
Ideal Bayesian Spatial Adaptation
Veronika Ročková and Judith Rousseau

January 30, 2023

Abstract
Many real-life applications involve estimation of curves that exhibit complicated

shapes including jumps or varying-frequency oscillations. Practical methods have
been devised that can adapt to a locally varying complexity of an unknown func-
tion (e.g. variable-knot splines, sparse wavelet reconstructions, kernel methods or
trees/forests). However, the overwhelming majority of existing asymptotic minimax-
ity theory is predicated on homogeneous smoothness assumptions. Focusing on locally
Hölderian functions, we provide new locally adaptive posterior concentration rate re-
sults under the supremum loss for widely used Bayesian machine learning techniques
in white noise and non-parametric regression. In particular, we show that popular
spike-and-slab priors and Bayesian CART are uniformly locally adaptive. In addi-
tion, we propose a new class of repulsive partitioning priors which relate to variable
knot splines and which are exact-rate adaptive. For uncertainty quantification, we
construct locally adaptive confidence bands whose width depends on the local smooth-
ness and which achieve uniform asymptotic coverage under local self-similarity. To
illustrate that spatial adaptation is not at all automatic, we provide lower-bound
results showing that popular hierarchical Gaussian process priors fall short of spatial
adaptation.

Keywords: Bayesian CART, Partitioning Priors, Supremum Norm, Spike-and-Slab, Spa-
tial Adaptation

1 Spatial Adaptation

The key to practically successful curve estimation is the ability to adapt to subtle qualitative

structures of the analyzed curve. Very often, interesting aspects of the estimated curve

are related to spatial inhomogeneities, e.g. discontinuities or oscillations with varying

frequency and/or amplitude. There is a wealth of techniques for function estimation (e.g.
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kernel methods, local polynomial fitting, nearest neighbor techniques or splines) which

exert various degrees of global and local adaptation. For functions with a locally varying

complexity, however, global procedures can be woefully inaccurate, leading to overfitting

smooth domains and underfitting wiggly domains.

While such weaknesses have long been recognized, the applied statistics community

has has not embraced locally adaptive techniques as widely. To remediate this absence,

this paper provides a methodological and theoretical inferential framework valuable for

practitioners. Numerous methodological developments have spawned that are capable of

local adaptation, e.g., local polynomial regression [34] or kernel estimation [10, 48, 52] with

a local bandwidth selection. In the context of spline smoothing, [50] suggested adaptively

selecting subsets of basis functions which pertains to selective wavelet reconstructions [22,

31] and variable knot spline techniques [25, 35, 36, 68]. Notably, [51, 71] proposed (total-

variation) penalized least square estimates which correspond to regression splines with

data-adaptive knot points. An alternative approach is to allow the smoothing parameter

to vary locally (see [57] for piecewise constant smoothing parameters). For example, [63]

suggest spline fitting with a roughness penalty whose logarithm is itself a linear spline

with knot values chosen by cross-validation. Variants of such spatially adaptive penalty

parameters have been widely used in practice [3, 24, 45, 46]. Besides splines and wavelets,

tree based methods (CART [9, 20, 27], random forests [8] or BART [21]) are particularly

appealing for recovering spatially inhomogeneous functions by adapting the placement of

splits to the function itself via recursive partitioning [29]. Deep learning methods are also

expected to perform well for structured curves [40, 69].

From a methodological perspective, spatially adaptive curve estimation has been tackled

rather broadly. From a theoretical perspective, however, there are still gaps in understand-

ing whether these techniques are indeed optimal and (uniformly) spatially adaptive. The

majority of existing asymptotic minimaxity theory (for density or regression function es-

timation) is predicated on homogeneous smoothness assumptions. For example, existing
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results for random forests [73, 74], deep learning [58, 64], Bayesian forests [42, 62] and

other non-parametric methods such as Gaussian processes [55, 72] have been concerned

with convergence rates for spatially homogeneous Hölderian functions under the L2 global

estimation loss. Here, we extend the scope of such theoretical results in two important

directions. First, we focus on both global and local (supremum) loss providing results

for uniform local adaptation. Second, we provide a frequentist framework for uncertainty

quantification in the form of locally adaptive bands. Our goal is to investigate the extent to

which widely used Bayesian priors (spike-and-slab priors [22, 41, 59, 75], Gaussian process

priors [2, 6, 44, 66, 70] and Bayesian CART priors [18, 20, 27]) can optimally adapt to

local smoothness. Before listing our contributions, we review existing theoretical results

for spatially inhomogeneous functions.

The first natural question is how well an estimator performs globally. For the stereo-

typical Besov classes Bα
p,q, one way to assess the global quality of an estimator is in terms

of a Lr loss that is sharper than the norm of the Besov functional class (i.e. p < r < ∞),

see e.g. [32] and [48]. For p < 2, linear estimators are known to be incapable of achieving

the optimal rate [32]. For a discussion on minimax rates in Besov spaces, we refer to [30]

and [26]. Unlike linear estimators, wavelet thresholding offers a powerful technology for

spatially adaptive curve estimation [30]. In particular, [31] describe a selective wavelet re-

construction method called RiskShrink based on shrinkage of wavelet coefficients and show

that this procedure mimics an oracle ‘as well as it is possible to do so’. RiskShrink is an

automatic model selection method which picks a subset of wavelet vectors and fits a model

consisting only of wavelets in that subset. In this work, we investigate Bayesian variants

of such strategies. Positive findings for global estimation in Besov spaces have also been

reported for deep learning [40, 69], penalized least squares [51], locally variable kernels

[52]. Notably, [48] propose a kernel estimator with a variable data-driven bandwidth that

achieves the minimax rate of estimation over a wide scale of Besov classes and hence shares

rate optimality properties with wavelet estimators.
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Another, and perhaps more transparent, approach is to assess the quality of an esti-

mator locally. For density estimation, [37] study adaptivity to heterogeneous smoothness,

simultaneously for every point in a fixed interval, in a supremum-norm loss. The authors

consider a certain notion of pointwise Hölder continuity and study dyadic histogram es-

timators with a variable bin size and with a Lepski-type adaptation. We adopt a similar

estimation setup here, but approach it entirely from a Bayesian perspective.

