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This supplementary material contains the proofs of Theorems in the main text and
details of the simulation study. In particular, the proofs of Theorems 5 and 6 are in
Section A. The proofs for Theorems 1 and 2 under the white noise model are presented
in Section B, the proof of the non-spatial adaptation for common classes of hierarchical
Gaussian process prior is presented in Section C and some of the technical lemmas used in
the proof of Theorem 5 are presented in Section D. In Section E, we provide the proof of
Lemma A.3 used in the proof of Theorem 6 and Section F contains some auxiliary results.
Details on the simulation study are in Section G.
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A Proofs of Theorems 5 and 6

A.1 Proof of Theorem 5

We write Lmax = blog2 nc and denote with T the set of binary trees whose deepest internal
node depth is smaller than Lmax. Recall the notation from Section 3.1 where we denoted
the set of internal tree nodes with Tint and the set of external tree nodes with Text. Using
the definition of Mlk, ηlk and kl(x) in Lemma 1 we first define, for some γ̄ > 0,

dl(x) =
⌊

log2

Cl(x)
(

n

log n

) 1
2t(x)+1

 ⌋ where Cl(x) = (2Mlkl(x)/γ̄)
1

t(x)+1/2 . (A.1)

It turns out that when1

l ≥ d̃l(x) ≡ max{log2(1/2ηlkl(x)), dl(x)}, (A.2)

the multiscale coefficient satisfies (from Lemma 1)

|β0
lkl(x)| ≤ γ̄

√
log n
n

. (A.3)

Moreover, (A.2) implies that |β0
l′kl′ (x)| ≤ γ̄

√
logn
n

for all (l′, kl′(x)) where l′ > l. Indeed,
since Il′kl′ (x) ⊂ Ilkl(x) we have Ml′kl′ (x) ≤Mlkl(x) and thereby

|β0
l′kl′ (x)| ≤ 2Ml′kl′ (x)2−l

′(t(x)+1/2) ≤ 2Mlkl(x)2−l(t(x)+1/2) ≤ γ̄
√

log n/n.

1Note that when η is bounded away from zero, we have d̃l(x) = dl(x) when n is large enough.
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For a tree T , we denote with T̃int a set of pre-terminal nodes such that both children are
external nodes, i.e.

T̃int = {(l, k) ∈ Tint s.t. {(l + 1, 2k), (l + 1, 2k + 1)} ∈ Text} . (A.4)

Note that for all x ∈ [0, 1] we have d̃l(x) ≥ d̃l+1(x).
The main difference between the regression case and the white noise model is the de-

pendence of parameters in the posterior distribution due to the fact that the design is not
necessarily regular. Let

An = {sup
x∈X

ζn(x)|f(x)− f0(x)| > Mn}

and let T denote a set of trees T ∈ T that (a) capture signal and (b) that are suitably small
locally. Formally, we define the set T as

T =
{
T ∈ T : l ≤ min

x∈Ilk
d̃l(x) ∀(l, k) ∈ T̃int and S(f0, A; υ) ⊆ Tint

}
(A.5)

for some A > 0 where

S(f0;A; υ) ≡ {(l, k) : |β0
lk| > A log1+υ+1∨υ n/

√
n}

where a ∨ b = max{a, b}. Going further, with E(T ) we denote the set of functions f =∑
(l,k)∈Tint ψlkβlk that live on the tree skeleton T and

E =
⋃
T ∈T
E(T ) = {f : T ∈ T}. (A.6)

With E introduced in (A.6), we show in Section D.1 and Section D.2 that Ef0Π(Ec |Y )→
0. We can write, for A defined in (D.4) with Pf0(Ac) ≤ 2/p→ 0 where p = 2Lmax ,

Ef0Π
[
f ∈ An

∣∣∣Y ] ≤ Pf0 [Ac] + Ef0Π[Ec | Y ] + Ef0Π
[
f ∈ An ∩ E

∣∣∣Y ] IA
Using the Markov’s inequality, one can bound the last display above with (denoting X =
{xi : 1 ≤ i ≤ n})

Π
[
f ∈ An ∩ E

∣∣∣Y ] ≤M−1
n

∫
E

sup
x∈X

ζn(x)|f(x)− fd0 (x)|dΠ(f | Y ) +M−1
n B, (A.7)

where B is the bias term defined in (B.15) and is shown to be O(1) in Lemma B.2 and
where

fd0 (x) =
∑

l≤Lmax

2l−1∑
k=0

I[l ≤ d̃l(x)]ψlk(x)β0
lk.
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Since trees T ∈ T catch large signals (according to the definition of T above) we have
|β0
lk| < A log1+υ+1∨υ n/

√
n for (l, k) /∈ Tint and

sup
x∈X

ζn(x)
∑

(l,k)/∈Tint;l≤d̃l(x)

2l/2Ix∈Ilk |β0
lk|

 .
log1+υ+1∨υ n√

n
sup
x∈X

ζn(x)2d̃l(x)/2 . logυ+1∨υ+1/2 n.

It thereby suffices to focus on the active coordinates inside Tint. We now show that on the
event A ∫

max
(l,k)∈Tint

|βlk − β0
lk|dΠ(β | T , Y ) . logυ+1∨υ n√

n
.

Set ΣT = cn(X ′TXT )−1 with cn = gn/(1 + gn) and µT = ΣTX ′T [Xβ0 +ν] we have βT | Y ∼
N (µT ,ΣT ) and we use Lemma 8 in [18] which yields for σ̄ = max diag(ΣT )

E‖βT − β0
T ‖∞ ≤ ‖µT − β0

T ‖∞ +
√

2σ̄2 log |Tint|+ 2
√

2πσ̄. (A.8)

For the first term, we note (denoting ‖A‖∞ = maxi
∑
j |aij|)

‖µT − β0
T ‖∞ ≤ (1− cn)‖β0

T ‖∞ + ‖ΣT ‖∞‖X ′T (X\T β0
\T + F0 −Xβ0 + ε)‖∞

From Lemma F.3 and (D.9) we have on the event A

‖X ′T (X\T β0
\T + F0 −Xβ0 + ε)‖∞ .

√
n logυ+1∨υ n.

Denoting with a(i, T ) (resp. a(\i, T )) the ith diagonal (resp. off-diagonal) entry in the
matrix X ′TXT , we can write using the Gershgorin theorem (see e.g. [? ]) and Lemma F.4

‖ΣT ‖∞ ≤
cn

mini[a(i, T )− a(\i, T )] ≤
1

¯
λn
.

Next, σ̄ ≤ ‖ΣT ‖∞ ≤ 1/(
¯
λn) and from (A.8) we obtain E‖βT − β0

T ‖∞ . logυ+1∨υ n/
√
n.

Therefore, on the event A

A(T ) ≡
∫

sup
x∈X

ζn(x)
∑

(l,k)∈Tint

Ix∈Ilk2l/2|βlk − β0
lk|

 dΠ(β | T , Y )

.
∫

max
(l,k)∈Tint

|βlk − β0
lk| sup

x∈X

[
ζn(x)2d̃l(x)/2

]
dΠ(β | T , Y )

.

√
n

log n

∫
max

(l,k)∈Tint
|βlk − β0

lk|dΠ(β | T , Y ) ≤ BA × logυ+1∨υ+1/2 n,
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uniformly for all T ∈ T for some BA > 0. We now put the pieces together. From the
considerations above, we continue the calculations in (A.7) to obtain, on the event A,

Π
[
f ∈ An ∩ E

∣∣∣Y ] ≤M−1
n

∑
T ∈T

Π[T | Y ]
∫
E(T )

sup
x∈X

ζn(x)
∣∣∣f(x)− fd0 (x)

∣∣∣ dΠ(f | Y, T ) + o(1)

≤M−1
n O(logυ+1∨υ+1/2 n) + o(1).

The upper bound goes to zero as long as Mn is strictly faster than logυ+1∨υ+1/2 n.

A.2 Proof of Theorem 6

First, we show that Acεn(M̃) is contained in
Nn⋃
l=1

{
|fSβ (zl)− f0(zl)|

εn(zl)
> M̃/2

}

so that it suffices to focus on the discretization In of [0, 1]. To show this, we note that for
all x ∈ [zl, zl+1) we have fSβ (x) = fSβ (zl). Next, from the Assumption2 1 where M(·) ≤ M̄

and η(·) ≥
¯
η > 0, and by using (4.10) and the Assumption 5 we obtain for a sufficiently

large n and a suitable αl > 0

|f0(x)−f0(zl)| ≤ M̄

(
C2 log n

n

)t(zl)
≤ M̄

(
C2 log n

n

)t(x)−L0C
αl
2 ( logn

n )αl
= O(εn(x)2t(x)+1) = o(εn(x))

Hence since εn(zl) = εn(x)(1 + o(1)),

sup
x∈(0,1)

|fSβ (x)− f0(x)|
εn(x) ≤ max

l≤Nn

|fSβ (zl)− f0(zl)|
εn(zl)

+ o(1)

and thereby

Π(Acεn(M̃) |Dn) ≤
∑
l≤Nn

Π
(
|fSβ (zl)− f0(zl)|

εn(zl)
> M̃/2

)
.

We now focus on one particular knot value x = zl for some l. For the sake of simplicity we
write hereafter (in this proof) εn in place of εn(x) when there is no ambiguity.

For a given partition S, recall that ISx denotes the interval in S which contains x. We
consider two types of partitions S (‘small-bias’ versus ‘large-bias’), i.e. for someM1 > 0 we
distinguish between partitions S satisfying {|ȳISx − f0(x)| ≤M1εn} and {|ȳISx − f0(x)| >
M1εn}, where

ȳI =
∑
i:xi∈I

Yi
nI

and nI =
n∑
i=1

I(xi ∈ I).

2Since in Assumption 1, M(·) and η(·) are bounded, they could be regarded as constants.
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We further split the ‘small-bias’ partitions {|ȳISx − f0(x)| ≤M1εn} into two types (a ‘small
cell’ ISx versus a ‘large cell’ ISx ), i.e. for some small δ > 0 we distinguish between

{nISx > sn(δ)} and {nISx ≤ sn(δ)}, sn(δ) = δ log n
ε2
n

. (A.9)

We first prove that if S is a favorable partition, i.e. if it belongs to

Bn =
{
S :

{
|ȳISx − f0(x)| ≤M1εn} ∩ {nISx > sn(δ)

}}
then the conditional posterior distribution given S concentrates on {|f0(x) − fSβ (x)| ≤
2M1εn}. We then prove that the posterior probability of the set of non-favorable partitions,
i.e. Bc

n, goes to zero as n goes to infinity.
Recall the definition of I(x) in (4.14) as the set of intervals which either contain x or

are neighboring intervals to the one which contains x. We now define the following events
for u0, u2 > 0 and ε̄I = ∑

i:xi∈I εi/nI

Ωn,y(u0) =

∀S ∈ S : |ε̄ISx | ≤ u0

√√√√ log n
nISx

 , Ωn,y,2(u2) =

∀I ∈ I(x) : |ε̄I | ≤ u2

√
log n
nI

 .
Since for a given ISx and X = (x1, . . . , xn)′ the standard Hoeffding Gaussian tail bound (see
e.g. (2.10) in [? ]) yields

P

 |ε̄ISx | > u0

√√√√ log n
nISx

∣∣∣∣∣∣ X
 ≤ 2 exp

{
−u

2
0 log n

2

}

and since the number of possible intervals ISx in the definition of Ωn,y(u0) is of the order
O((n/ log n)2), we have

P (Ωn,y(u0)c) = o(log n/n) as soon as u2
0 ≥ 6.

Similarly, note that the number of intervals involved in the definition of Ωn,y,2 is of order
O((n/ log n)4). By choosing u2

2 > 8 we thus obtain that P (Ωn,y,2(u2)c) = o(1/n). In
the following lemmata, we will thus condition on the high-probability events Ωn,y(u0) and
Ωn,y,2(u2) and we set Ωn = Ωn,x(u1) ∩ Ωn,y(u0) ∩ Ωn,y,2(u2).

Given the structure of the prior, for a given partition S the marginal likelihood density
has a product form and is proportional to

m(S) =
∏
j

m(ISj ), m(ISj ) = e
−
∑

i∈IS
j

(Yi−ȳIS
j

)2/2 ∫
R

e
−n

IS
j

(β−ȳ
IS
j

)2/2
gj(β)dβ.
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We will use repeatedly the following inequality on |ȳISj | < B0− ε for some arbitrarily small
but fixed ε

c0(1 + o(1))e
−
∑

i∈IS
j

(Yi−ȳIS
j

)2/2√
2π√

nISj
≤ m(ISj ) ≤ c1e

−
∑

i∈IS
j

(Yi−ȳIS
j

)2/2√
2π√

nISj
. (A.10)

Lemma A.1. Assume the prior (4.9) with (4.11) and (4.12). For any a > 0 and if
M1 ≥ max(2a/

√
δ, 1/
√

2δ) then

E
[
IΩnΠ({|f0(x)− fSβ (x)| > 2M1εn} ∩Bn|Dn)

]
. n−a.

Proof of Lemma A.1. If S ∈ Bn and |f0(x)− fSβ (x)| > 2M1εn then we have

|ȳISx − f
S
β (x)| ≥ |f0(x)− fSβ (x)| − |ȳISx − f0(x)| ≥M1εn.

