPnW 2

nR(Wn). By

Assumption 4 (ii) and Pθ0 ˙̀
θ0 = 0, 2nPnWn−nPnW 2

n = 2nPθ0Wn +
√
nPnh′n ˙̀

θ0 −nPθ0W 2
n +
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oP (1). Observe that nPθ0W 2
n = 1

4h
′
nIθ0hn + oP (1) and

2nPθ0Wn = 2nP̂θ0Wn + 2n(Pθ0 − P̂θ0)Wn

= −n
∫ (√

p̂θn −
√
p̂θ0

)2
+ n(cθn − cθ0)−

√
nP̂θ0h

′
n

˙̀
θ0

+ 2n
∫ (√

pθ0 −
√
p̂θ0

)(√
pθ0 +

√
p̂θ0

)(
Wn −

h′n
˙̀
θ0

2
√
n

)
.

By Assumption 4 (i) and
∫

(
√
p̂θ0−

√
pθ0)2 = OP (δ2

n), n
∫

(
√
p̂θn−

√
p̂θ0)2 = 1

4h
′
nIθ0hn+oP (1).

By the Cauchy-Schwarz inequality,∣∣∣∣∣
∫ (√

pθ0 −
√
p̂θ0

)(√
pθ0 +

√
p̂θ0

)(
Wn −

h′n
˙̀
θ0

2
√
n

)∣∣∣∣∣
≤
[∫ (√

pθ0 −
√
p̂θ0

)2 ∫ (√
pθ0 +

√
p̂θ0

)2(
Wn −

h′n
˙̀
θ0

2
√
n

)2
]1/2

,

which is OP (δnn−3/4) = oP (n−1) under Assumption 4 (i) and δn = o(n−1/4).

Since |nPnW 2
nR(Wn)| ≤ |nPnW 2

n |max1≤i≤n |R(Wn(Xi))|, it remains to show that the

maximum is oP (1). Write Vn := Wn −
h′n

˙̀
θ0

2
√
n
. Then,

max
i
|Wn(Xi)| ≤ max

i

∣∣∣ 1
2
√
n
h′n

˙̀
θ0(Xi)

∣∣∣+ max
i
|Vn(Xi)|.

By Markov’s inequality,

P
(

max
1≤i≤n

∣∣∣ 1√
n
h′n

˙̀
θ0(Xi)

∣∣∣ > ε
)
≤ nP

(∣∣∣ 1√
n
h′n

˙̀
θ0(Xi)

∣∣∣ > ε
)

≤ ε−2Pθ0((h′n ˙̀
θ0)2

1{(h′n ˙̀
θ0)2 > nε2}),

which converges to zero as n→∞ for every ε > 0. Thus, maxi
∣∣∣ 1√

n
h′n

˙̀
θ0(Xi)

∣∣∣ converges to
zero in probability. Since Assumption 4 (ii) and (i) imply that nPnV 2

n = nPθ0V
2
n + oP (1) =

oP (1), we have maxi V 2
n (Xi) = oP (1) and hence maxi |Vn(Xi)| = oP (1). Conclude that

maxi |Wn(Xi)| converges to zero in probability and so does maxi |R(Wn(Xi))|.

7.3 Proof of Theorem 4.4

We will prove Theorem 4.4 under weaker assumptions. In particular, we slightly relax

Assumption 4.4 by considering the aggregate behavior of uθ(X(n)) around θ0 with respect
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to the prior Πn(·). Instead, we assume

P
(n)
θ0

(
In(Πn, X

(n), εn) ≤ e−C̃nnε2n
)

= o(1)

where

In(Πn, X
(n), ε) =

∫
Bn(θ0,ε)

euθ(X(n))dΠn(θ) (7.1)

and, at the same time,

P
(n)
θ0

[
sup

Θcn∪dn(θ,θ0)>ε
|uθ(X(n))| > C̃nnε

2
n

]
= o(1)

for any ε > εn. Assumption (4.5) is not needed if one is only interested in the concentra-

tion inside Θn. Alternatively, we could also replace Assumption (4.4) with the following

condition to lower-bound the denominator in (4.3)

sup
θ∈Bn(θ0,εn)

P
(n)
θ0

[
ln(p(n)

θ /p
(n)
θ0 ) + uθ < −nε2

n

]
= o(nε2

n).