Practical deployments of the Lepski-based adaptation require tuning parameters (espe-

cially of the threshold used for comparing two estimates from different scales) for which

theoretical justifications may not always be available [37, 43]. Bayesian procedures, on the

other hand, are known to adapt automatically to the unknown aspects of the estimation

problem, even yielding rate-exact adaptation [41]. This work studies whether (rate-exact)

uniform adaptation is attainable for popular Bayesian learning procedures in terms of local

(supremum-norm) concentration rates. We are not aware of any other Bayesian investi-

gation of this type in the literature. Our contributions can be grouped into four types

of results. First, we show that spike-and-slab priors achieve uniform exact-rate optimal

adaptation in a supremum-norm sense under the white noise model. We relax the prior

assumptions of [41], allowing for considerably less sparse priors. Next, building on [18] we

show that Bayesian CART is also uniformly locally adaptive but sacrifices a logarithmic

factor. These results are obtained in the white-noise model as well as non-parametric re-

gression with suitably regular (not necessarily equi-distant) fixed design points. Second,

we show how to construct locally adaptive credible bands (with asymptotic coverage 1)

whose width depends on local smoothness. This construction builds on [18, 59] who pro-

posed non-locally adaptive bands for (empirical) wavelet coefficients with a possibly exact

asymptotic coverage after a multiscale intersection. Third, we provide negative results for

Gaussian process priors showing that they are incapable of local adaptation. Fourth, in

the context of non-parametric regression, we propose a new class of ‘repulsive’ partitioning

priors which penalize irregular partitions and which are locally rate-exact. These priors can
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be viewed as a simplified (zero-degree) version of data-adaptive knot splines. Our results

thus provide a stepping stone towards studying Bayesian variable-knot spline techniques.

We investigate the numerical performance of our adaptive confidence bands in an exten-

sive simulation study which demonstrates how misleading widely used non-locally adaptive

procedures (local polynomials or regressograms [67]) may be. The numerical results for our

adaptive confidence bands, on the other hand, agree well with our theory and provide a

remedy. We illustrate our framework also on a real dataset of service calls at a bank call

center [14].

The manuscript is organized as follows. Section 2 describes the estimation setup and

reviews some facts about spatially inhomogeneous functions. Section 3 shows results for

spike-and-slab and Bayesian CART priors in the white noise model. Section 4 then shows

our results for non-parametric regression. Section 6 wraps up with a discussion. The proofs

are in the Supplemental Materials.

2 Statistical Setting

For our theoretical development, we will consider both the non-parametric regression model

as well as its idealized white noise counterpart. The regression model assumes n noisy

samples Y = (Y1, . . . , Yn)′ of a function f0 : [0, 1]→ R, where

Yi = f0(xi) + εi, εi
iid∼ N (0, σ2), (2.1)

with xi ∈ [0, 1] and where σ2 > 0 is a known scalar. The white noise model is an elegant

continuous version of (2.1) defined via a stochastic differential equation

dY (t) = f0(t)dt+ 1√
n
dW (t), t ∈ [0, 1], n ∈ N, (2.2)

where Y (t) is an observation process, W (t) is the standard Wiener process on [0, 1] and

f0 ∈ L2[0, 1] is an unknown bounded function on [0, 1] to be estimated. The model (2.2) is

observationally equivalent to a Gaussian sequence model after projecting the observation
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process onto a wavelet basis {ψlk : l ≥ 0, 0 ≤ k ≤ 2l − 1} of L2[0, 1]. This sequence model

writes as

Ylk = β0
lk + εlk√

n
, εlk

iid∼ N (0, 1), l ≥ 0, k = 0, . . . , 2l − 1, (2.3)

where the wavelet coefficients β0
lk = 〈f0, ψlk〉 =

∫ 1
0 f0(t)ψlk(t)dt of f0 are indexed by a scale

parameter l and a location parameter k.

Throughout this paper, we will be using the standard Haar wavelet basis ψ−10(x) =

I[0,1](x) and ψlk(x) = 2l/2ψ(2lx − k) obtained with orthonormal dilation-translations of

ψ = I(0,1/2] − I(1/2,1]. We denote with Ilk the dyadic intervals which correspond to the

domain of the balanced Haar wavelets ψlk, i.e. I00 = (0, 1], Ilk = (k2−l, (k + 1)2−l] for

l ≥ 0 and 0 ≤ k < 2l. As elaborated on in Remark 1, the concepts and constructions

developed in this work apply to S-regular wavelet basis ψlk on [0, 1], e.g. the boundary-

corrected wavelet basis of [23], suitable for estimating functions smoother than Lipschitz.

We will illustrate the main ideas using the Haar basis for simplicity.

Brown and Low [12] showed asymptotic equivalence between (2.1) (with an equispaced

fixed design) and (2.2) under a uniform smoothness assumption which is satisfied by, e.g.,

α-Hölderian smooth functions with α > 0.5. From a sequence of optimal procedures in one

problem, they also prescribed a construction of an asymptotically equivalent sequence in the

other. This recipe is particularly convenient for linear estimators. For Bayesian methods,

however, it is generally not known whether the knowledge of a (wavelet shrinkage/non-

linear) minimax procedure in one problem automatically implies the optimality in the

other. This is why we study Bayesian procedures in both models (see Section 3 for white

noise and Section 4 for regression). We obtain local rate-optimality in regression under

the assumption α > 1/2 in Section 4.2 and, finally, in Section 4.3 we show that a new

class of adaptive-split priors (related to variable-knot spline techniques) yields exact-rate

optimality without assuming α > 1/2.