Using (A.10), we then have

Π
(
|f0(x)− fSβ (x)| > 2M1εn|Dn, S

)
≤

2√nISx
c0
√

2π(1 + o(1))

∫
|β−ȳ

ISx
|>M1εn

exp{−
nISx
2 (β − ȳISx )2}g(β)dβ

≤
2c1
√
nISx

c0
√

2π(1 + o(1))
exp

{
−
nISxM

2
1 ε

2
n

2

}

. exp
{
−δM2

1 log n/4
}

= o(n−a)

if δM2
1 > max(4a, 1/2).

We now prove that the unfavorable partitions have posterior probability going to 0.
Using Lemma A.2 (below), with a > 1 we obtain on Ωn that

Π
(
S : {|ȳISx − f0(x)| > M1εn} ∩ {nISx > sn(δ)} |Dn

)
= op(n−1)

and that, using Lemma A.3 (below), Π
(
S : {nISx ≤ sn(δ)} |Dn

)
= op(n−1). Combining

these two results with Lemma A.1, we then have on Ωn

Π
(
|f0(x)− fSβ (x)| > 2M1εn|Dn

)
≤

∑
S∈Bn

Π
(
|f0(x)− fSβ (x)| > 2M1εn|Dn, S

)
Π(S|Dn)

+ Π
(
S : {|ȳISx − f0(x)| > M1εn} ∩ {nISx > sn(δ)} |Dn

)
+ Π

(
S : {nISx ≤ sn(δ)} |Dn

)
= op(n−1).
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Lemma A.2. Assume the prior (4.11) with (4.9) and (4.12). Let x ∈ (0, 1), then for all
a, u0, u1, u2 > 0 and for all δ > 0 small enough, there exists a constant C(a, u1, u2) > 0
such that if M1 > max(2u0/

√
δ, C(a, u1, u2)),

E
[
IΩnΠ

(
S : {|ȳISx − f0(x)| > M1εn} ∩ {nISx > sn(δ)} |Dn

)]
= O(n−a).

Lemma A.3. Assume the prior (4.11) with (4.9) and (4.12). With δ > 0 as in Lemma
A.2 we have if B > 9,

E
[
IΩn,x(u1)Π

( {
nISx ≤ sn(δ)

}
|Dn

)]
= o(1/n).

Lemma A.2 is proved by showing that if |ȳISx −f0(x)| and nISx > sn(δ) then the partition
has much smaller posterior probability than the one obtained by splitting Ix into smaller
intervals. The proof of Lemma A.2 is given below while the proof of Lemma A.3 is given
in Section E of the Supplementary Material [? ]. The idea of the proof of Lemma A.3 is
that partitions verifying {nISx > sn(δ)} have either much smaller probability than the one
resulting from merging ISx with a neighboring interval, say Ix,1, or much smaller probability
than the one resulting from splitting ISx,1 into smaller intervals. The latter result comes from
the fact that if ISx,1 is too large then there is a point x1 in ISx,1, such that |ȳISx,1 − f0(x1)| >
M0εn(x1) and nISx,1 > sn(δ1) for some appropriate values M0, δ1 and Lemma A.2 can then
be used.

Proof of Lemma A.2. Throughout the rest of the proof, we suppress the index S when
referring to intervals ISx or ISj . On the event Ωn,y(u0), and if nIx > sn(δ) for a given δ, we
have for β̄0,Ix = ∑

xi∈Ix f0(xi)/nIx

|ȳIx − β̄0,Ix| = |ε̄Ix| ≤ u0

√
log n
√
nIx

≤ u0εn√
δ
≤ M1εn

2

as soon as M1 > 2u0/
√
δ. In particular if |ȳIx − f0(x)| > M1εn then we have from Assump-

tion 1 that as soon as |Ix| ≤
¯
η,

M1εn/2 ≤ |β̄0,Ix − f0(x)| ≤M |Ix|t(x)

so that in all cases |Ix| ≥ (M1εn/2M)1/t(x).
Since the cell Ix has a large bias, we compare the partition S with a partition obtained

by splitting Ix into 2 or 3 intervals, say I1, I2, and possibly I3 if x is too far from the
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boundary of Ix. We do the splitting3 so that x ∈ I1 and |I1| = (τM1εn/2M)1/t(x) for some
τ < 1. We choose also τ > 0 small so that both |I2|, |I3| ≥ (τM1εn/2M)1/t(x). Then on
Ωn,y(u0),

|β̄0,I1 − f0(x)| ≤ τM1εn/2 and |ȳI1 − f0(x)| ≤ τM1εn/2 + u0
√

log n
√
nI1

.

In the following, we write the computations in the case where we have split Ix into 3
intervals. Computations for the case of 2 intervals can be derived similarly. Note that, by
construction, |I2| ≥ |I1| and |I3| ≥ |I1|. In addition, on the event Ωn,x(u1) defined in (4.15)
we have nIj ≥ np0|Ij|/2 for j = 1, 2, 3. Hence, there exists a constant C0 > 0 such that

u0
√

log n
√
nI1

≤ u0C0

(τM1)
1

2t(x)
εn ≤M1εn/2 (A.11)

by choosingM1 large enough so that |ȳI1−f0(x)| ≤M1εn(1+τ)/2. On the event Ωn,y,2(u2),
for all u2 > 0, we have

|ȳI1| ≤ |f0(x)|+ ε and |ȳI2| ≤ ‖f0‖∞ + ε ≤ B0

for any ε > 0 small when n is large enough since ‖f0‖∞ < B0. Hence using (A.10),

m(Ix)
m(I1)m(I2)m(I3) ≤

2c1
√
nI1nI2nI3

2πc3
0
√
nIx

exp
(
−
∑
i∈Ix(yi − ȳIx)2

2 +
∑3
j=1

∑
i∈Ij(yi − ȳIj)2

2

)

=
2c1
√
nI1nI2nI3

2πc3
0
√
nIx

exp
− 3∑

j=1

nIj(ȳIx − ȳIj)2

2

 .
Moreover, we have

|ȳIx − ȳI1| > |ȳIx − f0(x)| − |f0(x)− ȳI1 | ≥M1(1− τ)εn/2 ≥M1εn/4

by choosing τ ≤ 1/2. Finally, by noting that nI � n|I| on the event Ωn,x(u1) we obtain

m(Ix)
m(I1)m(I2)m(I3) . n

√
|I1||I2| exp

(
−nI1M2

1 ε
2
n/8

)
Noting that

nI1M
2
1 ε

2
n ≥

np0|I1|M2
1 ε

2
n

2 ≥ p0(τ/(2M))1/t(x)M
(2t(x)+1)/t(x)
1 log n/2

3Without loss of generality, we can assume that cutting an interval of such a size is possible otherwise
we would replace it with |I1| = (τM1εn/2M)1/t(x)(1 + o(1)) which makes no difference.
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Then we have

Zx(S) ≡ m(Ix)|Ix|B
m(I1)m(I2)m(I3)|I1|B|I2|B|I3|B

. n(|I1||I2|)−(B−1/2) exp
(
−nI1M2

1 ε
2
n/8

)
. (|I1||I2|)−Bn1−M2

1 (M1τ)1/t(x)C(p0,M)

. n−[M2
1 (M1τ/(2M))1/t(x)2p0−2B] = O(n−a)

as soon as M2
1 ≥ max(2B/p0 + a, 2M/τ) since |I1||I2| & ε1/t(x)

n . This implies that on Ωn we
have for

Π1 ≡ Π(S : {|ȳIx − f0(x)| > M1εn} ∩ {nIx > sn(δ)} |Dn)

and I1(S) ≡ I{S : |ȳIx − f0(x)| > M1εn} and I2(S) ≡ I{S : nIx > sn} the following bound

Π1 =

∑
S=S′∪Ix

I1(S)× I2(S)×m(S ′)×m(Ix)× πS(S ′ ∪ Ix)∑
S=S′∪Ix

m(S ′)×m(Ix)× πS(S ′ ∪ Ix)

≤

∑
S=S′∪Ix

I1(S)× I2(S)×m(S ′)m(I1)m(I2)m(I3)× πS(S ′ ∪ I1 ∪ I2 ∪ I3)× Zx(S)∑
S=S′∪I1∪I2∪I3

I2(S)×m(S ′)×m(I1)m(I2)m(I3)× πS(S ′ ∪ I1 ∪ I2 ∪ I3)

≤ Cn−a/2.

B Proofs for the White Noise Model

B.1 Proof of Theorem 1

The proof is similar to the proof in the regression case but is simpler. For the sake of
self-sufficiency, we recall some the definitions used in the proof of Theorem 5, see also
Section A.1. We write Lmax = blog2 nc and denote with T the set of binary trees whose
deepest internal node depth is smaller than Lmax. Recall the notation from Section 3.1 of
the manuscript where we denoted the set of internal tree nodes with Tint and the set of
external tree nodes with Text. Using again the definition of Mlk, ηlk and kl(x) in Lemma 1
we first define, for some γ̄ > 0,

dl(x) =
⌊

log2

Cl(x)
(

n

log n

) 1
2t(x)+1

 ⌋ where Cl(x) = (2Mlkl(x)/γ̄)
1

t(x)+1/2 . (B.1)

Using the fact that when

l ≥ d̃l(x) ≡ max{log2(1/2ηlkl(x)), dl(x)}, (B.2)
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the multiscale coefficient satisfies (from Lemma 1)

|β0
lkl(x)| ≤ γ̄

√
log n
n

. (B.3)

Moreover, (B.2) implies that |β0
l′kl′ (x)| ≤ γ̄

√
logn
n

for all (l′, kl′(x)) where l′ > l as explained
in Section A.1. For a tree T , we denote with T̃int a set of pre-terminal nodes defined in
(A.4). Note that for all x ∈ [0, 1] we have

d̃l(x) ≥ d̃l+1(x).

In the sequel, T denotes a set of trees T ∈ T that (a) capture signal and (b) that are suitably
small locally. Formally, we define the set T as

T =
{
T ∈ T : l ≤ min

x∈Ilk
d̃l(x) ∀(l, k) ∈ T̃int and S(f0, A) ⊆ Tint

}
(B.4)

for some A > 0 where

S(f0;A) ≡ {(l, k) : |β0
lk| > A log n/

√
n}. (B.5)

Going further, with E(T ) we denote the set of functions f = ∑
(l,k)∈Tint ψlkβlk that live on

the tree skeleton T and
E =

⋃
T ∈T
E(T ) = {f : T ∈ T}. (B.6)

First, we show that Ef0Π(Ec | Y ) → 0. To begin, in Section B.1.1 below we show that
the posterior concentrates on locally small trees.

B.1.1 Posterior Concentrates on E

Our considerations will be conditional on the event

An =
{

max
−1≤l≤Lmax,0≤k<2l

ε2lk ≤ 2 log(2Lmax+1)
}

(B.7)

which has a large probability in the sense that P (Acn) . (log n)−1.

Lemma B.1. Let d̃l(x) be as in (B.2). For the Bayesian CART prior from Section 3.1
with a split probability pl = (1/Γ)l we have, on the event An in (B.7), for Γ > 0 large
enough

Π
[
T : ∃(l, k) ∈ T̃int s.t. l > min

x∈Ilk
d̃l(x) | Y

]
→ 0. (B.8)
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Proof. We can write

Π
[
T : ∃(l, k) ∈ T̃int s.t. l > min

x∈Ilk
d̃l(x) | Y

]
≤

∑
l≤Lmax

2l−1∑
k=0

I[l > min
x∈Ilk

d̃l(x)]Π[(l, k) ∈ T̃int | Y ].

We denote with Tlk the set of all trees T such that (l, k) ∈ T̃int. Then

Π
[
(l, k) ∈ T̃int | Y

]
=
∑
T ∈TlkWY (T )∑
T WY (T ) (B.9)

where, for βT = (βlk : (l, k) ∈ Tint)′ and YT = (Ylk : (l, k) ∈ Tint)′,

WY (T ) = Π(T )NY (T ) with NY (T ) =
∫

e−n2 ‖βT ‖22+nY ′T βT π(βT )dβT .

For a tree T ∈ Tlk, denote with T − the smallest subtree of T that does not contain (l, k)
as a pre-terminal node, i.e. T − is obtained from T by turning (l, k) into a terminal node.
We can then rewrite (B.9) as

Π
[
(l, k) ∈ T̃int | Y

]
=
∑
T ∈Tlk

WY (T )
WY (T −)WY (T −)∑
T WY (T ) . (B.10)

Assuming an independent product prior βlk iid∼ N (0, 1), we have

WY (T )
WY (T −) = Π(T )

Π(T −)
e

n2
2(n+1)Y

2
lk

√
n+ 1

. (B.11)

See Section 3.1 in [18] for details on this derivation. Since (l, k) is such that l ≥ d̃l(x) for
some x ∈ Ilk, we have |β0

l kl(x)| ≤ γ̄
√

log n/n from (B.3) and thereby Y 2
lk = (β0

lk + 1√
n
εlk)2 ≤

Cy log n/n on the event An for some Cy > 0. Next, the prior ratio (under the Galton-
Watson process prior) equals

Π(T )
Π(T −) = pl(1− pl+1)2

1− pl
.