Instead of relying on the existence of exponential tests (through Lemma 9 in [29]), we could

then directly assume that for any ε > εn and for all θ ∈ Θn such that d(θ, θ0) > jε for any

j ∈ N there exists a test φn(θ) satisfying

P
(n)
θ0 φn . e−nε2/2 and

∫
X

(1− φn)p(n)
θ euθ ≤ e−j2nε2/2.

We will use the following Lemma (an analogue of Lemma 10 [29]).

Lemma 7.2. Recall the definition In(Πn, X
(n), ε) in (7.1) and define q(n)

θ = p
(n)
θ /p

(n)
θ0 euθ .

Then we have for any C, ε > 0

P
(n)
θ0

(∫
B(θ0,ε)

q
(n)
θ dΠn(θ) ≤ e−(1+C)nε2 × In(Πn, X

(n), ε)
)
≤ 1
C2nε2 .

Proof. Define a changed prior measure Π?
n(·) through dΠ?

n(θ) = euθ(X(n))∫
euθ(X(n))dθ

dΠn(θ). Lemma

10 of [29] then yields

P
(n)
θ0

(∫
B(θ0,ε)

q
(n)
θ dΠn(θ) ≤ e−(1+C)nε2In(Πn, X

(n), ε)
)

= P
(n)
θ0

(∫
B(θ0,ε)

p
(n)
θ /p

(n)
θ0 dΠ?

n(θ) ≤ Π?
n(B(θ0, ε))e−(1+C)nε2

)
≤ 1
C2nε2

.
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Recall the definition In(Πn, X
(n), εn) =

∫
B(θ0,εn) euθ(X(n))dΠn(θ) and define an event

An =
{
X(n) :

∫
B(θ0,εn)

q
(n)
θ dΠn(θ) > e−2nε2nIn(Πn, X

(n), εn)
}

where q(n)
θ = p

(n)
θ /p

(n)
θ0 euθ . From our assumptions, there exists a sequence C̃n > 0 such that

the complement of the set

Bn =
{
X(n) : In(Πn, X

(n), εn) > e−C̃nnε2n and sup
Θcn∪dn(θ,θ0)>εn

|uθ(X(n))| ≤ C̃nnε
2
n

}

has a vanishing probability. Lemma 7.2 then yields P (n)
θ0 [Acn ∪ Bcn] = o(1) as n→∞. The

following calculations are thus conditional on the set An ∩ Bn. On this set, we can lower-

bound the denominator of (4.3) as follows∫
Θ
q

(n)
θ dΠn(θ) >

∫
B(θ0,εn)

q
(n)
θ dΠn(θ) > e−2nε2nIn(Πn, X

(n), εn) ≥ e−(2+C̃n)nε2n .

We first show that P (n)
θ0 [Π?

n(Θ\Θn |X(n))] = o(1) as n → ∞. On the set An ∩ Bn we have

from (4.5) and from the Fubini’s theorem

P
(n)
θ0

[
Π?
n(Θ\Θn |X(n))

]
= P

(n)
θ0

∫Θ\Θn q(n)
θ dΠn(θ)∫

Θ q
(n)
θ dΠn(θ)

 ≤ e2nε2n Π?
n(Θ\Θn)

Π?
n(Bn(θ0, εn))

= e2(1+C̃n)nε2n Πn(Θ\Θn)
Πn(Bn(θ0, εn)) = o(1).

For some J > 0 (to be determined later) we define the complement of the ball around

the truth as a union of shells

Un = {θ ∈ Θn : dn(θ, θ0) > MJεn} =
⋃
j≥J

Θn,j

where each shell equals

Θn,j = {θ ∈ Θn : Mjεn < dn(θ, θ0) ≤M(j + 1)εn}.