In both models (2.1) and (2.2), the goal is to estimate a possibly spatially inhomogeneous

function f0 (see Section 2.1 below). We assess the quality of an estimator using both the
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global Lr loss as well as the locally re-weighted supremum-norm loss (similarly as in [37]).

In particular, for the (near) minimax rate rn(x) of adaptive estimation of f0 at the point

x, we will show that, with probability Pf0 tending to one, the random variable

sup
x∈[0,1]

1
rn(x) |f(x)− f0(x)|, with f ∼ Π(f | Y ) (2.4)

denoting the posterior distribution, is stochastically bounded, thereby implying a uniform

local adaptation. Such spatial adaptation is not automatic for many standard estimators.

We illustrate this phenomenon on an example below. See Example G.1 in the Supplement

for a smoother Doppler curve example adopted from [30].

Example 1. (Brownian Motion) Our running example throughout the manuscript assumes

that f0 has been generated from a Brownian motion on [0, 1/2) (whose almost all trajectories

are locally α-Hölder continuous with α < 1/2) and a constant function on [1/2, 1]. The plots

of the kernel regression, smooth wavelets [14], local polynomials with global smoothing [19]

and Bayesian CART estimates assuming n = 210 are in Figure 1. Bayesian CART wastes

no splits on the flat domain (compared to regular partitioning methods [19]), showcasing its

spatial adaptivity. We will investigate this example theoretically in Section 4.1 where we

show that hierarchical Gaussian processes adapt to the worse regularity (determined by the

Brownian motion). Beyond adaptability, Bayesian methods can also quantify uncertainty

via the posterior (as seen from a companion plot in Figure 2 in Section 3.1.2). The width

of the optimal band should be wider when the function is less smooth. In Section 3.1.2, we

propose one such construction and show its frequentist validity.

2.1 Spatially Inhomogeneous Functions

Below, we review several known facts about function classes with inhomogeneous smooth-

ness. The Besov class Bα
p,q (which contains Hölder and Sobolev classes by setting p = q =∞

and p = q = 2, respectively) permits spatial inhomogeneity when p < 2. For example, the

Bump algebra (consisting of infinite mixtures of Gaussian bumps) coincides with B1
1,1 [32]
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Figure 1: The Brownian motion Example 1. The left panel displays kernel regression estimates
(ksmooth in R) with a bandwidth 0.1 (capturing well the flat part) and 0.01 (capturing well the
wigglier part). The middle panel displays point estimates obtained with (a) symmlet 8 basis ([14]
with α = 0.05) and (b) the smooth binscatter [19] with s = p = 2. The right panel displays point
estimators: (a) posterior mean for Bayesian CART with adaptive partitioning and (b) binscatter
[19] histogram with s = p = 0 and non-adaptive (regular) partitioning.

and constitutes an interesting caricature of smoothness inhomogeneity which would not

be allowed within the Hölder class. Another example is the total variation (TV) class

(contained inside B1
1,∞ and containing B1

1,1) which includes functions that may have jumps

localized in one part of the domain and be very flat elsewhere [32]. For a discussion on

global minimax rates in Besov spaces we refer to [26, 33].

Function spaces where the smoothness can vary from point to point have quite a rich

history. Besov spaces with variable smoothness were defined by [47] and later developed by

many others (see [65] and references therein). We focus on Hölderian functions which are

more intuitive for a supremum-norm analysis. Indeed, the perhaps more widely accepted

notion of pointwise regularity has been formalized for Hölderian functions where the expo-

nent itself is a function1 taking its values in [0,∞) [1]. For example, ’typical’ functions in

the Besov space exhibit a multifractal behavior where the Hölder exponent is a continuous

function [37].
1Andersson [1] showed that a non-negative function is an exponent of a pointwise Hölder function if

and only if it can be written as a limit inferior of a sequence of continuous functions.
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Following [37], we define a set of bounded functions that are locally t-Hölder at x ∈ [0, 1]

C(t, x,M, η) =
{
f : [0, 1]→ R; max

(
‖f‖∞, sup

0<|m|≤η

|f(x+m)− f(x)|
|m|t

)
≤M

}
, (2.5)

for t ≤ 1. We denote with C(t,M, η) the set of functions that are locally Hölder for each

x ∈ [0, 1], i.e. C(t,M, η) = {f : f(x) ∈ C(t, x,M, η) ∀x ∈ [0, 1]} . Throughout this work,

we will make the following assumption on f0.

Assumption 1. Assume f0 ∈ C(t,M, η) where M(·) and η(·) are bounded and uniformly

bounded away from zero and where the smoothness function t(·) satisfies 0 < t1 ≤ infx∈[0,1] t(x).

It is well known that regularity, both local and global, of a function is reflected in the

speed at which its wavelet coefficients decay. The following lemma formally characterizes

the magnitude of multiscale coefficients in terms of the local Hölder smoothness.

Lemma 1. Denote with β0
lk = 〈f0, ψlk〉 the multiscale coefficient of a function f0 that

satisfies Assumption 1. Let x ∈ [0, 1] and for all l > 0 define kl(x) ∈ {0, 1, . . . , 2l − 1}

such that x ∈ Il kl(x). For l > 0 and k ∈ {0, 1, . . . , 2l − 1} let ηlk = minx∈Ilk η(x) and

Mlk = maxx∈IlkM(x). When l ≥ log2[1/(2ηl kl(x))], we have |β0
l kl(x)| ≤ 2Ml kl(x)2−l[t(x)+1/2].

Proof. For k = kl(x), we have |β0
lk| = 2l/2

∣∣∣∣∫ (k+1/2)/2l
k/2l [f0(y)− f0(y + 2−l−1)]dy

∣∣∣∣. Then
|β0
lk| ≤ 2l/2

∫ (k+1/2)
2l

k

2l

[
|f0(y)− f0(x)|+ |f0(x)− f0(y + 2−l−1)|

]
dy ≤ 2Mlk2−l[t(x)+1/2].