For pl = Γ−l ≤ 1/2, we can bound this from above with 2Γ−l. Since for each (`, k), the
mapping T → T − is injective, we can bound (B.10) with

2 Γ−leCy/2 logn
∑
T ∈T−

lk
WY (T )∑

T WY (T ) ≤ 2 Γ−leCy/2 logn, (B.12)

where T−lk corresponds to trimmed trees inside Tlk whose pre-terminal node (l, k) has been
turned into a terminal node. Writing d̄lk = min

x∈Ilk
d̃l(x) and d̄ = min

0≤l≤Lmax
min

0≤k<2l
d̄lk, we can

then bound the probability in (B.8) with, for Γ > 2

2 eCy/2 logn
Lmax∑
l=d̄

Γ−l
2l−1∑
k=0

I[l > min
x∈Ilk

d̃l(x)] = eCy/2 logn
Lmax∑
l=d̄

(Γ/2)−l . eCy/2 logn−d̄ log(Γ/2)

12



Since M(·) and η(·) are bounded away from zero and t(x) ≥ t1 (see Assumption 1), for a
sufficiently large n we have d̃l(x) = dl(x) for all x ∈ [0, 1] and

d̄ ≥ C + 1
3 log n− 1

3 log log n,

where d∗ < C = min
0≤l≤Lmax

min
0≤k<2l

min
x∈Ilk

logCl(x) for some d∗ ∈ R. For a sufficiently large Γ,
the right side goes to zero.

Next, with our Bayesian CART prior we can deploy Lemma 2 of [18] to find that, on
the event An,

Π [T : S(f0;A) 6⊆ Tint | Y ]→ 0 as n→∞. (B.13)

where S(f0;A) was defined in (B.5). We can thus conclude, together with Lemma B.1
above, that Ef0Π(Ec | Y )→ 0.

B.1.2 Controlling the Bias Term

The next step in the proof is to show that the class of trees T in (A.5) are good approxi-
mators of locally Hölder functions.

Lemma B.2. Let f0 satisfy Assumption 1 and let d̃l(x) be as in (B.2). We define the local
bias as

f
\d
0 (x) =

∑
l≤Lmax

2l−1∑
k=0

I[l > d̃l(x)]ψlk(x)β0
lk. (B.14)

With ζn(x) = (n/ log n)t(x)/[2t(x)+1], the local bias is uniformly small in the sense that

B ≡ sup
x∈[0,1]

[
ζn(x)|f \d0 |

]
≤ C̄ for some C̄ > 0. (B.15)

Proof. Using Lemma 1 and assuming M(x) ≤ M̄ we have for some C1 > 0

B ≡ sup
x∈[0,1]

[
ζn(x)|f \d0 |

]
≤ sup

x∈[0,1]

ζn(x)
∑

l≤Lmax

2l−1∑
k=0

2l/2I[ł > d̃l(x)]|β0
lk|


≤ 2M̄ sup

x∈[0,1]

ζn(x)
∑

l>d̃l(x)

2−lt(x)

 ≤ 2M̄ C1 sup
x∈[0,1]

[
ζn(x)2−d̃l(x)t(x)

]
.

From the definition of d̃l(x) and Cl(x) in (B.2) and (B.1), we have under Assumption 1 for
some C̄ > 0

2−d̃l(x)t(x) ≤ (Cl(x))−t(x)
(

log n
n

) t(x)
2t(x)+1

≤ C̄

2M̄ C1

(
n

log n

) t(x)
2t(x)+1

.
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B.1.3 The Main Proof

With E introduced in (B.6), we have shown in Section B.1.1 that Ef0Π(Ec | Y ) → 0. We
can then write, for An introduced in (B.7),

Ef0Π
[
f : sup

x∈[0,1]
ζn(x)|f(x)− f0(x)| > Mn

∣∣∣Y ] ≤ Pf0 [Acn] + Ef0Π[Ec | Y ] + Ef0ΠEIAn

where
ΠE ≡ Π

[
f ∈ E : sup

x∈[0,1]
ζn(x)|f(x)− f0(x)| > Mn

∣∣∣Y ] . (B.16)

Using the Markov’s inequality, one can bound the display above with

ΠE ≤M−1
n

∫
E

sup
x∈[0,1]

ζn(x)|f(x)− f0(x)|dΠ(f | Y )

≤M−1
n

∫
E

sup
x∈[0,1]

ζn(x)|f(x)− fd0 (x)|dΠ(f | Y ) +M−1
n B,

where fd0 = f0 − f \d0 with f \d0 introduced in (B.14) and where B was defined in (B.15) and
was shown to be O(1) in Lemma B.2. We now focus on the integrand in the last display
above. For a function f ∈ E(T ) supported on T ∈ T we have∣∣∣f(x)− fd0 (x)

∣∣∣ ≤ ∑
(l,k)∈Tint

Ix∈Ilk2l/2|βlk − β0
lk|+

∑
(l,k)/∈Tint;l≤d̃l(x)

Ix∈Ilk2l/2|β0
lk|. (B.17)

We now focus on the second term above. Since trees T ∈ T catch large signals (definition
of T in (A.5)), we have |β0

lk| < A log n/
√
n for (l, k) /∈ Tint and thereby

sup
x∈[0,1]

ζn(x)
∑

(l,k)/∈Tint;l≤d̃l(x)

2l/2Ix∈Ilk |β0
lk|

 .
log n√
n

sup
x∈[0,1]

ζn(x)2
d̃l(x)

2 .
√

log n. (B.18)

Above, we have used the fact that (for M(x) ≤ M̄ and t1 ≤ t(x) ≤ 1)

ζn(x)2d̃l(x)/2 ≤ (2M̄/γ̄)1/[2t(x)+1]
(

n

log n

)1/2

.

(
n

log n

)1/2

.

Regarding the first term in (B.17), we can write for a given tree T ∈ T

A(T ) ≡
∫

sup
x∈[0,1]

ζn(x)
∑

(l,k)∈Tint

Ix∈Ilk2l/2|βlk − β0
lk|

 dΠ(β | T , Y ) (B.19)

.
∫

max
(l,k)∈Tint

|βlk − β0
lk| sup

x∈[0,1]

[
ζn(x)2d̃l(x)/2

]
dΠ(β | T , Y )

.

√
n

log n

∫
max

(l,k)∈Tint
|βlk − β0

lk|dΠ(β | T , Y ).
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According to Lemma 3 of [18], the integral above is bounded by C ′
√

log n/n, which implies
A(T ) ≤ BA uniformly for all T ∈ T for some BA > 0. We now put the pieces together.
From the considerations above, we continue the calculations in (B.16) using (B.17) and
(B.18) to obtain

ΠE ≤M−1
n

∑
T ∈T

Π[T | Y ]
∫
E(T )

sup
x∈[0,1]

ζn(x)
∣∣∣f(x)− f \d0 (x)

∣∣∣ dΠ(f | Y, T ) + o(1)

≤M−1
n

[
O(
√

log n) +BA

]
+ o(1).

The upper bound goes to zero as long as Mn is strictly faster than
√

log n.

B.2 Proof of Theorem 2

We follow the strategy of the proof of Theorem 2 in [18]. We first show the set Cn has an
optimal diameter, uniformly over the domain [0, 1].

B.2.1 Optimal Diameter

We will use the following Lemma (a simple modification of Lemma S-11 in [18]).

Lemma B.3. (Median Tree Estimator) Consider the prior distribution as in Theorem 1
and let T ∗Y be as in (3.5). Then there exists an event A∗n such that Pf0 [A∗n] = 1 + o(1) as
n→∞ on which the tree T ∗Y has the following two properties

(1) With S(f0;A) defined in (B.5), we have

T ∗Y ⊇ S(f0;A).

(2) With d̃l(x) as in (B.2) and with T̃ ∗Y int denoting the pre-terminal nodes of T ∗Y int as
defined in (A.4)

l ≤ min
x∈Ilk

d̃l(x) ∀(l, k) ∈ T̃ ∗Y int.

Proof. Recall the notation Lmax = blog2 nc. We denote with

T1 = {T : Tint ⊇ S(f0;A)} and T2 = {T : l ≤ min
x∈Ilk

d̃l(x) ∀(l, k) ∈ T̃int}.

We define an event A∗n = {Y : Π(T1 ∩ T2 | Y ) ≥ 3/4}. Using (B.13) and (B.8) we know
that Pf0(A∗cn ) = o(1) as n → ∞. Then, on the event A∗n, for any node (l1, k1) ∈ S(f0;A)
we have

Π ((l1, k1) ∈ Tint | Y ) ≥ Π(T1 | Y ) ≥ 3/4 > 1/2

15



which implies that (l1, k1) ∈ T ∗Y int. Thereby, on the event A∗n, we have T ∗Y ∈ T1. Similarly,
for any (l1, k1) such that l1 > minx∈Il1k1

d̃l1(x) we have Π((l1, k1) ∈ Tint | Y ) < 1/4 < 1/2
and thereby (l1, k1) /∈ T ∗Y on the event A∗n. This yields that T ∗Y ∈ T2 on the event A∗n. Since
Pf0(A∗n) = 1 + o(1), one obtains Pf0 [{T ∗Y /∈ T1} ∪ {T ∗Y /∈ T2}] = o(1).

From Lemma B.3 it follows that, for some suitable sequence vn, that increases at least
as fast as log n (as shown below),

sup
f,g∈Cn

[
sup
x∈[0,1]

ζn(x)
vn
|f(x)− g(x)|

]
= OPf0 (1). (B.20)

Indeed, for any f, g ∈ Cn we have

sup
x∈[0,1]

[
ζn(x)
vn
|f(x)− g(x)|

]
≤ sup

x∈[0,1]

[
ζn(x)
vn

(
|f(x)− f̂T (x)|+ |f̂T (x)− g(x)|

)]

≤ 2 sup
x∈[0,1]

[
ζn(x)σn(x)

vn

]
.

where σn(x) was defined in (3.6). From the properties of the median tree in Lemma B.3,
we know that there exists an event A∗n such that Pf0(A∗n) = 1 + o(1) where the median tree
satisfies 2l ≤ 2d̃l(x) . (n/ log n)1/[2t(x)+1] for all (l, kl(x)) ∈ T̃ ∗Y int. For any x ∈ [0, 1] and we
then have

ζn(x)σn(x)
vn

≤
(

n

log n

) t(x)
2t(x)+1−

1
2 Lmax∑

l=0
2l/2I[(l, kl(x)) ∈ T ∗Y int] . 2d̃l(x)/2

(
n

log n

) t(x)
2t(x)+1−

1
2

.

From the definition of d̃l(x) we conclude that the right-hand-side is O(1) on the event A∗n.
This concludes the statement (B.20).

B.2.2 Confidence of the set Cn

We first show that the median tree is a (nearly) rate-optimal estimator. Denote with
f̂Tlk = 〈f̂T , ψlk〉 and recall S(f0;A) = {(l, k) : |β0

lk| ≥ A log n/
√
n}. Recall the definition of

trees T in (B.4). Let us consider the event

Bn = {T ∗Y ∈ T} ∩ An, (B.21)

where the noise-event An is defined in (B.7). According to Lemma B.3, we have Pf0(Bn) =
1 + o(1). Using similar arguments as around the inequality (B.17), on the event Bn, we
have for some M > 0

sup
x∈[0,1]

ζn(x)|f̂T (x)− f0(x)| ≤M
√

log n. (B.22)
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Next, one needs to show that σn(x) is appropriately large for each x ∈ [0, 1].
Let Λn(x) be defined by, for µ(x) > 0 to be chosen below,

µ(x)
log n

(
n

log n

) 1
2t(x)+1

≤ 2Λn(x) ≤ 2µ(x)
log n

(
n

log n

) 1
2t(x)+1

. (B.23)

We will use the following lemma which follows from the proof of Proposition 3 in [? ]

Lemma B.4. Assume f0 ∈ CSS(t(x), x,M(x), η(x)). Then for the sequence Λn(x) in (B.23)
there exists C > 0 and l ≥ Λn(x) such that

|β0
lkl(x)| ≥ C 2−Λn(x)[t(x)+1/2]. (B.24)

Proof. From the definition of local self-similarity, we have for some c1 > 0

2−jt(x)c1 ≤ |Kj(f0)(x)− f0(x)| ≤
∑
l≥j

2l/2|β0
lkl(x)|. (B.25)

Now, for all N ≥ 1 there exists j ≥ Λn(x) such that, using (B.25)

|β0
jkj(x)| ≥

1
N

Λn(x)+N−1∑
l=Λn(x)

|β0
lkl(x)|

≥ 2−(Λn(x)+N)/2

N

 ∞∑
l=Λn(x)

2l/2|β0
lkl(x)| −

∞∑
l=Λn(x)+N

2l/2|β0
lkl(x)|


≥ 2−(Λn(x)+N)/2

N

(
2−Λn(x)t(x)c1 − c(t(x), N)2−(Λn(x)+N)t(x)

)
≥ 2−(Λn(x)+N)/2

2N 2−Λn(x)t(x)c1 > c12−Λn(x)[t(x)+1/2].

where c1 = 2−N/2c1/(2N) and N is large enough.

Combining (B.23) with (B.24), one can choose µ(x) such that for each x ∈ [0, 1] there
exists l ≥ Λn(x) such that

|β0
lkl(x)| > C[2µ(x)]−t(x)−1/2

√
log n
n

(log n)t(x)+1/2 ≥ A log n/
√
n.