We now invoke the local entropy Assumption (3.2) in [29] which guarantees (according to

Lemma 9 in [29]) that there exist tests φn (for each n) such that

P
(n)
θ0 φn . enε2n−nM2εn/2 and P

(n)
θ (1− φn) ≤ e−nM2ε2nj

2/2 (7.2)
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for all θ ∈ Θn such that dn(θ, θ0) > Mεnj and for every j ∈ N\{0} and M > 0. One can

then write

P
(n)
θ0 Π

(
θ ∈ Θ : d(θ, θ0) > MJεn |X(n)

)
≤ P

(n)
θ0 Π(Θc

n |X(n)) + P
(n)
θ0 φn + P

(n)
θ0 (Acn) + P

(n)
θ0 (Bcn)

+
∑
j≥J

P
(n)
θ0 [Π(Θn,j |X(n))(1− φn)I(An ∩ Bn)]

For the last term above, we recall that Π(Θn,j | X(n)) =
∫

Θn,j
q
(n)
θ

dΠn(θ)∫
Θ q

(n)
θ

dΠn(θ)
. We bound the

denominator as before. Regarding the numerator, on the event Bn we have from (7.2) and

from the Fubini’s theorem

P
(n)
θ0

∫
Θn,j

q
(n)
θ dΠn(θ)(1− φn) ≤ e−nM2ε2nj

2/2+C̃nnε2nΠn(Θn,j) (7.3)

Putting the pieces together, we obtain

P
(n)
θ0 [Π(Θn,j |X(n))(1− φn)I(An ∩ Bn)] ≤ e−nM2ε2nj

2/2+2(1+C̃n)nε2n Πn(Θn,j)
Πn[Bn(θ0, εn)] .

Assumption (3.4) of [29] writes as

Πn(Θn,j)
Πn[Bn(θ0, εn)] ≤ enM2ε2nj

2/4 (7.4)

which yields

P
(n)
θ0 Π

(
θ ∈ Θ : d(θ, θ0) > MJεn |X(n)

)
≤ o(1) +

∑
j≥J

e−nε2n(M2j2/4−2−2C̃n).

The right hand side converges to zero as long as J = Jn →∞ fast enough so that C̃n = o(Jn)

and nε2
n is bounded away from zero.

7.4 Proof of Theorem 4.5

We define the event

A =

X(n) ∈ X :
∫ p̃

(n)
θ

p̃
(n)
θ∗

dΠ̃n(θ) > e−(1+C)nε2Π̃n[B(ε, P̃ (n)
θ∗ , P

(n)
θ0 )]

 .
The following lemma shows that P (n)

θ0 [Ac] = o(1) as n→∞.
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Lemma 7.3. For k ≥ 2, every ε > 0 and a prior measure Π̃n(θ) on Θ, we have for every

C > 0

P
(n)
θ0

∫ p̃
(n)
θ

p̃
(n)
θ∗

dΠ̃n(θ) ≤ e−(1+C)nε2Π̃n[B(ε, P̃ (n)
θ∗ , P

(n)
θ0 )]

 ≤ 1
C2nε2

.

Proof. This follows directly from Lemma 10 in [29].

We now define Un(ε) = Πn(θ ∈ Θ : d(P̃ (n)
θ , P̃

(n)
θ∗ ) > ε | X(n)). For every n ≥ 1 and

J ∈ N\{0}, we can decompose

P
(n)
θ0 Un(JMεn) =P (n)

θ0 [Un(JMεn)φn] + P
(n)
θ0 [Un(JMεn)(1− φn)I(Ac)]

+ P
(n)
θ0 [Un(JMεn)(1− φn)I(A)].

The first term is bounded (from the assumption (4.9)) as

P
(n)
θ0 [Un(JMεn)φn] ≤ P

(n)
θ0 φn . e−nε2nJ2M2

.