Remark 1. While in this paper we study the case t(·) ≤ 1, our results (Theorems 1, 2, 3

and 5) can be generalized to higher-order Hölder functions for which Lemma 1 applies with

S-regular wavelet basis. More precisely for the results of Sections 3 and 4.2 to be valid what

we mainly need is a property in the form |β0
l kl(x)| ≤ 2Ml kl(x)2−l[t(x)+1/2], with t(x) > 0 and

possibly larger than 1. A natural generalisation of definition (2.5) to t(·) > 0 is: for all x

there exists η(x) > 0 such that for all |y − x| ≤ η(x) we have
∣∣∣f(y)−∑r(x)

`=0 f
(`)(x) (y−x)`

`!

∣∣∣ ≤
M |y − x|t(x), r(x) = dt(x)e − 1. Then if (ψlk : l ≥ 1, k = 0, 1, . . . , 2l − 1) are Cr wavelets

9



(with bounded support and r > maxx t(x), |flk| ≤ 2−l(tlk+1/2)M‖ψ‖Cr , since
∫
ujψ(u)du = 0

for j ≤ r. Under Lipschitz assumption on x→ t(x), Lemma 1 remains valid when t(·) take

values larger than 1. There exists another definition in the literature of Hölder (or more

generally Besov) function with spatially varying smoothness, such as [65] or [47]. It is not

clear how these definitions relate to the above, although [65]’s approach seems related.

3 Spatial Adaptation in White Noise

Donoho et al. [30] characterized pointwise (as well as global) properties of selective wavelet

reconstructions showing their near-optimality for estimating Hölderian functions at a given

point x ∈ [0, 1]. Here, we establish uniform (supremum-norm) local adaptation for all

x ∈ [0, 1] focusing on (2.4) under the white noise model (2.3) and various priors Π(f).

Adaptive supremum-norm concentration rate results (in white noise and regression) are

still few and far between with pathbreaking progress made by multiple authors including

[41, 75]. To date, results exist only for homogeneous Hölderian functions under the spike-

and-slab prior [41, 75] and, more recently, the Bayesian CART prior [18]. Both of these

priors leverage certain sparsity structure on the wavelet coefficients {βlk}. We will show

that both of these priors achieve uniform spatial adaptation.

3.1 Bayesian CART

CART methods [20, 27, 28] and other successful software developments including MARS

[35] capture local aspects of the function being estimated by recursively subdividing the

predictor space. Donoho et al. [30] pointed out that ‘the spatial adaptivity camp is, to

date, a-theoretical and largely motivated by heuristic plausibility of the methods’. While it

has been more than 20 years since this seminal paper, there is a shortage of theoretical jus-

tifications focusing on spatial adaptation with practically used machine learning methods.

Here, we resurrect this question by focusing on Bayesian CART.

Bayesian CART corresponds to a wavelet prior that prescribes a particular sparsity
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structure in the wavelet reconstruction according to a binary tree T (see [18] for a more

thorough exposition). A tree T is defined as a collection of hierarchically organized nodes

(l, k) where (l, k) ∈ T ⇒ (j, bk/2l−jc) ∈ T for j = 0, . . . , l − 1. It will be useful to

distinguish between two types of nodes: internal ones Tint = {(l, k) ∈ T : {(l + 1, 2k), (l +

1, 2k + 1)} ∈ T } ∪ (−1, 0) and external ones Text = T \Tint which are at the bottom of

the tree. We then denote with βT = (βlk : (l, k) ∈ Tint) the ‘active’ wavelet coefficients.

Similarly as with the selective wavelet reconstruction (RiskShrink of [31]), Bayesian CART

weeds out wavelet coefficients that are outside the tree, i.e. βlk = 0 when (l, k) /∈ Tint.

Namely, for Lmax ≡ blog2 nc we assume the tree-shaped wavelet shrinkage prior [18]

T ∼ ΠT (3.1)

{βlk}l≤Lmax,k | T ∼ π(βT ) ⊗
⊗

(l,k)/∈Tint

δ0(βlk), (3.2)

where π(βT ) = ∏
(l,k)∈Tint φ(βlk; 0, 1) is an independent product of standard Gaussians2

and where ΠT is the Bayesian CART prior [20]. This prior is essentially a heterogeneous

Galton-Watson process with a node split probability plk = P [(l, k) ∈ Tint] = pl = (1/Γ)l

for some Γ > 2 (see Section 2.1 in [18] and [61]).

3.1.1 Uniformly Adaptive Rate

The following theorem establishes uniform spatial adaptation of Bayesian CART in the

supremum-norm sense. In other words, the posterior is shown to contract at a locally

minimax rate, up to a log factor, uniformly for all x ∈ [0, 1]. While very intuitive, such a

result has not yet been formalized in the Bayesian literature.

Theorem 1. Assume the Bayesian CART prior (3.1) and (3.2) with a split probability plk

for some sufficiently large Γ > 0. Under the model (2.3) and with t,M and η satisfying

Assumption 1, we have

sup
f0∈C(t,M,η)

Ef0Π
[
f : sup

x∈[0,1]
ζn(x)|f(x)− f0(x)| > Mn

∣∣∣Y ]→ 0 (3.3)

2[18] also consider correlated wavelet coefficients.
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for ζn(x) =
(

n
logn

) t(x)
2t(x)+1 and for any Mn →∞ that is faster than

√
log n.

The proof is provided in Section B.1 (Supplement). The first step in the proof of The-

orem 1 is showing that trees, a-posteriori, grow deeper in domains where f0 is less smooth.