Since this is a signal node (i.e. β0
lkl(x) ∈ S(f0;A)), it will be captured by the median tree.

One deduces that the term (l, kl(x)) in the sum defining σn(x) is nonzero on the event Bn,
so that

σn(x) ≥ vn

√
log n
n
|ψlkl(x)| ≥ vn

√
log n
n

2Λn(x)/2 ≥

√
µ(x)vn√
log n

(
log n
n

) t(x)
2t(x)+1

. (B.26)
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For vn faster than log n for all x ∈ [0, 1] one has σn(x) ≥
√

log n/ζn(x) and from (B.22)
one obtains

Bn ⊂
{

sup
x∈[0,1]

[
1

σn(x) |f̂T (x)− f0(x)|
]
≤ 1/2

}
(B.27)

and the desired coverage property, since

Pf0(f0 ∈ Cn) = Pf0

(
sup
x∈[0,1]

[
1

σn(x) |f̂T (x)− f0(x)|
]
≤ 1

)
≥ Pf0(Bn) = 1 + o(1).

B.2.3 Credibility of the set Cn

We want to show that
Π[Cn | Y ] = 1 + oPf0 (1).

We note that the posterior distribution and the median estimator f̂T converge at a rate at
x ∈ [0, 1] strictly faster than σn(x) on the event Bn, using again the lower bound on σn(x)
in (B.26). In particular, because of (B.27) we can write

Ef0

(
Π
[

sup
x∈[0,1]

1
σn(x) |f(x)− f̂T (x)| ≤ 1

∣∣∣Y ]) ≥ (B.28)

Ef0

(
Π
[

sup
x∈[0,1]

1
σn(x) |f(x)− f0(x)| ≤ 1/2

∣∣∣Y ] IBn
)

+ o(1). (B.29)

The right side converges to 1 in Pf0-probability, which concludes the proof of the theorem.

B.3 Proof of Theorem 3

The proof follows the lines of [41], with several refinements to allow for weaker constraints
on the inclusion probabilities ωl’s. For some suitable B > 0, we define an event (for
Lmax = blog2 nc)

An,B = {|εlk| ≤
√

2[log 2l +B log n] ∀(l, k) such that l ≤ Lmax} (B.30)

which satisfies Pf0(Acn,B) ≤ 2 logn
nB

. First, we show an auxiliary Lemma which is reminiscent
of Lemma 1 in [41]. We define S(f0;A) = {(l, k) : l ≤ Lmax and |β0

lk| > A
√

log n/n}.

Lemma B.5. Under the assumptions of Theorem 3 there exists a > 0 determined by δ > 0
defined in (3.9) in Assumption 2 and A > a such that, uniformly over C(t,M, η), we have

Ef0Π [T ∩ S(f0; a)c 6= ∅ | Y ] = o(1) as n→∞ (B.31)
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and
Ef0Π [S(f0;A) 6⊆ T | Y ] = o(1) as n→∞. (B.32)

Proof. We first prove (B.31) folowing [41], except that we have a weaker condition on the
prior on T . Note that

Π [T ∩ S(f0; a)c 6= ∅ | Y ] = Π [∃(l, k) ∈ T ∩ S(f0; a)c | Y ]

≤
∑

l≤Lmax

2l−1∑
k=0

I [(l, k) /∈ S(f0; a)] Π [(l, k) ∈ T | Y ] .

We denote by T the set of all subsets of wavelet coefficients βlk up to the maximal depth
Lmax = blog2 nc. Then

Π [(l, k) ∈ T | Y ] =
∑
T ∈T I [(l, k) ∈ T ] Π(T )mn(T )∑

T ∈T Π(T )mn(T )

where
mn(T ) =

∏
(l,k)/∈T

e−n2 Y 2
lk ×

∏
(l,k)∈T

∫
e−n2 |Ylk−βlk|2πlk(βlk)dβlk.

For a set T such that (l, k) ∈ T we denote with T − = T \{(l, k)}. Due to the fact that the
marginal likelihood factorizes, we obtain

Π [(l, k) ∈ T | Y ] =
∑
T ∈T I [(l, k) ∈ T ]R(T , T −)Π(T −)mn(T −)∑

T ∈T Π(T )mn(T ) ,

where, invoking the prior assumption (3.8), we obtain

R(T , T −) := Π(T )mn(T )
Π(T −)mn(T −) ≤

√
2πn−1/2C × CT × wl × en2 Y 2

lk .

This yields
Π [(l, k) ∈ T | Y ] ≤

√
2πn−1/2C × CT × wl × en2 Y 2

lk .

On the event An,B in (B.30) we have |εlk| ≤
√

2(1 +B) log n and for (l, k) /∈ S(f0; a) we
have |βlk| < a

√
log n/n. We use the fact that for any b ∈ (0, 1)

n

2Y
2
lk ≤

1− b
2 ε2

lk + b

2 ε
2
lk + |εlk|a

√
log n+ a2

2 log n

to find that for C̃ ≡
√

2π × C × CT

Π [T ∩ S(f0; a)c 6= ∅ | Y ] ≤ C̃ n
a2−1

2 +b(1+B) ∑
l≤Lmax

wl
∑

k:(l,k)/∈S(f0;a)
e 1−b

2 ε2lk+a
2 |εlk|

√
logn.

19



Since, using the prior assumption (3.9),

Ef0

∑
l≤Lmax

wl
∑

k:(l,k)/∈S(f0;a)
e 1−b

2 ε2lk+a
2 |εlk|

√
logn ≤ 2

∑
l≤Lmax

2lωl
∫ ∞

0
e− b2x2+a

2x
√

logndx

≤ 2
√

2πna2/(2b)
√
b

∑
l≤Lmax

2lωl.

This yields

Ef0Π [T ∩ S(f0; a)c 6= ∅ | Y ] ≤ 2
√

2πC̃ na2−1
2 +b(1+B)+a2/(2b)
√
b

∑
l≤Lmax

2lωl.

We can find b and a such that a2 + 2b(1 +B) +a2/b < δ and thereby, using the assumption
(3.9),

Ef0Π [T ∩ S(f0; a)c 6= ∅ | Y ] . Lmaxn
−c/2

for c = δ − [a2 + 2b(1 +B) + a2/b] > 0. This proves the first statement (B.31).
We now prove that there exists A > 0 such that on the event An,B we have (B.32). We

have
Π [S(f0;A) 6⊆ T | Y ] ≤

∑
(l,k)∈S(f0;A)

Π[(l, k) /∈ T | Y ]

For T such that (l, k) /∈ T , denote with T + = T ∪ {(l, k)}. Then

Π [(l, k) /∈ T | Y ] =
∑
T ∈T I [(l, k) /∈ T ]R(T , T +)Π(T +)mn(T +)∑

T ∈T Π(T )mn(T ) ,

where (choosing R > Cβ +
√

2(1 +B) log n/n for a suitably large Cβ)

R(T , T +) := Π(T )mn(T )
Π(T +)mn(T +) ≤

n1/2
√

2π cT wl cR c
e−n2 Y 2

lk .

Above, we have used the fact that on the eventAn,B we have |Ylk| ≤ U ≡ Cβ+
√

2(1 +B) log n/n ≤
R and for some c > 0∫

e−n2 |Ylk−βlk|2πlk(βlk)dβlk ≥ cR

∫ R

−R
e−n2 |Ylk−βlk|2dβlk = cR

√
2π√
n

[Φ(R;Ylk, 1/n)− Φ(−R;Ylk, 1/n)]

≥ cR

√
2π√
n

[Φ(U ;Ylk, 1/n)− Φ(−U ;Ylk, 1/n)] ≥ cR

√
2π√
n

(Φ(2U
√
n; 0, 1)− 1/2)

≥ cR

√
2π√
n
c
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where Φ(x;µ, σ) is a cdf of a normal distribution with mean µ and variance σ. On the
event An,B (in (B.30)) we have |εlk| ≤

√
2(1 +B) log n and

Y 2
lk = [(β0

lk)2 + εlk/
√
n]2 ≥ (β0

lk)2/2− 4(1 +B) log n/n > [A2 − 4(1 +B)] log n/n.

This yields (using the prior assumption (3.9)

Π [T : S(f0;A) 6⊆ T | Y ] ≤ |S(f0;A)|√
2π cT cR

nBω+1/2−[A2−4(1+B)]/2 < n−A
2/4

for A2/4 > 2(1 +B) +Bω + 1/2.

Now, we complete the proof of Theorem 3. We deploy Lemma B.5 to find A > a > 0
such that for S(f0; b) = {(l, k) : |β0

lk| ≥ b
√

log n/n} we obtain, on the event An,B,

Π [T : T ⊂ S(f0; a) | Y ]→ 1 and Π [T : S(f0;A) 6⊆ T | Y ]→ 0 as n→∞.

Similarly as in the proof of Theorem 1, we then define

T = {T : S(f0;A) ⊂ T ⊂ S(f0; a)},

and we denote with E(T ) the set of of functions f(x) = ∑
(l,k)∈T ψlk(x)βlk. We also assume

that the bound A > 0 can be chosen large enough such that

sup
f0∈C(t,M,η)

Ef0Π
[

max
(l,k)∈S(f0;A)

|βlk − β0
lk| > A

√
log n/n

∣∣∣Y ] . log n
nB

This is indeed the case, as shown in the proof of Theorem 3.1 in [41]. From the definition
of local Hölder balls we have

{(l, k) : l ≤ min
x∈Ilk

d̃l(x,A)} ⊂ S(f0; a) ⊂ {(l, k) : l ≤ min
x∈Ilk

d̃l(x, a)},

where d̃l(x, a) is defined as in (B.1) using a instead of γ̄. We note that for each f ∈ E(T )
with a coefficient sequence {βlk} that satisfies

max
(l,k)∈S(f0;A)

|βlk − β0
lk| ≤ A

√
log n/n (B.33)

and we thereby have for ζn(x) =
(

n
logn

) t(x)
2t(x)+1

ζn(x)|f(x)− f0(x)| ≤ ζn(x)|f0(x)\d|

+ ζn(x)
 ∑

(l,k)∈T
I(x ∈ Ilk)2l/2|βlk − β0

lk|+
∑

(l,k)/∈T
I(x ∈ Ilk)2l/2|β0

lk|


(B.34)
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where fd0 (x) = f0 − f
\d
0 and where f \d0 is the bias term defined in (B.14) which satisfies

supx∈[0,1] ζn(x)|f0(x)\d| = O(1) according to Lemma B.2. Focusing on the last term in
(B.34), we know that for each T ∈ T , we have |β0

lk| < A
√

log n/n for (l, k) /∈ T and
l ≤ minx∈Ilk d̃l(x,A). Thereby, we obtain

sup
x∈[0,1]

ζn(x)
∑

(l,k)/∈T
I(x ∈ Ilk)2l/2|β0

lk| .
√

log n/n sup
x∈[0,1]

ζn(x)2d̃l(x,A)/2 = O(1).

Regarding the middle term in (B.34), we use the property (B.33) and the fact that (l, k) ∈ T
and x ∈ Ilk implies l ≤ d̃l(x, a). Then

sup
x∈[0,1]

ζn(x)
∑

(l,k)∈T
I(x ∈ Ilk)2l/2|βlk − β0

lk| .
√

log n/n sup
x∈[0,1]

ζn(x)2d̃l(x,a)/2 = O(1).

This completes the proof of Theorem 3.

C Proof of Theorem 4

The proof of Theorem 4 is based on Corollary 2.1 and Theorem 2.2 of [60] for the regression
case with wavelet priors and the proof is very similar to the proof of Propositions 3.1 and
3.2 of [60] . We first determine εn(λ) defined by

Π [‖β − β0‖2 ≤ Kεn(λ) | λ] = e−nεn(λ)2 (C.1)

for someK > 0 and where λ is the unknown hyper-parameter L, τ and α in cases T1, T2 and
T3, respectively. We assume that f0 satisfies (4.2) and determine εn(λ) and εn,0 = infλ εn(λ)
in all 3 cases (T1)-(T3).

Case T1. The main difference with Lemma 3.1 of [60] (further referred to as RS17) is
that the parameter space is different. We denote with βL = (βlk : l ≤ L, k ∈ Il)′ for
Il = {0, 1, . . . , 2l − 1} where 2l = |Il|. Since βlk = 0 for l > L, we can write ‖β − β0‖2

2 =
‖βL − β0

L‖2
2 + ∑

l>L

∑2l−1
k=0 (β0

lk)2. For s2
n = K2εn(L)2 −∑l>L

∑2l−1
k=0 (β0

lk)2 we use the same
arguments as in Lemma 3.1 of RS17 to conclude that

Π
(
‖βL − β0

L‖2 ≤ sn | L
)
� e2L log(sn 2−L/2)(1+o(1))

as in the proof of Lemma 3.1 of [60]. We then obtain a variant of equation (A1) in RS17

s2
n +

∑
l>L

2l−1∑
k=0

(β0
lk)2 = K22L

n
log

(
2L/2
sn

)
(1 + o(1)).
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In addition, ∑
l>L

2l−1∑
k=0

(β0
lk)2 ≤ M2

1 2−2α1L

2(1− 2−2α1)(1 + o(1))

so that
εn,0 . (n/ log n)−α1/(2α1+1) and εn(L)2 �

∑
l>L

∑
k

β02
lk + 2L log n

n
. (C.2)

For all β0 satisfying also (4.5), we obtain that

εn,0 � (n/ log n)−α1/(2α1+1) and εn(L)2 &M2
1 2−2α1L + 2L log n

n
.