The second term can be bounded by P (n)
θ0 [I(Ac)] ≤ 1

C2J2M2nε2n
which converges to zero as

nε2
n →∞. The last term satisfies

P
(n)
θ0 [Un(JMεn)(1− φn)I(A)] = P

(n)
θ0

(1− φn)I(A)

∫
θ:d(P̃ (n)

θ
,P̃

(n)
θ∗ )>JMεn

p̃
(n)
θ

p̃
(n)
θ∗

Π̃n(θ)dθ
∫

Θ
p̃

(n)
θ

p̃
(n)
θ∗

Π̃n(θ)dθ


≤ e(1+C)nε2

Π̃n[B(ε, P̃ (n)
θ∗ , P

(n)
θ0 )]

∫
θ:d(P̃ (n)

θ
,P̃

(n)
θ∗ )>JMεn

∫
X

(1− φn)p(n)
θ0

p̃
(n)
θ

p̃
(n)
θ∗

 Π̃n(θ)dθ

≤ e(1+C)nε2

Π̃n[B(ε, P̃ (n)
θ∗ , P

(n)
θ0 )]

∑
j≥J

∫
Un,j

Q
(n)
θ (1− φn)dΠ̃n(θ),

where Un,j = {θ : jMεn < d(P̃ (n)
θ , P̃

(n)
θ∗ ) ≤ (j + 1)Mεn)}. The tests (from the assumption

(4.9)) satisfy Q
(n)
θ (1 − φn) ≤ e−nj2M2ε2n/4 uniformly on Un,j. Then we find (using the

assumption (4.10))

P
(n)
θ0 [Un(JMεn)(1− φn)I(A)] ≤ e(1+C)nε2n

∑
j≥J

e−nj2M2ε2n/4+nj2M2ε2n/8.

The sum converges to zero when nε2
n is bounded away from zero and J →∞.
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7.5 Normal Location-Scale Example

Let Xi ∼ P0 = N(0, 1) and Pθ = N(µ, σ2) where θ = (µ, σ2) are the unknown parameters

and θ0 = (0, 1) are the true values. This model satisfies Assumption 3 with the score
˙̀
θ0(x) =

[
x

(x2−1)/2
]
and the Fisher information matrix Iθ0 =

[
1 0
0 1/2

]
. The oracle discrimina-

tor of P0 from Pθ is Dθ(x) =
[
1 + exp

(
−1

2 log σ2 + x2

2 −
(x−µ)2

2σ2

)]−1
. Let us use the logistic

regression using regressors (1, x, x2) to estimate Dθ, i.e.,

Dθ(x) = [1 + exp(−β0 − β1x− β2x
2)]−1.

Thus, the true parameter for the logistic regression is β = (β0, β1, β2) =
(

1
2 log σ2 +

µ2

2σ2 ,− µ
σ2 ,

1
2σ2 − 1

2

)
. Let β̂ = (β̂0, β̂1, β̂2) be the estimator of β. Then,

p̂θ(x) =
exp

(
−x2

2 − β̂0 − β̂1x− β̂2x
2
)

√
2π

and cθ =
exp

(
−β̂0 + 1

2
β̂2

1
1+2β̂2

)
√

1 + 2β̂2

.

Being a MLE, β̂ is regular and efficient, so
√
n(β̂ − β) = ∆ + oP (1) for a normal vector

∆. Moreover, if we generate Xθ
i through Xθ

i = µ+ σX̃i, X̃i ∼ N(0, 1), there is one-to-one

correspondence between Xθ1
i and Xθ2

i for every θ1 and θ2, so the dependence of ∆ on θ

disappears as n→∞ for otherwise a more efficient estimator exists to contradict efficiency.