This property is summarized in Lemma B.1 in the Supplemental Materials. Supremum-

norm convergence rate results are valuable for constructing confidence bands. For example,

Theorem 1 implies the non-parametric Bernstein-von Mises phenomenon in the multiscale

space which can be used to construct credible bands with exact asymptotic coverage (see,

e.g., Theorem 4.1 in [18]). This set, however, is not guaranteed to have the optimal size

(i.e. its diameter shrinking at the minimax rate). Here, we will focus on constructing valid

adaptive confidence bands. With spatially varying functions (such as the local Hölder func-

tions from Section 2.1), one would expect the width of the confidence band to vary with the

smoothness t(·) and be wider where t is smaller. Keeping the diameter constant throughout

may yield bands that are more conservative in certain areas of the sample space.

3.1.2 Locally Adaptive Bands

A reasonable requirement for band construction is that their diameter shrinks at the min-

imax rate of estimation, up to possibly a slow multiplication factor. When the degree of

smoothness is known, multiscale3 credible balls can be constructed (see (5) in [17]) and

intersected with qualitative restrictions on f0 to obtain ‘optimal’ frequentist confidence

sets (which shrink at the optimal rate). We construct optimal confidence sets when the

smoothness t(·) is unknown and varying over [0, 1]. Confidence bands that are simultane-

ously adaptive and honest, of course, do not exist in full generality [49]. Gine and Nickl

[39] point out, however, that such confidence sets exist for certain generic subsets of Hölde-

rian functions, the so-called self-similar functions [13, 38, 54, 56, 59], whose complement

was shown to be negligible [13]. Under self-similarity, [18, 59] constructed adaptive cred-

ible bands for homogeneous Hölderian functions under the spike-and-slab prior and the
3They resemble the L∞ balls [59].
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Bayesian CART, respectively.

Here, we extend the notion of self-similarity to inhomogeneous Hölder classes for which

it is possible to construct a locally adaptive confidence set Cn in the sense that

sup
f,g∈Cn

[
sup
x∈[0,1]

ζn(x)
vn
|f(x)− g(x)|

]
= OPf0

(1) (3.4)

for some suitable sequence vn → ∞ and where ζn(x) = (n/ log n)t(x)/(2t(x)+1). Note that

the diameter of Cn depends on x and equals the minimax rate of estimation (inflated by

vn) at every point x ∈ [0, 1]. Below, we formally introduce the notion of locally self-similar

functions.

Definition 1. (Local Self-Similarity) We say that f ∈ C(t,M, η) is locally self-similar at

x ∈ [0, 1] if, for some c1 > 0 and an integer j0, we have |Kj(f)(x)−f(x)| ≥ 2−j t(x)c1 for all

j ≥ j0, where Kj(f) = ∑
l≤j−1

∑
k 〈ψlk, f〉ψlk is the wavelet projection at level j. The class

of all self-similar functions at x will be denoted by CSS(t(x), x,M(x), η(x)). Moreover, we

denote with CSS(t,M, η) a set of functions that are self-similar for all x ∈ [0, 1].

For spatially heterogeneous Hölderian functions, we construct locally adaptive confi-

dence bands whose width is varying and reflects smoothness at each given x While related

to previous constructions (see e.g. [18] for the homogeneous case), its simplicity and ease

of computability make our band particularly appealing in practice (see Figure 2). In addi-

tion, we are not aware of any other related frequentist band for the case of heterogeneous

smoothness. We center our confidence bands around a pivot estimator, the median tree

estimator [18].

Definition 2. (The Median Tree) Given a posterior distribution ΠT [· |Y ] over tree-shaped

coefficient subsets, we define the median tree T ∗Y as the following set of nodes

T ∗Y = {(l, k), l ≤ Lmax, Π[(l, k) ∈ Tint |Y ] ≥ 1/2} . (3.5)

We define the resulting median tree estimator as f̂T (x) = ∑
(l,k)∈T ∗Y Ylkψlk(x) which is

shown to attain the near-minimax rate of estimation at each point (see the proof of Theorem
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Figure 2: The Brownian motion example (Example 1 in red color) with dyadic Bayesian CART.
The left panel displays confidence bands (a) the non-adaptive band of [18], (b) our adaptive band
and the binscatter [19] bands with s = p = 0. For (a) and (b) we choose vn so that the band
contains 95% posterior probability. The middle panel displays smooth bands obtained with (a)
symmlet 8 basis ([14] with α = 0.05) and (b) the smooth binscatter [19] with s = p = 2. The
right panel displays point-wise bands: (a) pasted 95% posterior credible intervals and the bands
in [15] with α = 0.05 implemented in software nprobust.

2). Next, we define the local radius (which varies with x) as

σn(x) = vn

√
log n
n

Lmax∑
l=0

I{(l, kl(x)) ∈ T ∗Y }|ψlkl(x)(x)| (3.6)

for some vn →∞ to be chosen. Finally, we construct the confidence band according to the

following prescription

Cn =
{
f : sup

x∈[0,1]

[
1

σn(x) |f(x)− f̂T (x)|
]
≤ 1

}
. (3.7)

Theorem 2. Let Π be the prior as in the statement of Theorem 1. Then for Cn defined in

(3.7) with vn = O(log n), uniformly over t,M and η that satisfy the Assumption 1

inf
f0∈CSS(t,M,η)

Pf0(f0 ∈ Cn)→ 1 as n→∞.

Uniformly over f0 ∈ CSS(t,M, η), the diameter verifies (3.4), as n→∞, and the credibility

of the band satisfies Π[Cn |Y ] = 1 + oPf0
(1).