Case T2 and T3. Similarly as in the proof of Lemma 3.2 in [60], it can be seen that (see
equation (3.4) in RS17 or Theorem 4 of [? ])

− log Π(‖β‖2 ≤ Kε | α, τ) � (Kε/τ)−1/α.

Note that this equivalence is valid for the non-truncated prior and remains valid under the
priors defined in T2 and T3 for any positive α.4 Similarly as in the proof of Lemma 3.2
[60], we bound from above

inf
h∈Hα,τ ;‖h−β0‖2≤ε

‖h‖2
Hα,τ

by ‖β0‖2
Hα,τ if α1 > α + 1/2 where, under (4.2),

‖β0‖2
Hα,τ = τ−2∑

l,k

2(2α+1)lβ02
lk ≤

M1

τ 2

∑
l

2(2α+1−2α1)l .
M1

τ 2[2α1 − 1− 2α]

and by

‖β0‖2
Hα,τ = τ−2

Lε∑
l

∑
k

2(2α+1)lβ02
lk .

M12(2α+1−2α1)Lε

τ 2[2α + 1− 2α1] , M12−2α1Lε = ε2

if α1 < α + 1/2 or by

‖β0‖2
Hα,τ .

M1Lε
τ 2 , if α1 = α + 1/2.

We thus obtain that if α1 6= α + 1/2 then

εn(α, τ) . n−α/(2α+1)τ 1/(2α+1) +
(

1
nτ 2(α1 − α− 1/2)

) α1
2α+1∧

1
2

4The case α close to 0 is of no importance here since the associated εn(λ) is much bigger than εn,0
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while if α1 = α + 1/2

εn(α, τ) . n−α/(2α+1)τ 1/(2α+1) +
(

log(nτ 2)
nτ 2

) 1
2

.

Note that if f0 also follows (4.5), we can bound from below (similarly to [60]) for all
h ∈ Hα,τ ; ‖h− β0‖2 ≤ εn(α, τ) when α1 < α + 1/2 , Lmax > 1,

‖h‖2
Hα,τ ≥ τ−2 ∑

l≤Lmax

∑
k∈Il1

2(2α+1)l[β02
lk − 2|β0

lk||β0
lk − hlk|]

≥ m1

2τ 2(2α + 1− 2α1)2(2α+1−2α1)Lmax − 2M1

τ 2 2(2α−α1+1/2)Lmax
∑

l≤Lmax

∑
k∈Il1
|β0
lk − hlk|

≥ m1

2τ 2(2α + 1− 2α1)2(2α+1−2α1)Lmax − C2(2α−α1+1)Lmaxεn(α, τ)

= m1

2τ 2(2α + 1− 2α1)2(2α+1−2α1)Lmax
(

1− C2α1Lmax

m1
εn(α, τ)

)

for some C > 0 and choosing Lmax equal to Lmax =
⌊

log( m1
2Cεn(α,τ))
α1 log 2

⌋
, we bound

‖h‖2
Hα,τ & εn(α, τ)−(2α+1−2α1)/α1

which leads to

εn(α, τ) & n−α/(2α+1)τ 1/(2α+1) +
(

1
nτ 2 | α1 − α− 1/2 |

) α1
2α+1

while if α1 = α + 1/2

εn(α, τ) & n−α/(2α+1)τ 1/(2α+1) +
(

log(nτ 2)
nτ 2

) α1
2α+1∧

1
2

and if α1 > α + 1/2, since ‖β0‖2 ≥ c > 0 for some fixed c,

εn(α, τ) & n−α/(2α+1)τ 1/(2α+1) +
(

‖β0‖2

nτ 2(α1 − α− 1/2)

)1/2

.

The lower bounds thus match the previous upper bounds. Minimizing in α in the case
T3 these upper and lower bounds lead to choosing α = α1 and εn,0 � n−α1/(2α1+1) while
minimizing in τ (Case T2) with α1 < α + 1/2, the minimum is obtained by considering
τ � n−(α1−α)/(2α1+1) and εn,0 � n−α1/(2α1+1) while if α1 ≥ α + 1/2 it is obtained with
τ � n−1/(4α+4) leading to εn,0 � n−(2α+1)/(4α+4) up to a log n term.
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Having quantified εn,0 for the three cases, the upper bound (4.4) follows directly from
Theorem 2.3 of RS17.

Regarding the lower bound, we let Λ0 = {λ : εn(λ) ≤Mnεn,0} with Mn going to infinity
and λ either L, τ or α in cases T1, T2 and T3, respectively. Then following from the proofs
of Propositions 3.1 and 3.2 of [60] and since the priors on λ satisfy condition H1 (using
Lemma 3.5 and 3.6 of [60]) one obtains

Π(λ ∈ Λ0 | Y ) = 1 + oPf0 (1).

From this and the remark that for all β = {βlk} such that βlk = 0 for l ≥ Lmax = blog2 nc
we have for some C1 > 0

‖fβ0 − fβ‖n ≤ ‖fβ0,Lmax − fβ‖n + C1M1n
−α1 = ‖fβ0,Lmax − fβ‖2 + C1M1n

−α1

≥ ‖fβ0,Lmax − fβ‖n − C1M1n
−α1 = ‖fβ0,Lmax − fβ‖2 − C1M1n

−α1 .

Together with the fact ‖fβ0,Lmax − fβ‖2 = ‖β0
Lmax − β‖2 we obtain for some δ > 0

Bn =
{
f : ‖f − f0‖1/2,1 ≤ n−δεn(α1)

}
the following (with ln(β) = log f(Y | β) and mn(λ) =

∫
β eln(β)−ln(β0)dΠ(β | λ))

Π(Bn | Y ) = Π (Bn ∩ {λ ∈ Λ0} | Y ) + oPf0 (1)

≤
∫
λ∈Λ0

∫
Bn

eln(β)−ln(β0)dΠ(β | λ) dΠ(λ)∫
λ∈Λ0

mn(λ)dΠ(λ) .

The Case T1. We have λ = L and set Ln,1 such that Ln,1 = blog(L0(n/ log n)1/(2α1+1))/ log 2c
for some suitable L0 > 0. Then Π(L ∈ Λ0 | Y ) = 1 + oPf0 (1) and and for all L ∈ Λ0 under
(4.2) and (4.5) we have

2Ln,1M−2/α1
n . 2L . 2Ln,1M2

n.

Moreover

Π(Bn | Y ) =
∑
L∈Λ0

Π(Bn | Y, L)Π(L | Y ) + oPf0 (1).

It will be useful to rewrite (4.1) in a vector notation. For any L ≥ 1, we denote with βL
a vector with coordinates βj = βlk for j = 2l−1 + k − 1. If L ≤ Lmax and β is according to
the model L, i.e. βlk = 0 for all l > L, the log-likelihood at β (conditionally on the model
L) can be written as `n(β) = `n(β̂L)− (β−β̂L)tΨtLΨL(β−β̂L)

2σ2 + C, where

ΨL(i, j) = ψ`k(xi) for j = 2`−1 + k − 1, i ≤ n, and for β̂L = Ψt
LY

n
,
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since Ψt
LΨL = nI so that `n(β) = −n‖β−β̂L‖2

2σ2 +C ′. This implies, together with the Gaussian
prior on the βlk when l ≤ L, that for all L ≤ Lmax the conditional posterior given L is
Gaussian with a mean β̃L = nβ̂L

1+n and a variance σ2I/(n + 1). In the following, we write
θ̃L,2 as the subvector of β̃L whose coordinates correspond to j = 2l−1 + k − 1 with k ∈ Il2
and N (θ̃L,2, σ2I2/(n + 1)) as a Gaussian vector with a mean θ̃L,2 and a covariance matrix
σ2I2/(n + 1), where I2 is the identity matrix of dimension |I2| = ∑

l≤L Il2 � c2L for some
c > 0 and L ∈ Λ0. We have

Π(Bn | Y, L) ≤ P (‖N (θ̃L,2, σ2I2/(n+ 1))‖ ≤ n−δεn,0)

≤ P (‖N (0, I2)‖2 ≤ (n+ 1)
n−2δε2n,0
σ2 )

= P

(
X 2(|I2|) ≤ (n+ 1)

n−2δε2n,0
σ2

)
. e−c′|I2|

for some c′ > 0, since

(n+ 1)
n−2δε2n,0
σ2 . n−2δ(log n)qn1/(2α1+1) . n−δ|I2| for some q > 0

and
Π(Bn | Y ) = op(1).

Note that the same holds true if the prior is not Gaussian and if α1 > 1/2.
The cases T2 and T3 We write (α, τ) ∈ Λ0 to denote α ∈ Λ0 in the case T2

and τ ∈ Λ0 in the case T3. We have n−α1 = o(n−δεn(α1)) as soon as δ < 2α2
1/(2α1 + 1).

Moreover, given λ the conditional prior probability

Π(‖β − β0L‖2 ≤ 2n−δεn(α1)|α, τ) ≤ Π(‖β‖2 ≤ 2n−δεn(α1)|α, τ)

≤ C ′e−C(n−δεn(α1)/τ)−1/α
,

for some C,C ′ > 0. We also have using the notations λn = α1 in case T3, λn =
n−(α1−α)/(2α1+1) in case T2 with α1 < α + 1/2 and λn = n−1/(4α+4) in case T2 with
α1 ≥ α + 1/2. Set

Dn =
∫

Λ
mn(λ)π(λ)dλ

then
Dn ≥

∫ λn(1+1/n)

λn(1−1/n)
mn(λ)dΠ(λ)

and using
Π([λn(1− 1/n), λn(1 + 1/n)]) ≥ e−nεn(α1)2/2,
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we obtain that for some M̃1 > 0,

Pf0

(
Dn ≤ e−M̃1nεn(α1)2)
≤

2
∫ λn(1+1/n)
λn(1−1/n)

∫
‖β−β0‖≤εn(λ) P0(ln(β)− ln(β0) ≤ −M̃1nεn(α1)2/4)dΠ(β | λ)dΠ(λ)∫ λn(1+1/n)

λn(1−1/n) Π(‖β − β0‖ ≤ εn(λ) | λ)dΠ(λ)

.
1

nεn(α1)2 .

This leads to

Pf0 (Π(Bn|Y n) > ε) ≤ Pf0

(
Dn < e−M̃1nεn(α1)2)

+ eM̃1nεn(α1)2

ε

∫
Λ0

Π(‖β − β0L‖2 ≤ 2n−δεn(α1)|λ)π(λ)dλ

≤ o(1) + C ′
eM̃1nεn(α1)2

ε
sup
λ∈Λ0

e−C(n−δεn(α1)/τ)−1/α
.

Moreover for all λ ∈ Λ0, (εn(α1)/τ)−1/α & nε2n(α1)(log n)q for some q ∈ R, therefore

Pf0 (Π(Bn|Y n) > ε) = o(1).

This concludes the proof of Theorem 4.

D Intermediate Results for Theorem 5

We first describes some properties of the Gram matrix induced by irregular designs X =
{xi ∈ [0, 1] : 1 ≤ i ≤ n}. Note that Lemma F.1 implies that, under the balancing
Assumption 4, we have for the jth column Xj of X with j = 2l + k

‖Xj‖2
2 = 2lnlk ≤ 2n (C + l) and ‖Xj‖1 = 2l/2nlk ≤

2n (C + l)
2l/2 . (D.1)

and for i = 2l2 + k2

|X ′jXi| ≤ Cd
√
n logυ n 2 l

2 I{(l2, k2) is a descendant of (l, k)}. (D.2)

Recall the notation of pre-terminal nodes T̃int in (A.4) and let X = {xi : 1 ≤ i ≤ n}.
We will also be denoting with λmin(A) and λmax(A) the minimal and maximal eigenvalues
of a matrix A. The idea behind the proof is similar to the one of Theorem 1. We will be
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using the same definition of d̃l(x) in (B.2), T in (A.5), E in (A.6) and S(f0;A; υ) in (D.14).
First, we show that Ef0Π(Ec | Y )→ 0.

To this end, in Section D.1 we show that the posterior concentrates on locally small trees
and in Section D.2 we show that the posterior trees catch signal nodes. These results will be
conditional on the set A in (D.4). The complement of this set has a vanishing probability
Pf0(Ac) ≤ 2/p→ 0 where p = 2Lmax = bC∗

√
n/ log nc for some suitable C∗ > 0.

D.1 Posterior Concentrates on Locally Small Trees

We now show that

Π
[
T : ∃(l, k) ∈ T̃int s.t. l > min

x∈Ilk∩X
d̃l(x) | Y

]
→ 0. (D.3)

on the set
A = {ε : ‖X ′ε‖∞ ≤ 2‖X‖

√
log p}, (D.4)

where ‖X‖ = max
1≤j≤p

‖Xj‖2.

To prove this statement, we follow the route of Lemma B.1 for the white noise model.
The irregular design requires non-trivial modifications of the proof due to the induced
correlation among predictors. Similarly as in the proof of Lemma B.1, we denote with T −

the sub-tree of T obtained by deleting a deep node (l1, k1) which corresponds to the column
Xj where j = 2l1 + k1 and which satisfies l1 ≥ d̃l(x) (as in (B.2)) for some x ∈ Il1k1 and
thereby |βl1k1| .