Therefore, the formula for p̂θ implies that Assumption 4 (i) is satisfied with the oracle score

function ˙̀
θ0 ; since p̂θ is twice differentiable, it holds with a faster rate of OP (‖h‖4). Finally,

we check Assumption 4 (ii) and (iii) by simulation. Figure 10 shows the supremands of

Assumption 4 (ii) and (iii) as functions of θ = (µ, σ2). The black lines plot n(cθ−cθ0) as we

change θ; they are linear and its quadratic curvatures are ignorable. The blue lines represent

n(Pn − Pθ0)
(√

p̂θ/p̂θ0 − 1 − (θ − θ0)′ ˙̀θ0/2
)
and the red lines n(Pn − Pθ0)

(√
p̂θ/p̂θ0 − 1

)2
;

compared to the values of n(cθ − cθ0), both are uniformly ignorable.

Since this model with the logistic classifier satisfies Assumptions 3 and 4, it is susceptible

to Theorem 4.2. This is supported by a diagnostics plot in Figure 11 which portrays true

and estimated likelihood ratios. In Figure 11a, µ is varied with σ2 fixed at σ2
0 while,

in Figure 11b, σ2 is varied with µ held at µ0. The difference between the estimated log

likelihood (blue) and the quadratic approximation (dashed red) is negligible, demonstrating

that the validity of Theorem 4.2 is justifiable. Compared to the oracle log likelihood (black),
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(a) The black line n(cθ − cθ0); the blue line

n(Pn − Pθ0)(
√
p̂θ/p̂θ0 − 1 − (θ − θ0)′ ˙̀θ0/2);

the red line n(Pn − Pθ0)(
√
p̂θ/p̂θ0 − 1)2. σ2

is fixed at σ2
0.

(b) The black line n(cθ − cθ0); the blue line

n(Pn − Pθ0)(
√
p̂θ/p̂θ0 − 1 − (θ − θ0)′ ˙̀θ0/2);

the red line n(Pn−Pθ0)(
√
p̂θ/p̂θ0 − 1)2. µ is

fixed at µ0.

Figure 10: Illustration of Assumption 4 (ii–iii) in the normal location-scale example with

n = m = 5000.

the estimated log likelihood is shifted by the random term
√
n(ċn,θ0−P̂θ0 ˙̀

θ0). The curvature,

however, is the same as oracle since the red line curves by the Fisher information Iθ0 . Thus,

we expect Algorithm 1 to produce a biased sample and Algorithm 2 a dispersed sample.

Note that we can compute
√
nP̂θ0

˙̀
θ0 = cθ0

√
n
[
− β̂1

1+2β̂2
,−1

2 + 1
2(1+2β̂2) + β̂2

1
2(1+2β̂2)2

]′
, which is

asymptotically linear in ∆ by the delta method. It is then reasonable to expect that this

term has mean zero when averaged over X̃ since β̂ is asymptotically unbiased. If ċn,θ0 also

has mean zero, then Algorithm 2 is unbiased and Algorithm 3 recovers the exact normal

posterior.

To see that this is indeed the case, we impose a conjugate normal-inverse-gamma prior,

θ ∼ NΓ−1(µ0, ν, α, β), that is, the marginal prior of σ2 is the inverse-gamma Γ−1(α, β)

and the conditional prior of µ given σ2 is N(µ0,
σ2

ν
). The posterior is then analytically

calculated as (for X̄n = 1
n

∑
iXi)

θ | X ∼ NΓ−1
(νµ0 + nX̄n

ν + n
, ν + n, α + n

2 , β + 1
2
∑
i

(Xi − X̄n)2 + nν

ν + n

(X̄n − µ0)2

2
)
.

Figure 12 shows the histograms of Algorithm 1, 2 and 3 after K = 500 MCMC steps. Since

the estimated log likelihood has a rightward bias (as seen from Figure 11), Algorithm 1

produces a sample that is shifted to the right (Figures 12a and 12c). Algorithm 2, on the
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(a) True log likelihood, estimated log likeli-

hood, and quadratic approximation by The-

orem 4.2. σ2 = σ2
0.