The proof is provided in Section B.2 (Supplement).
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According to Theorem 2, the band (3.7) has asymptotic coverage 1. It is possible to

intersect (3.7) with a multi-scale ball (as in [18, 59]) to obtain asymptotic coverage 1 − γ

for some small γ > 0 as a consequence of the non-parametric Bernstein-von Mises (BvM)

theorem. The multiscale band (see Corollary 1 and 2 in the Supplement to [18]) compares

suitably normalized sequences of (empirical) wavelet coefficients and its shape resembles

an L∞ band. We could implemented the intersection to “stabilize" (3.7) , i.e. to avoid

overly wide bands due to large choices of vn. However, the multiscale band, defined in

(77) in the Supplement of [18], requires an (“admissible") monotone increasing weighting

sequence wl in the multiscale norm which has to be determined by the user. Instead of the

multiscale intersection [18], here we choose vn adaptively so that (3.7) captures (1 − γ)%

posterior (draws). This adaptive choice of vn leverages posterior information and can be

implemented using a grid search. In order to illustrate the practical virtue of Theorem

2, we revisit the Brownian motion example (Example 1) from Figure 2. We implement a

dyadic version of the Bayesian CART algorithm [20] which splits only at dyadic rationals.

We plot the adaptive band (3.7) together with a non-adaptive band obtained by taking the

maximal diameter σ(x) over the domain [0, 1] (as in Theorem 4 of [18]). For both cases

we choose vn adaptively such that the resulting band contains 95% posterior probability.

Comparing our construction with [18] (Figure 2 on the left), we can see benefits of our

locally adaptive construction, where the width is larger in the first half of the domain where

the function meanders according to the Brownian motion (expected since the smoothness

is smaller than 1/2). Interestingly, a regular partitioning method binscatter [19] does not

achieve satisfactory coverage which is in line with theory in [18] showing the inability of

regular histograms to achieve `∞ adaptation. In addition, smoother techniques based on

symmmlets [14] or local-polynomials with global smoothing [19] also show poor coverage

(Figure 2 in the middle). Finally, Figure 2 on the right shows that, expectedly, point-wise

bands (95%-credible bands and [15]) do not yield satisfactory coverage. We revisit this

example in a simulation study in Section 5.1.
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3.2 Spike-and-Slab Priors

Spike-and-slab priors are arguably one of the most ubiquitous priors in statistics (see ref-

erences [22, 41, 59] for wavelet shrinkage contexts). Compared with the Bayesian CART

prior from Section 3.1, spike-and-slab priors allocate positive prior mass to any subset T

of {(l, k) : l ≤ Lmax}, not just tree-shaped subsets. We define the spike-and-slab prior

through the following hierarchical model.

Assumption 2. (Spike-and-Slab Prior)

• Prior on T ⊆ {(l, k) : 0 ≤ k < 2l, l ≤ Lmax}: There exist constants cT , CT > 0 such
that

cT ωl ≤
Π(T ∪ {(l, k)})

Π(T ) ≤ CT ωl ∀T such that (l, k) /∈ T (3.8)

for some positive sequence ωl such that, for some Bω > 0 and δ > 0,

n−Bω ≤ ωl ≤ n(1−δ)/22−l for l ≤ Lmax. (3.9)

• There exist probability densities πlk(·) on R such that, conditionally on T ,

βlk
ind∼ πlk ∀(l, k) ∈ T and βlk = 0, ∀(l, k) /∈ T

and there exist R, cR, CR > 0 such that

cR ≤ inf
|β|≤R

πlk(β) ≤ sup
β∈R

πlk(β) ≤ CR. (3.10)

While seemingly similar to the prior considered in [41], our Assumption 2 is much

weaker. Indeed, our prior construction subsumes the spike-and-slab prior of [41] by im-

posing weaker constraints on the decay of inclusion probabilities. Note that ωl’s in (3.9)

are allowed to be much larger than in [41] which assume n−B ≤ ωl ≤ 2−j(1+τ) for some

τ > 1/2. This perhaps subtle difference is of great practical importance and indicates that

optimal sup-norm adaptation occurs in far less sparse situations than originally perceived.

Another important difference is that we do not require the binary indicators I(βlk 6= 0) for

0 ≤ k < 2l and l ≤ Lmax to be iid Bernoulli random variables. This extension allows us to

consider, for example, Ising prior constructions [7] which allow the inclusion indicators to

be related through a Markovian model.
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Theorem 3. Consider the model (2.3) with a prior Π on {βlk}lk following the Assumption

2. Let t,M and η satisfy the Assumption 1. Then

sup
f0∈C(t,M,η)

Ef0Π
[
f : sup

x∈[0,1]
ζn(x)|f(x)− f0(x)| > M̃

∣∣∣Y ]→ 0,

for all sufficiently large M̃ > 0 where ζn(x) = (n/ log n)t(x)/(2t(x)+1).

The proof is provided in Section B.3 (Supplement). Theorem 3 shows that, unlike

Bayesian CART, the spike-and-slab priors achieve the exact rate uniformly over the entire

domain [0, 1] without any additional logarithmic penalty ([18] showed that the log-factor

in Bayesian CART is non-negotiable). In Lemma B.5 (an analog of Lemma 1 in [41]) we

show that the posterior concentrates on a subset of large enough coefficients. This fact

can be used to show that the median probability model (MPM) [4, 5, 59] consisting of all

coefficients with at least 50%-posterior probability of being active is an (exact) rate-optimal

estimator. Following the strategy of Proposition 4.5 in [59] one can then show that Theorem

2 remains true for the spike-and-slab prior when replacing the median tree estimator with

MPM and with vn that can grow slower at a rate at least
√

log n [59]. We discuss benefits

and drawbacks relative to the Bayesian CART prior in our simulation study in Section 5.1.