√
log n/n. Then we have

NY (T )
NY (T −) = 1√

1 + gn
exp

{1
2Y
′[XT ΣTX ′T −XT −ΣT −X ′T − ]Y

}
. (D.5)

Using Lemma F.2, we simplify the exponent in (D.5) to find for cn = gn/(gn + 1)

NY (T )
NY (T −) = 1√

1 + gn
exp

{
cn|X ′j(I − PT −)Y |2

2Z

}
.

First, we bound the term

|X ′j(I − PT −)Y |2 =|X ′j(I − PT −)(Xjβ
0
j +X\T β

0
\T + ν)|2

≤2|X ′j(I − PT −)Xj|2|β0
j |2 (D.6)

+ 4|X ′j(X\T β0
\T + ν)|2 (D.7)

+ 4|X ′jPT −(X\T β0
\T + ν)|2. (D.8)
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Using the design assumption (D.1), the first term satisfies (since λmax(I − PT −) = 1)

|X ′j(I − PT −)Xj|2|β0
j |2

Z
= Z|β0

j |2 ≤ ‖Xj‖2
2 log n/n . log2 n,

where we used the fact that (l1, k1) is deep and thereby |β0
j | .

√
log n/n. Next

Using (D.2), the Hölder condition and the assumption t1 > 1/2, we obtain

|X ′jX\T β0
\T | ≤ Cd

√
n logυ n

∑
(l2,k2)

I[(l2, k2) is a descendant of (l1, k1)]2l1/22−l2(t1+1/2)

≤ Cd
√
n logυ n

Lmax∑
l2=l1+1

2l2−l1 2l1/2 2−l2(t1+1/2)

.
Cd
√
n logυ n
2l1/2 .

√
n logυ n. (D.9)

Regarding the second term in (D.7), on the event A, we have from the Lemma F.3

|X ′jν| ≤ |X ′j(F0 −Xβ0 + ε)| .
√
n log1∨υ n. (D.10)

We again split the term (D.8) into two and upper-bound each summand separately. Using
the fact (from Lemma F.4) that (X ′TXT )−1 is positive definite for any T and thereby
| u′(X ′TXT )−1v | ≤ λmax((X ′TXT )−1)× |u′v| for any u,v ∈ R|Tint|, we have

|X ′jPT −ν | ≤
1

λmin(X ′T −XT −) | (X
′
T −Xj)′(X ′T −ν) | .

Note that the matrix XT − has |T −int| columns, one for each active wavelet coefficient. Using
Lemma F.1, we know that the |T −int| × 1 vector (X ′T −Xj) has only l1 nonzero entries due
to orthogonality of (l1, k1) to non-ancestors. In other words, there is one ancestor for each
layer in T − that is not orthogonal to (l1, k1). Using (D.2), we thus find that

‖X ′T −Xj‖1 ≤ Cd
√
n logυ n

l1−1∑
l=0

2l/2 ≤ 3Cd
√
n

4 2l1/2 logυ n.

Under our design Assumption 4 and using Lemma F.3, we then also find that for each
column Xm of XT − we have |X ′mν| .

√
n log1∨υ n. Altogether, using Lemma F.4, we

conclude
|X ′jPT −ν | .

2l1/2 logυ n√
n

×
√
n log1∨υ n .

√
n logυ+1∨υ n. (D.11)
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Similarly, using the fact that the only nonzero entries of the vector X ′T −Xj correspond to
the l1 ancestors of (l1, k1) inside the tree T − and using (D.9) we obtain

|X ′jPT −X\T β0
\T | ≤

1
λmin(X ′T −XT −) | (X

′
T −Xj)′(X ′T −X\T β0

\T ) |

≤ Cd
√
n

¯
λn

logυ n
l1−1∑
l=0

2l/2Cd
√
n logυ n
2l/2 . log2υ+1 n.

This completes the bound for the term in (D.8).
Now, we find a lower bound for Z = X ′j(I−PT −)Xj. From the proof of Lemma F.2, we

can see that 1/Z is a ‘submatrix’ of (X ′TXT )−1. The eigenvalue of this ‘submatrix’ will be
smaller than the maximal eigenvalue of the entire matrix (X ′TXT )−1 (from the interlacing
eigenvalue theorem [? ]) and thereby

1/Z ≤ λmax(X ′TXT )−1 = 1/λmin(X ′TXT ).

From Lemma F.4 we have

λmin(X ′TXT ) ≥
¯
λn for some

¯
λ > 0. (D.12)

From Z ≥
¯
λn we then obtain for some suitable C > 0

NY (T )
NY (T −) ≤ exp

(
C log2[υ+(1∨υ)] n

)
.

We can now continue as in the proof of Theorem 1 by plugging-in the likelihood ratio
above in the expression (B.12). Earlier in the proof of Lemma B.1, the likelihood ratio was
of the order eC logn. Here, we have a larger logarithmic factor which can be taken care off
by choosing pl = (Γ)−l2[υ+(1∨υ)] as the split probability. We then conclude (D.3) using the
same strategy as in the proof of Lemma B.1 for the white noise.

D.2 Catching Signal

We now show that, on the event A in (D.4),

Π [T : S(f0;A; υ) 6⊆ T | Y ]→ 0 as n→∞ (D.13)

for
S(f0, A; υ) ≡ {(l, k) : |β0

lk| > A log1+υ+1∨υ n/
√
n}, (D.14)
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where υ is the balancing constant in the design Assumption 4.

The proof of (D.13) follows the route of Lemma 3 in [18] with nontrivial alterations
due to the fact that we now have the regression model where the regression matrix is not
orthogonal. Suppose that (l1, k1) ∈ S(f0;A; υ) is a signal node for some A > 0 and let T be
such that (l1, k1) /∈ T . We grow a branch from T that extends towards (l1, k1) to obtain an
enlarged tree T + ⊃ T . In other words T + is the smallest tree that contains T and (l1, k1)
as an internal node. For details, we refer to Lemma 3 in [18]. We define K = |T +

int\Tint|
and write

NY (T )
NY (T +) = (1 + gn)K/2 exp

{1
2Y
′[XT ΣTX ′T −XT +ΣT +X ′T + ]Y

}
. (D.15)

We denote with T = T − → T 1 → · · · → T K = T + the sequence of nested trees obtained
by adding one additional internal node towards (l1, k1). Then using Lemma F.2 we find

NY (T )
NY (T +) = (1 + gn)K/2

K∏
j=1

exp
{
cnY

′(PT j−1 − PT j)Y
Zj

}
(D.16)

= (1 + gn)K/2
K∏
j=1

exp
{
−
cn|X ′[j](I − Pj−1)Y |2

Zj

}
, (D.17)

where
Pj = XT j(X ′T jXT j)−1X ′T j and Zj = X ′[j](I − Pj−1)X[j]

and where X[j] is the column added at the jth step of branch growing. Let X[K] be the
last column to be added to XT + , i.e. the signal column associated with (l1, k1). We will
be denoting simply β0

[K] ≡ β0
l1k1 the coefficient associated with X[K]. Then (using the fact

that PK−1 is a projection matrix onto the columns of XT K−1)

|X ′[K](I−PK−1)Y |2 = |X ′[K](I−PK−1)X[K]β
0
[K]+X ′[K](I−PK−1)X\T Kβ0

\T K+X ′[K](I−PK−1)ν|2

Using the inequality (a+ b)2 ≥ a2/2− b2, we find that

|X ′[K](I − PK−1)Y |2

ZK
≥
ZK |β0

[K]|2

2 − 1
ZK
|X ′[K](I − PK−1)X\T Kβ0

\T K +X ′[K](I − PK−1)ν|2.

Next, since all entries in X\T K are either descendants of (l1, k1) or are orthogonal to X[K]

we have (using similar arguments as before in Section D.1)

|X ′[K](I − PK−1)X\T Kβ0
\T K | ≤ |X ′[K]X\T Kβ

0
\T K |+ |X ′[K]PK−1X\T Kβ

0
\T K | .

√
n logυ n.
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Finally, using Lemma F.3 and similar arguments as in (D.11), we find that

|X ′[K](I − PK−1)ν| ≤ |X ′[K]ν|+ |X ′[K]PK−1ν| .
√
n logυ+1∨υ n

which yields

|X ′[K](I − PK−1)Y |2

ZK
≥
ZK |β0

[K]|2

2 − C1n log2[υ+(1∨υ)] n

ZK
for some C1 > 0.

The term ZK = X ′[K](I−PK−1)X[K] is a submatrix of the matrix (X ′T KXT K )−1 and by our
assumption (D.12) we have ZK ≥ ¯

λn which yields (for gn = n) and from the assumption
|β0

[K]| > A log1+υ+(1∨υ) n/
√
n for some sufficiently large A > 0 and some C2, C3 > 0

NY (T )
NY (T +) ≤ eK log(1+gn)−C2 log2+2[υ+(1∨υ)] n = exp

{
−C3 log2+2[υ+(1∨υ)] n

}
.

Similarly as was shown in the proof of Lemma 3 in [18], we have for pl = (1/Γ)la with
a = 2[υ + (1 ∨ υ)] the following bound for the prior ratio Π(T )/Π(T +) . Γ2la+1

1 , and
thereby for some C4 > 0

Π[(l1, k1) /∈ Tint | Y ] ≤ exp
{
C4(log Γ) log1+2[υ+(1∨υ)] n− C3 log2+2[υ+(1∨υ)] n

}
.

Thereby, for some C5 > 0,
∑

(l1,k1)∈S(f0;A;υ)
Π[(l1, k1) /∈ Tint | Y ] ≤ e−C5 log2 n2Lmax+1 . e−C5/2 log2 n → 0.

This concludes the proof of (D.13).

E Proof of Lemma A.3 in Section A.2

To prove Lemma A.3, we split {nIx ≤ sn(δ)} into Bn,1 = {nIx ≤ sn(δ)} ∩ {|ȳIx,1 − f0(x)| ≤
M0εn}, Bn,2 = {nIx ≤ sn(δ)} ∩ {|ȳIx,1 − f0(x)| > M0εn} ∩ {nIx,1 ≤ sn(δ1)} and Bn,3 =
{nIx ≤ sn(δ)} ∩ {|ȳIx,1 − f0(x)| > M0εn} ∩ {nIx,1 > sn(δ1)} where

√
δ1M0 > 2u0.

We first consider Bn,1. We have for Ī = Ix ∪ Ix,1 and writing S = S ′ ∪ Ix ∪ Ix,1

Π(Bn,1|Dn) =

∑
S=S′∪Ix∪Ix,1

m(S ′)m(Ī)πS(S ′ ∪ Ī)IBn,1
m(Ix)m(Ix,1)πS(S′∪Ix∪Ix,1)

m(Ī)πS(S′∪Ī)∑
Sm(S)πS(S) .

32



Moreover on Ωn,x(u1) ∩ Ωn,y(u0),

m(Ix)m(Ix,1)
m(Ī)

≤
c2

1
√

2π√nĪ
c0
√
nIx
√
nIx,1

exp
{
nIx
2 (ȳIx − ȳĪ)2 +

nIx,1
2 (ȳIx,1 − ȳĪ)2

}

=
c2

1
√

2π√nĪ
c0
√
nIx
√
nIx,1

exp
{
nIx,1nx

2nĪ
(ȳIx − ȳIx,1)2

}

Note that on Ωn,x(u1) we have

pIx

(
1− u1

√
log n
npIx

)
≤ nIx

n
≤ pIx

(
1 + u1

√
log n
npIx

)

and since pIx ≥ p0|Ix| ≥ p0C1 log n/n with u1 ≤
√
p0C1/2 we obtain

|Ix| ≤
2nIx
np0

≤ 2sn(δ)
n

.

Also nIx,1nIx/nĪ ≤ nIx ≤ sn(δ). Moreover,

ȳIx − ȳIx,1 = ε̄Ix + β̄0,Ix − f0(x) + f0(x)− ȳIx,1 (E.1)

and |β̄0,Ix − f0(x)| ≤ M |Ix|t(x) ≤ δt(x)Cεn for some C independent on δ and n. Therefore
when |ȳIx,1 − f0(x)| ≤M0εn

nIx,1nIx
2nĪ

(ȳIx − ȳIx,1)2 ≤
nIx ε̄

2
Ix

2 + C2δ2t(x)+1 log n+ δM2
0 log n+√nIx|ε̄Ix |

√
δ[M0 + Cδt(x)]

√
log n

≤
nIx ε̄

2
Ix

2 + δ log n[C2δ2t(x) +M2
0 ] +
√
δ[M0 + Cδt(x)]u0 log n

≤
nIx ε̄

2
Ix

2 + 2
√
δM2

0 log n

on Ωn, as soon as M0 is large enough (independently of δ) and δ is small enough.
Moreover, on Ωn we can also bound nIx ε̄2Ix by u2

0 log n so that for all b ∈ (0, 1), so that

m(Ix)m(Ix,1)
m(Ī)

≤
c2

1
√

2π√nĪ
c0
√
nIx
√
nIx,1

n2
√
δM2

0 e
nIx

ε̄2
Ix

2

≤
c2

1
√

2π√nĪ
c0
√
nIx
√
nIx,1

n[2
√
δM2

0 +bu2
0/2]e

(1−b)nIx ε̄
2
Ix

2

and denoting ZIx
b ≡ exp

{
(1−b)nIx ε̄2Ix

2

}
and using the fact that

E(ZIx
b |X) =

∫ e(1−b)u2/2−u2/2
√

2π
du = 1/

√
b <∞
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we obtain on Ωn,

Π(Bn,1|Dn) ≤
√

2πnbu2
0/2+2

√
δM2

0 c2
1

c0

×

∑
S=S′∪Ī

m(S ′)m(Ī)πS(S ′ ∪ Ī) ∑
Ī=Ix∪Ix,1

IBn,1
|Ix,1|B |Ix|B

√
nĪ

|Ī|B√nIx
√
nIx,1

ZIx
b∑

S=S′∪Ī
m(S ′)m(Ī)πS(S ′ ∪ Ī)

.