(b) True log likelihood, estimated log likeli-

hood, and quadratic approximation by The-

orem 4.2. µ = µ0.

Figure 11: Illustration of Theorem 4.2 in the normal mean-scale example with n = m =

5000.

other hand, gives a sample that is more dispersed than the posterior but is correctly placed,

indicating that the random bias has mean zero. Consequently, Algorithm 3 generates a

sample that is placed and shaped correctly (Figures 12b and 12d).

7.6 BvM Conditions

Below, we provide sufficient conditions for the LAN assumption 4.13, relaxing slightly

Lemma 2.1 in [41]. The assumptions in Lemma 7.4 are closely related to the ones in

Theorem 4.2. The main difference is that Lemma 7.4 is concerned with the behavior of the

(misspecified) likelihood around θ∗ as opposed to θ0.

Lemma 7.4. Assume that P (n)
θ0 = P n

θ0 with a density ∏n
i=1 pθ0(xi) where the function

θ → log pθ(x) is differentiable at θ∗ with a derivative ˙̀
θ. Assume there exists an open

neighborhood U of θ∗ such that
∣∣∣∣log pθ1 (x)

pθ2 (x)

∣∣∣∣ ≤ mθ∗‖θ1 − θ2‖ Pθ0 − a.s.∀θ1, θ2 ∈ U where mθ

is a square integrable function. Assume that the log-likelihood has a 2nd order Taylor ex-

pansion around θ∗ (i.e. (7.7) holds). Assume that uθ is asymptotically linear around θ∗(i.e.

(7.8) holds), then (4.13) holds with ε∗n = 1/
√
n and

Ṽθ = Vθ and ∆̃n,θ = V −1
θ

[
Ċθ√
n

+
√
nPn ˙̀

θ + u∗(X(n))√
n

]
(7.5)
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(a) Algorithm 1 and 2. (b) Algorithm 3.

(c) Algorithm 1 and 2. (d) Algorithm 3.

Figure 12: Histograms of the MHC samples of µ and σ2 in the normal location-scale model.

Algorithm 1 (resp. 2) yield more biased (resp. dispersed) samples compared to the true posterior

(black curve). Algorithm 3 (on the right) tracks the black curve more closely.

Proof. We can write

log
p̃

(n)
θ∗+εnh

p̃
(n)
θ∗

= log Cθ
∗+εnh

Cθ∗
+ log

p
(n)
θ∗+εnh

p
(n)
θ∗

+ uθ∗+εnh − uθ∗ . (7.6)

This yields, from Lemma 19.31 in [69], that

Gn

(
√
n log

pθ∗+h/√n
p∗θ

− h′ ˙̀θ∗
)
→ 0 in P0,

where Gn =
√
n(Pn − Pθ0) is the empirical process. Assuming that

Pθ0 log
(
pθ
pθ∗

)
= Pθ0

˙̀′
θ∗(θ − θ∗) + 1

2(θ − θ∗)′Vθ∗(θ − θ∗) + o(‖θ − θ∗‖2) as θ → θ∗ (7.7)
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one obtains

log
p

(n)
θ∗+h/

√
n

p
(n)
θ∗

= nPn log
pθ∗+h/√n
pθ∗

= oP (1) + Gnh
′ ˙̀
θ∗ + nPθ0 log

pθ∗+h/√n
pθ∗

= oP (1) + Gnh
′ ˙̀
θ∗ + h′nVθ∗h

2 +
√
nPθ0h

′ ˙̀
θ

If we assume asymptotic linearity of uθ around θ∗, i.e.

uθ∗+h/√n(X(n))− uθ∗(X(n)) = 1√
n
h′u?(X(n)) + oP (1) (7.8)

for some u?(X(n)) and

log
Cθ∗+hn/

√
n

Cθ∗
= Ċ ′θ∗hn√

n
+ o(1)

then (4.13) holds with (7.5).