4 Spatial Adaptation in Non-parametric Regression

Throughout this section, we assume the canonical non-parametric regression setup (2.1)

with σ2 = 1. While nonparametric regression with a regular design and the white noise

model are asymptotically equivalent (e.g. under the usual smoothness assumption t(x) >

1/2 [12]), optimality of a procedure in one setup does not automatically imply optimality

in the other. In Section 4.2, we show rate-optimality of Bayesian CART in non-parametric

regression when t(x) > 1/2 without assuming regular designs. Later in Section 4.3, we

relax the restriction t(x) > 1/2 and propose new ‘repulsive’ partitioning priors (related to

adaptive-knot splines) and show that they are exact-rate adaptive. First, we describe some

not so optimistic findings for hierarchical Gaussian priors.
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4.1 Gaussian Processes

In Figure 1 we have seen that spatial adaptation is not attainable by methods which are

not sufficiently localized. In this section, we formally show that several practically used

hierarchical Gaussian process priors do not lead to spatially adaptive concentration rates.

While this phenomenon is not entirely surprising, it is nevertheless worthwhile to document

it formally. In particular, we provide lower bound results showing sub-optimality of Gaus-

sian processes in terms of a global estimation loss. To this end, we consider the following

heterogeneous-smoothness assumption which aligns with Figure 1 where the function f0

has smoothness α1 < 1/2 on [0, 1/2] and α2 = 1 on (1/2, 1].

Assumption 3. Assume that the Haar wavelet decomposition of a function f0

f0(x) = ψ−10(x)β0
−10 +

∞∑
l=0

∑
k∈Il

β0
lkψlk(x) (4.1)

with Il = {0, 1, . . . , 2l−1} satisfies that for all l, there exists 0 ≤ Nl ≤ 2l−1 with Nl2−l � 1

and such that for some M1 > 0,

max
k∈Il1
|β0
lk| ≤M12−l(α1+1/2) and max

k∈Il2
|β0
lk| ≤M12−l(α2+1/2) with α1 < α2, (4.2)

where Il1 = {0, 1, . . . , Nl} and Il2 = {Nl + 1, . . . , 2l − 1}.

Methods that are globally, but not locally, adaptive are expected to adapt to the worse-

case scenario and attain the slower rate determined by the smaller smoothness α1. We will

formalize this intuition by assessing the quality of the reconstruction with an L2 loss over

the entire domain as well as the smoother domain determined by α2, i.e. we define

‖f − f0‖2
2 ≡

∫ 1

0
|f(x)− f0(x)|2dx and ‖f − f0‖2

1/2,1 ≡
∫ 1

1/2
|f(x)− f0(x)|2dx.

We now consider three hierarchical Gaussian processes on

f(x) = ψ−10(x)β−10 +
∞∑
l=0

∑
k∈Il

βlkψlk(x) (4.3)

induced through a prior on the sequence {βlk}lk. These priors were studied in [60]. This
section assumes a regular design xi = i/n for n = 2Lmax+1 with some Lmax > 0.
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• (T1) (Sieve Prior) Let L − 1 ∼ Π(L) where Π(L) behaves either like a Poisson or a
geometric distribution, truncated to 2L ≤ n. Then conditionally on L

βlk
iid∼ N (0, τ 2) for l ≤ L and βlk = 0 for l > L, τ > 0.

• (T2) (Scale Parameter) Given α > 0 assume

βlk = Il≤Lmax2−l(α+1/2)Zlk, Zlk
iid∼ N (0, τ 2), τ ∼ πτ ,

where πτ is n Inverse Gamma distribution, or more generally follows the assumptions
of Lemma 3.5 of [60].

• (T3) (Rate Parameter) Given τ > 0 assume

βlk = Il≤Lmax2−l(α+1/2)Zlk, Zlk
iid∼ N (0, τ 2), α ∼ πα

where πα is a Gamma distribution or more generally satisfies the assumptions of
Lemma 3.6 of [60].

These priors have been studied in a multitude of works, see e.g. [2, 66] for the setup (T1)

[6, 44, 70] for the Gaussian process priors (T2) and (T3). More recently, this framework

has been studied in [60] in the case of Fourier-series priors where both lower bounds and an

upper bound have been obtained in the case of non-linear regression. We adapt their proof

to the wavelet basis case with functions satisfying (4.2). In this case, we note that for any

L such that 2L ≤ n and for fβ,L denoting the Haar wavelet expansions (4.3) truncated at

L ≥ 1 we have ‖fβ,L−fβ0,L‖2
n = 1

n

∑
i[fβ,L(xi)−fβ0,L(xi)]2 = ‖βL−β0,L‖2

2 = ‖fβ,L−fβ0,L‖2
2.

where βL = (βlk : l ≤ L)′ (resp. β0,L ) is the truncated version of β (resp β0).

Theorem 4. Let f0 satisfy (4.2) and consider either of the priors (T1)-(T3). Then for
Y = (Y1, . . . , Yn)′ arising from (2.1) with xi = i/n we have

Π [‖f − f0‖2 ≤Mnεn(α1) | Y ] = 1 + oPf0
(1) as n→∞, where (4.4)

εn(α1) =


(n/ log n)−α1/(2α1+1) under (T1), (T2) if α1 < 2α + 1, and (T3)

(n/ log n)−(2α+1)/(4α+4) under (T2) if α1 ≥ 2α + 1.
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Moreover, for all functions satisfying (4.2) and, for some c > 0,

min
k∈Il1
|β0
lk| ≥ c 2−l(α1+1/2) (4.5)

we have Π
[
‖f − f0‖1/2,1 ≤ n−δεn(α1) | Y

]
= oPf0

(1) as n→∞ for all δ > 0.

The proof is provided in Section C (Supplement). The first statement (4.4) shows

that the posterior under the Gaussian sequence priors adapts to the worse smoothness α1.

Moreover, the second statement implies that, under a suitable identifiability condition, the

posterior is incapable of achieving a faster rate on the smoother domain (determined by

α2 > α1), rendering adaptation to α2 impossible. Note that similarly to [60], the same

conclusions holds if one deploys an empirical Bayesian procedure based on the marginal

maximum likelihood estimator on L for T1 (resp. τ for T2 and α for T3).