Note that for any Ī containing x, there are many possible choices for (Ix, Ix,1) such that
Ī = Ix,1∪Ix. Also nĪ/[nIx,1nIx ] ≤ 2/(nIx,1 ∧nIx) so that, choosing without loss of generality
nIx ≤ nIx,1 ,

|Ix,1|B|Ix|B
√
nĪ

|Ī|B√nIx
√
nIx,1

≤
√

2|Ix|B√
nIx

≤ 2|Ix|B−1/2
√
p0n

Hence, there exists γ < 0 such that for any un = o(1), writing Ix,1 = Ī \ Ix and using
Markov inequality,

P (Π(Bn,1|Dn) > un) . o(1/n) +
∑
Ī:x∈Ī

P

∑
Ix⊂Ī

InIx≤sn(δ)|Ix|B−1/2ZIx
b >

unc0
√
p0n

1/2−bu2
0−2
√
δM2

0

4c2
1
√

2π


. o(1/n) + nbu

2
0+2
√
δM2

0
√
bun
√
n

∑
Ī:x∈Ī

∑
lx,Ix,1

InIx≤sn(δ)|lx|B−1/2

Given that each interval is made of a number of units of size � log n/n, the number
of intervals Ix, Ix,1 where |Ix| is composed of ` units (i.e. elementary intervals (zl, zl+1)) is
bounded by O(`× n/ log n) and since nIx ≤ sn(δ) , ` . δε−2

n so that

∑
lx,Ix,1

InIx≤sn(δ)|lx|B−1/2 .

(
log n
n

)B−3/2 ∑
`≤O(ε−2

n )

`B+1/2 .

(
log n
n

)B−3/2

ε−2B−3
n .

Hence we obtain

P (Π(Bn,1|Dn) > un) . o(1/n) + nbu
2
0+2
√
δM2

0
√
bun
√
n

(
log n
n

)B−3/2

ε−2B−3
n = o(1/n)

as soon as B > 7t(x) + 2 by choosing b, δ small enough.This is verified as soon as B > 9 .

We now study Bn,2. When nIx,1 < sn(δ1) with δ1 ≥ δ we have |Ix∪Ix,1| ≤ p1sn(δ+δ1)/n
and by the Hölder condition on f0 at x we obtain for some M > 0

|β̄0,Ix − β̄0,Ix,1 | ≤ 2M [p1sn(δ + δ1)/n]t(x)

34



so that
ȳIx − ȳIx,1 = ε̄Ix − ε̄Ix,1 + β̄0,Ix − β̄0,Ix,1 = ε̄Ix − ε̄Ix,1 +O(δt(x)

1 εn).

Consider the event

Ω̄n,2 =
{
∀Ī s.t. nĪ ≤ sn(δ + δ1) and x ∈ Ī :

√
nIx
√
nI |ε̄Ix − ε̄I |√
nIx + nI

≤ u′1

√
log n

}
.

Then since for each (Ī , Ix) ,
√
nIx
√
nI(ε̄Ix − ε̄I)/

√
nIx + nI ∼ N (0, 1) and since the number

of (Ī , Ix) satisfying Ī = Ix ∪ Ix,1 and nIx , nIx,1 ≤ sn(δ) is bounded by a term of order∑
`.ε−2

n

ε−2
n︸︷︷︸

bound on number of Ix,1

` . ε−6
n ,

as soon as (u′1)2 > 6t(x)/(2t(x) + 1) + 2 we have P (Ω̄n,2) = 1 + o(1/n). On Ω̄n,2,
nIx,1nIx

2nĪ
(ȳIx − ȳIx,1)2 ≤

nIx,1nx
2nĪ

(ε̄Ix − ε̄Ix,1)2 + a(δ1) log n

for some a(δ1) > 0 which goes to 0 when δ1 goes to 0 and similarly to before, for all
1 > b > 0

P(Π(Bn,2|Dn) > un)

≤ P

nb(u′1)2+a(δ1)
√
n

max
Ī:x∈Ī,nĪ≤sn(δ1+δ)

∑
Ix⊂Ī

InIx≤sn(δ)|Ix|B−1/2 exp
{

(1− b)nIx,1nx
2nĪ

(ε̄Ix − ε̄Ix,1)2
}
> un


≤ nb(u

′
1)2+a(δ1)

√
bun
√
n

∑
Ī:x∈Ī

InĪ≤2sn(δ1)
∑
Ix⊂I

InIx≤sn(δ1)|Ix|B−1/2

≤ nb(u
′
1)2+a(δ1)

√
bun
√
n

(
log n
n

)B−1/2

ε−2
n ε−2(B+3/2)

n = O(n
−B+5t(x)
2t(x)+1 +bu′1+a(δ1)) = o(1/n)

since B > 8 by choosing b, δ1 small enough.
Finally, we study Bn,3. Since |Ix| ≤ p1sn(δ)/n we can choose a point in the grid x1 ∈ Ix,1,

such that |x− x1| ≤ 2p1sn(δ)/n, so that the Hölder condition of f0 at x implies that

|f0(x)− f0(x1)| ≤M(2p1)t(x)δt(x)εn(x).

Moreover, since t is Hölder α for some α > 0 on [x, x1] (note that for n large enough |x−x1|
is arbitrarily small) we have

|t(x1)− t(x)| ≤ L0δ
α(n/ log n)−α/(2t(x)+1)
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and εn(x1)2 = (n/ log n)−2t(x1)/(2t(x1)+1) = (n/ log n)−2t(x)/(2t(x)+1)(1+o(1)). Hence, choosing
M0 > 2(3p1)t(x), for n large enough,

Π (Bn,3 |Dn)

≤ Π
(
{|ȳIx,1 − f0(x1)| > M0εn(x1)/2} ∩ {nIx,1 > sn(δ1)}|Dn

)
= oP (1/n)

from Lemma A.2 and Theorem 6 is proved by choosing M0 > 4/
√
δ1.

F Auxiliary Results

Lemma F.1. Let Xi and Xj be columns of X that correspond to nodes (l2, k2) and (l1, k1),
respectively. Then we have

|X ′jXi| = 0 when (l2, k2) is not a descendant of (l1, k1),

|X ′jXi| ≤ 2
l1+l2

2 |nLl2k2 − n
R
l2k2| when (l2, k2) is a descendant of (l1, k1).

Proof. When (l2, k2) is not a descendant of (l1, k1), the domains of ψl1k1 and ψl2k2 do not
overlap, yielding orthogonality. When (l2, k2) is a descendant of (l1, k1), the wavelet domains
satisfy Il2k2 ⊂ Il1k1 andX ′jXi will be (up to a sign) equal to the size of the amplitude product
2(l1+l2)/2 multiplied by the excess number of observations falling inside the longer wavelet
piece ψl2,k2 .

Lemma F.2. We denote with PT = XT (X ′TXT )−1X ′T the projection matrix and with
Z = ‖Xj‖2

2 −X ′jPT −Xj. Then

Y ′[PT − PT − ]Y =
Y ′(I − PT −)XjX

′
j(I − PT −)Y

Z
. (F.1)

Proof. We can write, for Σ̃T = (X ′TXT )−1,

(X ′TXT )−1 =
X ′T −XT − X ′T −Xj

X ′jXT − ‖Xj‖2
2

−1

=
Σ̃T − + Σ̃T −X ′T −XjX

′
jXT −Σ̃T −/Z −Σ̃T −X ′T −Xj/Z

−X ′jXT −Σ̃T −/Z 1/Z


Next, noting that XT = (XT − , Xj)

XT Σ̃T =
(
XT −

[
Σ̃T − + Σ̃T −X

′
T −

XjX
′
jXT − Σ̃T −

Z

]
− XjX

′
jX
′
T −

Σ̃T −
Z

, −PT −Xj
Z

+ Xj
Z

)
which yields

PT =PT − + 1
Z

[
PT −XjX

′
jPT − −XjX

′
jPT − − P ′T −XjX

′
j +XjX

′
j

]
.

We then obtain (F.1).
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Lemma F.3. Let Xj be the jth column in the matrix X and let β0 = (β0
1 , . . . , β

0
p)′ be the

vector of multiscale coefficients 〈ψlk, f0〉 for f0 ∈ C(t,M, η) where t,M, η satisfy Assumption
1 with t1 > 1/2. Then, on the event A, we have

|X ′jν| = |X ′j(F0 −Xβ0 + ε)| .
√
n log1∨υ n.

Proof. From the definition of the set A in (D.4) we know that |X ′jε| .
√
n log n. Next,

we decompose the bias term |X ′j(F0 − Xβ0)| into resolutions Lmax < l ≤ L̃max that are
within the spam of the matrix X and higher resolutions l > L̃max for which the balancing
Assumption 4 is no longer required. Then, using (D.2), we obtain

|X ′j(F0 −Xβ0)| ≤ Cd
√
n logυ n

L̃max∑
l=Lmax+1

2l−l12l1/22−l(t1+1/2)

+ ‖Xj‖1

∥∥∥∥∥∥∥
∑

l>L̃max

∑
k

ψlk(x)β0
lk

∥∥∥∥∥∥∥
∞

.

The first term above can be bounded by a constant multiple of 2−l1/2
√
n logυ n when

t1 > 1/2. Regarding the second term, under the assumption t1 > 1/2 and using the fact
that L̃max = O[log2(n/ log n)], we obtain for each x ∈ [0, 1]∣∣∣∣∣∣∣

∑
l>L̃max

∑
k

ψlk(x)β0
lk

∣∣∣∣∣∣∣ ≤
∑

l>L̃max

2l/2|β0
lkl(x)| ≤

∑
l>L̃max

2−lt(x) . 2−L̃max/2 .
√

log n
n

.

Using (D.1) we find that ‖Xj‖1 . n and conclude that

|X ′jν| .
√
n logυ n+

√
n log n .

√
n log1∨υ n.

Lemma F.4. (Eigenvalue Bounds) Under the Assumption 4 with 0 ≤ υ < 1/2 and with
υ = 1/2 for c > 2CdC∗, the eigen-spectrum of X ′TXT for each T ∈ T satisfies (for n large
enough)

¯
λn ≤ λmin(X ′TXT ) ≤ λmax(X ′TXT ) ≤ λ̄ n log n for some 0 <

¯
λ ≤ λ̄. (F.2)

Proof. The diagonal elements of X ′X, denoted with a(i), satisfy

2 c n ≤ a(i) ≡ ‖Xi‖2
2 ≤ 2n[C + log2bC∗

√
n/ log nc].
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For a given node (l1, k1) ∈ T with i = 2l1 + k1 we denote with a(\i) the sum of absolute
off-diagonal terms in the ith row of X ′X. Under the Assumption 4, we show below (for
Cm = 2CdC∗)

a(\i) =
∑

(l,k)6=(l1,k1)
|X ′iX2l+k| ≤ Cm n logυ−1/2 n. (F.3)

In order to show (F.3), we split the sum into nodes (l, k) ∈ P (l, k) that are predecessors
of (l1, k1) and nodes (l, k) ∈ D(l, k) that are descendants of (l1, k1). Using (D.2) and the
fact that there are 2l−l1 descendants at each layer l > l1 we have (using the fact that
2Lmax = bC∗

√
n/ log nc)

∑
(l,k)∈D(l1,k1)

|X ′iX2l+k| ≤ Cd
√
n logυ n

Lmax∑
l=l1+1

2l−l1 2
l1
2 ≤ Cd

√
n logυ n2Lmax ≤ CdC

∗ n logυ−1/2 n

and (using the fact that l1 ≤ Lmax)

∑
(l,k)∈P (l1,k1)

|X ′iX2l+k| ≤ Cd
√
n logυ n

l1−1∑
l=0

2 l
2 ≤ Cd

√
n logυ n 2l1/2 < CdC

∗ n logυ−1/2 n.

From (F.3) one obtains a(i) − a(\i) > 2n[c − Cm logυ−1/2 n] > 0 for n large enough when
0 ≤ υ < 1/2 and for c > Cm for υ = 1/2. The Gershgorin circle theorem [? ] then yields

min[a(i)− a(\i)] ≤ λmin(X ′X) ≤ λmax(X ′X) ≤ max[a(i) + a(\i)].

Lemma F.5. Assume that xi iid∼ U [0, 1]. Then for tl = Cd
2

logυ n√
n 2l/2 we have

P
(
|n̄lk − ¯

nlk| ≤ 2ntl ∀(l, k) s.t. l ≤ L̃max
)

= 1 + o(1)

for υ > 1/2 and for υ = 1/2 when C2
d/[4(1 + Cd/3)] ≥ 1.