Related BvM conditions have been characterized in [8]. We restate these conditions

utilizing the localized re-parametrization h =
√
n(θ − θ0) − s, where s =

√
n(θ̂ − θ0) is

a zero-mean vector where θ̂ is some suitable estimator. We first define a localized cri-

terion function `(h) ≡ p̃θ̂+h/
√
n(X(n))π̃(θ̂+h/

√
n)

p̃θ̂(X(n))π̃(θ̂) , which corresponds to the normalized pseudo-

posterior π∗(θ |X(n))/π∗(θ̂ |X(n)). [8] impose a centered variant of (4.13) requiring that `(h)

approaches a quadratic form on a closed ball K (such that13 Λ ≡
√
n(Θ−θ0)−s = K∪Kc)

in the sense that

| log `(h)− (−h′Jh)/2| ≤ ε1 + ε2 × h′Jh/2 ∀h ∈ K, (7.9)

for some matrix J > 0 with eigenvalues bounded away from zero. If

ε1 = o(1) and ε2 × λ2
max(J)(sup

h∈K
‖h‖)2 = o(1) in P (n)

θ0 -probability. (7.10)

Theorem 1 of [8] shows that `(h)/
∫

Λ `(h)dh approaches the standard normal density in

P
(n)
θ0 -probability as n, d → ∞. The condition (7.9) (a) allows for mild deviations from

smoothness and log-concavity, (b) involves also the prior (unlike (4.13)) but, (c) requires

the existence of a
√
n−consistent estimator θ̂. Lemma 4.6 is more general, where the rate

ε∗n does not need to be 1/
√
n and where the posterior is allowed to have a non-vanishing

bias. The requirement (7.10) imposes certain restrictions on uθ(X(n)). For example, in the

linear case (4.12) one would need u?(X(n)) = o(
√
n) in P (n)

θ0 -probability from (7.10).
13∫

K
`(h)dh/

∫
Λ `(h)dh ≥ 1− oPθ0

(1) and
∫
K
φ(h)dh for φ(·) standard Gaussian density
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Figure 13: Estimated log likelihood ratio for the Ricker model: (Left) function of log r fixing

σ = σ0 and ϕ = ϕ0, (Middle) function of σ2 fixing r = r0 and ϕ = ϕ0, (Right) function of ϕ fixing

σ = σ0 and r = r0.

7.7 Example: Ricker Model

The Ricker model is a classic discrete model that describes partially observed population

dynamics of fish and animals in ecology. The latent population Ni,t follows

logNi,t+1 = log r + logNi,t −Ni,t + σεi,t, εi,t ∼ N(0, 1),

where r denotes the intrinsic growth rate and σ is the dispersion of innovations. The index

t represents time and runs through 1 to T = 20. The index i represents independent

observations and runs through 1 to n = 300. The initial population Ni,0 may be set as 1

or set randomly after some burn-in period. We observe Xi,t such that

Xi,t | Ni,t ∼ Poisson(ϕNi,t),

where ϕ is a scale parameter. The objective is to make inference on θ := (log r, σ2, ϕ). Each

time sequence Xi := (Xi,1, . . . , Xi,T ) constitutes an observation, where i runs through n.

In our notation, we can define the underlying data-generating process as X̃i,t := (Ui,t, εi,t)

for Ui,t ∼ U [0, 1] and set the function Tθ to map εi to Ni and then (Ui, Ni) to Xi through

the Poisson inverse transform sampling of Ui,t into Xi,t. We set the true parameter as

(log r0, σ
2
0, ϕ0) = (3.8, 1, 10) and employ an improper, flat prior. Note that our method can

accommodate an improper prior, unlike ABC.

There is no obvious sufficient statistic for this model, and the likelihood is intractable

due to the nontrivial time dependence of Ni,t. We use an average of neural network discrim-
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Figure 14: MHC samples for the Ricker model.

inators to adapt to the unknown likelihood ratio. First, we estimate Dθ by a neural network

with one hidden layer with 50 nodes, each of which is equipped with the hyperbolic tangent

sigmoid activation function. Then, we compute the log likelihood of the data ∑i log 1−D̂θ
D̂θ

.

We repeat this for 20 times with independently drawn X̃ and take the average of the

log likelihood. This specification produces approximately quadratic likelihood-ratio curves

(Figure 13). Unlike the location-scale normal model, the fixed design does not produce en-

tirely smooth curves due to the averaging aspect over many discriminators. The quadratic

shape is nevertheless recovered here, implying that the differentiability assumptions from

Section 4.1 are not entirely objectionable.

Figure 14 shows the marginal histograms of the MHC samples (500 MCMC iterations).

The proposal distribution is independent across parameters; log r uses the normal distribu-

tion, σ2 the inverse-gamma distribution, and ϕ the gamma distribution; each of them has

the mean equal to the previous draw and variance 1/n. The vertical dashed lines indicate

the true parameter θ0. Note that the posterior is asymptotically centered at the MLE,

not θ0. However, the blue histograms on the left (Algorithm 1) seem too far away from θ0

relative to the widths of the histograms. On the other hand, the red histograms (Algorithm

1) are more dispersed but located closer to θ0. These observations confirm our theoretical

findings. Histograms of Algorithm 3 (Figure 15) look reasonable as a posterior sample,

center around the true values.

Figure 15 and 16 compare our method with the MCWM pseudo-marginal Metropolis-
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Figure 15: MHC samples for the Ricker model (Algorithm 3)

Figure 16: Posterior samples for the Ricker model using the pseudo-marginal MCWM method

Hastings algorithm [3]. We have implemented the default pseudo-marginal method which

deploys an average of conditional likelihoods for Xi, given Ni,

p̂(Xi) = 1
K

K∑
k=1

T∏
t=1

p(Xi,t | Ni,t,k) = 1
K

K∑
k=1

T∏
t=1

(ϕNi,t,k)Xi,te−ϕNi,t,k
Xi,t!

as the likelihood approximation, where K is some positive integer and where Ni,t,k are

independently drawn across k = 1, . . . , K. In our comparisons, we let K = 20n. Figure

15 shows that the two methods produce posterior draws that are located at similar places,

and the widths of the histograms are also comparable. We would like to point out, again,

that our method does not require that a tractable conditional likelihood is available nor

that a user-specified summary statistic is supplied.
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Figure 17: Estimated log likelihood for models 1 and 2. The figures indicate that it is

smooth in µ and have the same curvature as the true log likelihood.

7.8 Bayesian Model Selection: Further Details

Figure 17 shows true likelihood ratio and and classification-based estimates for fixed and

random designs for the Bayesian model selection example from Section 5.3. Under the

fixed design, the curve is smooth and slightly biased with a similar shape to the true log-

likelihood. For the random design, there is no smoothness (due to the fake data refreshing

aspect).

7.9 The CIR Model: Further Details

This section presents additional plots for the CIR analysis from Section ??. Figure 18 shows

smoothed posterior samples for MHC (fixed generator) and nrep ∈ {1, 5}. These plots look

qualitatively similar to the random generator results presented in Figure 8. Next, Figure

19 and 20 show trace-plots of the MHC samples. We can see that (1) using larger nrep

reduces variance, (2) random generators have smaller acceptance rates for the same proposal

distribution. Lastly, histograms of the posterior samples together with demarkations of the

95% credible intervals are in Figure 21 and 22.
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Figure 18: Smoothed posterior densities obtained by simulation using the exact MH and MHC

fixed generator using nrep ∈ {1, 5}
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Figure 19: Trace-plots of 10 000 MHC iterations with nrep = 1
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Figure 20: Trace-plots of 10 000 MHC iterations with nrep = 5
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Figure 21: Histogram of 9 000 MHC iterations (after 1 000 burnin) with nrep = 1
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Figure 22: Histogram of 9 000 MHC iterations (after 1 000 burnin) with nrep = 5
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