Proof. Under the uniform random design, both nRlk and nLlk are distributed according to
Bin(n, 2−(l+1)). We can write

P (|n̄lk − ¯
nlk| ≤ 2ntl ∀(l, k) s.t. l ≤ L̃max) ≥

P (|nRlk − n2−(l+1)| ≤ ntl and |nLlk − n2−(l+1)| ≤ ntl ∀(l, k) s.t. l ≤ L̃max) =

1− P
(
∪l,k{|nRlk − n2−(l+1)| > ntl} ∪ {|nLlk − n2−(l+1)| > ntl}

)
.
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We show that the probability on the right-hand side above is o(1). We note that 2L̃max =
O(n/ log n). The Bernstein inequality tailored to iid Bernoulli random variables Xi with a
mean µ and variance σ2 (Theorem 2.8.4 in [? ]) states that

P
(
| X̄n − µ | > ε

)
≤ 2 exp

{
− nε2

2σ2 + 2ε/3

}
∀ε > 0

where X̄n is the mean of Bernoulli random variables Xi’s. Applied to our context, we
obtain

∑
l,k

P
(
|nRlk − n2−(l+1)| > ntl

)
≤

L̃max∑
l=0

2l+1 exp
(
− nt2l

2(σ2 + tl/3)

)

≤
L̃max∑
l=0

2l+1 exp
(
−C

2
d log2υ n

4× 2l × 1
2−l(1− 2−(l+1)) + Cd/3 logυ n/(

√
n2l/2)

)

≤
L̃max∑
l=0

2l+1 exp
(
−C

2
d log2υ n

4 × 1
1 + Cd/3 logυ n× 2l/2/

√
n

)

≤
L̃max∑
l=0

2l+1 exp
(
−C

2
d log2υ n

4 × 1
1 + Cd/3 logυ−1/2 n

)

For υ > 1/2, the sum can be bounded by (for large enough n)

L̃max∑
l=0

2l+1 exp
(
−C2

d/8 log2υ n
)

= O
(

n

log n

)
× n−C2

d/8 log2υ−1 n = o(1).

When υ = 1/2, the sum can be bounded by (for C̃d = C2
d/[4(1 + Cd/3)])

L̃max∑
l=0

2l+1 exp
(
−C2

d/[4(1 + Cd/3)] log2υ n
)

= O
(

n

log n

)
× n−C̃d log2υ−1 n = o(1) when C̃d ≥ 1.

Lemma F.6. (Random Design) Assume that the design points xi’s are iid with density p
bounded from above and below on [0, 1] by p1 and p0, respectively. Then

P
(
|nI − n× p(I)| ≤ u1

√
np(I) log n

)
≤ e−γu1 logn, where γ = 3/4

√
p0C1, (F.4)

when u1 is chosen large enough.

Proof. The Bernstein inequality (Theorem 2.8.4 in [? ]) implies that for all possible
intervals I in the partition, we have

P
(
|nI − n× p(I)| ≤ u1

√
np(I) log n

)
≤ 2 exp

− np(I)u2
1 log n

2np(I)(1− p(I)) + 2/3u1

√
np(I) log n


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For p(I) ≥ p0C1

√
log n/n we obtain

np(I)(1− p(I)) + u1

√
np(I) log n/3 ≤ np(I)

[
1 + u1

3
√
p0C1

]
.

With u1 ≥ 3
√
p0C1 we obtain the desired statement (F.4).

G Details of the Simulation Study

Three of the test functions we used have been investigated before in [29]:

(1) f0(x) = 3 sin[4/(x+ 0.2)] + 1.5 according to Example 1 followed from [29],

(2) f0(x) is a simulated Brownian motion on [0, 1/2) (a cumulative sum of iid increments
5×N (0, 1/

√
n)) and a constant on [1/2, 1],

(3) the “Bumps" test function from [29].

(4) the “Blocks" test function from [29].

The cases (3) and (4) exhibit substantial spatial inhomogeneity and should best show-
case the benefits of our locally-adaptive bands. The case (1) is relatively smooth and
thereby smooth estimation methods (such as Symmlets [14] or local polynomials [19]) have
clear advantages over Haar wavelets when approximating the true signal. As will be seen
from the plots, however, these global adaptation methods adapt to the worse regularity,
under-smoothing large portions of the signal. Due to adaptive placement of the splits (com-
pared to the binscatter [19]), our method is very competitive and performs well in terms
of coverage. We elaborate on the Doppler example below.

Example G.1. (Doppler Curve) Similarly as in [30] and [71], we generate n = 2048
observations from a noisy Doppler curve (2.1) with f0(x) = 3 sin[4/(x + 0.2)] + 1.5 and
σ = 1 with xi = i/n. This function has heterogeneous smoothness which cannot be captured
with prototypical global smoothing methods such as global kernel regression (Figure 1 on the
left) which leads to over/undersmoothing depending on the choice of a fixed kernel width.
Tree-based methods, such as Bayesian CART, are better suited for this task by placing the
splits more often in areas where the function is less smooth (Figure 1 on the right).
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Figure 1: Doppler curve and (left) kernel regression estimates (ksmooth in R) with a bandwidth
0.1 (capturing well the flat part) and 0.01 (capturing well the wiggly part), (right) Bayesian CART
posterior mean fit (wbart in the R package BART).

We implemented the Bayesian (dyadic) CART (Section 3.1) as well as the Spike-and-
Slab wavelet reconstruction (Section 3.2) using the Metropolis-Hastings (MH) algorithm.
Dyadic Bayesian CART is implemented according to [20] with a proposal distribution con-
sisting of two steps: grow (splitting a randomly chosen bottom node) and prune (collapsing
two children bottom nodes into one). The implementation is fairly straightforward due to
immediate access to the posterior tree probabilities. For the spike-and-slab prior (the
point-mass mixture version [41]), we use a one-site proposal for adding and removing one
wavelet coefficient at a time. We run our Bayesian CART procedure with a split probability
pl = a(1/Γ)l with a = 0.95 and Γ = 1.001 which resulted in the MH acceptance rate in
between 15% − 25%. For the point-mass spike-and-slab prior, we used a split probability
pl = a(1/Γ)l with a = 0.95 and Γ = 2. This choice again resulted in the MH acceptance
rate in between 15− 20%. We found that it is important to penalize the inclusion of deep
coefficients in order to prevent from erratic inclusion of spurious high-resolution signals.
This is why the inclusion probability is smaller for deeper coefficients than in the Bayesian
CART, where the tree has to grow into the deeper signal. We found that the tree-shaped
regularization has smoothing benefits compared to the spike-and-slab prior which may de-
cide to include deeper wavelet coefficients without including the ancestors. This results in
less smooth reconstructions and wider confidence bands for the spike-and-slab prior. We
simulated M = 5 000 posterior samples for both Bayesian CART and spike-and-slab and

41



summarized them after a 1000 burn-in period. All of the procedures we chose for com-
parisons estimate the residual variance σ2. While in our theory we set it equal to one, in
our implementations we treat is as unknown with the traditional inverse gamma (IG) prior
(shape and rate equal to 1/2 as in [? ]).

We construct our confidence bands according to (3.8) using an adaptive choice of vn in
(3.7) using posterior information. In particular, we choose vn to be the smallest number that
yields a band that contains (1− α)% of posterior draws. We implement this optimization
in practice by taking a fine grid of values vn = {0.5 + k × 0.005 : 1 ≤ k ≤ 100} and
computing the amount of simulated posterior probability contained in the set for each
value on the grid. We have chosen α ∈ {0.05, 0} for the locally adaptive bands in our
simulations. We denote these two bands with C1

n (with α = 0.05) and C2
n (with α = 0)

in our tables. In addition, we compare our bands with the locally non-adaptive band
[18] which uses supx∈[0,1] σn(x) as the locally non-adaptive diameter in (3.8). Again, we
choose vn adaptively so that the band contains (1− α)% of the posterior probability. We
denote this band by C̃n using α = 0.05 in our tables. This band is a direct relative to
the globally adaptive construction in [14] where the global level of truncation is estimated
by performing tests on individual wavelet coefficients. We included this globally adaptive
(non-locally adaptive) band in our comparisons. We considered this band to be one of
the closest non-Bayesian counterparts to our approach in the literature. We used authors’
Matlab code which implements a Symmlet 8 basis with default tuning parameter options
(β0 = 3 and M0 = 100). We denote this method by CLM in our tables, using α = 0.05.
Next, we compare our bands to (1−α)% credible L∞ bands centered at the posterior mean
estimator f̂ (i.e. {f : supx∈[0,1] | f(x) − f̂(x) | ≤ Rα}, where Rα is the (1 − α)% sample
quantile of maxx∈X | fi(x)− f̂(x) | where fi for 1 ≤ i ≤ M are the posterior samples of f
and X = {xi : 1 ≤ i ≤ n}. We denote this band by L∞ in our tables with α = 0.05. This
construction is locally non-adaptive. The L∞ band is somewhat similar to the multiscale
credible band in [18] but its coverage properties are not theoretically understood. In our
comparisons, we also included two point-wise bands. One natural candidate is the point-
wise (1 − α)% credible bands obtained directly from our posterior output. The pointwise
credible bands are denoted by Pn in our tables using α = 0.05. Next, we also include the
(pointwise) bands implemented in an R package nprobust [15]. This is a recent package
which implements robust bias-corrected bands for inference in non-parametric regression
using local polynomial regression. We have used their default settings. This method is
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denoted by CCF in our tables. Another natural method for comparisons is the regressogram
(or binscatter [19]) which we implemented using piece-wise step functions with non-adaptive
placement of splits (option p = s = 0 in the R package binsreg and BIN1 in our tables).
This histogram implementation is the closest frequentist non-adaptive counterpart where
the splits are on a regular grid and not data-driven. We also considered the recommended
default option p = s = 2 (method BIN2 in our tables) based on smoother local polynomials
with a global smoothing penalty across the bins. This package provides confidence bands
based on bias correction and adaptive selection of the number of bins.

For each method, we evaluated the coverage of f0(x) at all design points xi ∈ X (regular
grid xi = i/n for n = 210). We report the average proportion of non-covered points
(averaged after 100 repetitions). Next, we look into the average band size (both average
size over all design points as well as minimal and maximal width over design points). In
addition, we keep track of the estimation error of the point (centering) estimator. This is
the median estimator for Cn, C̃n, the posterior mean estimator for L∞ and Pn, the centering
point for CLM, the point estimator of the regression function based on local polynomial of
order p estimated by their default method for CCF and the centering point of the binscatter
bands for BIN1 and BIN2.

The results are summarized in Table 1 in the main manuscript. Our adaptive band
constructions C1

n (vn chosen with α = 0.05) and C2
n (vn chosen with α = 0) perform

very well in terms of the average percentage of non-covered points. The comparisons are
particularly striking in the bumps and block examples where the competing methods (as
well as point-wise credible intervals Pn and CCF) grossly under-cover. The performance
of the L∞ band is also very good but it is not locally adaptive and, again, there is no
theoretical justification. The non-adaptive band C̃n from [18] with an adaptively chosen vn
(α = 0.05) also performs well, but it may be unnecessarily wide. Comparisons of Bayesian
CART with Spike-and-Slab priors are quite interesting. Tree-shaped regularization may
be beneficial when the signal itself has a hierarchical tree structure. With hierarchically
separated higher-resolution signals, spike-and-slab priors are more likely to mix better
and capture these signals. With a tree prior, one may need to initiate MCMC at richer
(deeper) trees so that the trees can grow into the signal throughout the computation. For
smoother signals, on the other hand, spike-and-slab priors may include too many spurious
high-resolution coefficients, causing the bands to widen.
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It is interesting to compare the various band constructions visually. Figure 2 shows one
realization for signals (1) and (2), Figure 3 shows one realization for signals (3) and (4). For
example, the binscatter with a step function (BIN1 method) build on a regular partition
does not achieve uniform coverage. This is in line with the conclusion in [18] (Theorem 5)
showing that regular (equispaced) partitions fail to achieve minimax `∞ adaptation.
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Figure 2: Plots of recovered bands with true curve marked in red color. The top panel
displays (a) the non-adaptive band of [18] with an adaptively chosen vn so that the band
contains 95% posterior probability, (b) our adaptive band with an adaptively chosen vn so
that the band contains 95% posterior probability and the binscatter bands with s = p = 0.
The black broken line is the posterior median estimator. The middle panel displays smooth
bands together with their centerings obtained with (a) symmlet 8 basis ([14] with α = 0.05)
and (b) the smooth binscatter [19] with s = p = 2. The bottom panel displays point-wise
bands: (a) pasted 95% posterior credible intervals and the bands in [15] with α = 0.05.
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Figure 3: Plots of recovered bands with true curve marked in red color. The top panel
displays (a) the non-adaptive band of [18] with an adaptively chosen vn so that the band
contains 95% posterior probability, (b) our adaptive band with an adaptively chosen vn so
that the band contains 95% posterior probability and the binscatter bands with s = p = 0.
The black broken line is the posterior median estimator. The middle panel displays smooth
bands together with their centerings obtained with (a) symmlet 8 basis ([14] with α = 0.05)
and (b) the smooth binscatter [19] with s = p = 2. The bottom panel displays point-wise
bands: (a) pasted 95% posterior credible intervals and the bands in [15] with α = 0.05.
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