4.2 Bayesian CART

This section reports positive findings in the context Bayesian CART. In particular, we show

a regression analogue of Theorem 1 assuming t(x) > 1/2. [18] also study Bayesian CART

in regression but with a regular design where the prior is assigned to empirical wavelet

coefficients. This re-parametrization closely resembles the white noise model, enabling a

more direct transfer of the results. Here, we follow an alternative route. A perhaps more

transparent approach is to assign a prior directly to the actual (not empirical) wavelet

coefficients (similarly as in [75]). This strategy aligns more closely with what is done in

practice. We pursue this direction here and, in addition, consider designs that are not

necessarily regular.

With a vector of observations Y = (Y1, . . . , Yn)′ and F0 = (f0(x1), . . . , f0(xn))′, we can

re-write (2.1) in a matrix notation: let p = 2Lmax = bC∗
√
n/ log nc for some C∗ > 0,

Y = Xβ0 + ν, where ν = F0 −Xβ0 + ε with ε ∼ N (0, In), (4.6)

where β0 = (β0
1 , . . . , β

0
p)′ ∈ Rp is a sparse vector of multiscale coefficients 〈f0, ψlk〉 ordered

according to 2l + k and where X = (xij)i≤n,j≤p with xij = ψlk(xi) when j = 2l + k.
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Because we assume t(x) > 1/2, we do not need resolutions larger than Lmax to be able to

approximate f0 well. We will be denoting with T all tree-shaped subsets of nodes (l, k)

such that l ≤ Lmax. For a tree T ∈ T and a vector β ∈ Rp, we denote with βT the

subset of coefficients inside the tree and with β\T the complement. Similarly, we split

the design matrix X into active covariates XT (that correspond to (l, k) ∈ Tint) and the

complementary inactive ones X\T . It will be advantageous4 to use the unit-information

g-prior for βT

βT ∼ N (0, gn(X ′TXT )−1) with gn = n (4.7)

which yields the following marginal likelihood under each tree T

NY (T ) =
exp

{
−1

2Y
′[I −XT ΣTX ′T ]Y

}
(2π)n/2(1 + gn)|T |/2 , ΣT = cn(X ′TXT )−1, cn = gn/(gn + 1).

Throughout this section, we will denote with nLlk (resp. nRlk) the number of observations

that fall inside the domain of the left (resp. right) wavelet piece ψlk, i.e. nlk = ∑n
i=1 I(xi ∈

Ilk) = nRlk + nLlk and we define n̄lk = max{nRlk, nLlk} and
¯
nlk = min{nRlk, nLlk}. The regular

design xi = i/n satisfies n̄lk =
¯
nlk = n/2l+1, when n is a power of 2. Here, we allow for a

design X = {xi ∈ [0, 1] : 1 ≤ i ≤ n} that is not necessarily regular. Instead, we make the

following design balance assumption.

Assumption 4. (Balanced Design) Let L̃max be such that 2L̃max = bCxn/ log nc for some

Cx > 0. We say that the design X is υ-regular for some υ > 0 if for any (l, k) s.t.

0 ≤ l ≤ L̃max
c n

2l ≤ ¯
nlk ≤ n̄lk ≤

(C + l)n
2l for some c, C > 0 (4.8)

and, for some Cd > 0, 0 ≤ n̄lk − ¯
nlk ≤ Cd

√
n logυ n
2l/2 .

Note that the threshold Lmax used to construct the design matrix X is smaller than

the threshold L̃max in Assumption 4 and all partitioning cells induced by T ∈ T are
4We can take advantage of certain properties of projection matrices. Other priors can be considered as

well.
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guaranteed to have at least one observation. The Assumption 4 is not overly restrictive.

Indeed, we show in Lemma F.5 (Supplemental Materials) that the second condition is

satisfied5 with probability approaching one when X arises from a uniform distribution on

[0, 1]. Irregular observations ultimately induce correlated Haar wavelet designs X where

the correlation pattern has a particular hierarchical structure described in Lemma F.1

(Supplement). As with other related consistency results in regression (see e.g. [53]), we

cannot allow for too much correlation in the design X. Fortunately, balanced designs

that satisfy Assumption 4 are not too collinear and yield diagonally dominant covariance

matrices with well-behaved eigenvalues (see Lemma F.4 in the Supplement). We are now

ready to state a non-parametric regression version of Theorem 1.

Theorem 5. Assume the regression model (4.6) under Assumption 4 for some 0 ≤ υ < 1/2

and c, C, Cd > 0 or υ = 1/2 with c > 2CdC∗. Assume the Bayesian CART tree prior ΠT

with a split probability pl = (Γ)−l2[υ+(υ∨1)] for some sufficiently large Γ > 0 and the g-prior

(4.7). Assume that t,M and η satisfy Assumption 1 with t1 > 1/2, then

sup
f0∈C(t,M,η)

Ef0Π
[
f : sup

x∈[0,1]
ζn(x)|f(x)− f0(x)| > Mn

∣∣∣Y ]→ 0

for ζn(x) =
(

n
logn

) t(x)
2t(x)+1 and for any Mn →∞ that is faster than logυ+υ∨1+1/2 n.

The proof is provided in Section A.1 (Supplement). Note that the prior split probabil-

ity decays more rapidly to accommodate the irregular design assumption. An analogous

statement can be obtained for the spike-and-slab prior using a similar approach as in the

proof of Theorem 3. In addition, the confidence set construction in (3.7) remains valid

also under the non-parametric regression setting. Indeed, rate-optimality of the posterior

implies rate-optimality of the median-tree estimator and the regression variant of Theorem

2 thus holds under the assumption t1 > 1/2.

5for υ ≥ 1/2 due to simultaneous control of 2L̃max coefficients
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4.3 Repulsive Partition Prior

In the previous section, we studied a prior on wavelet coefficients that corresponds to

recursive partitioning. In this section, we propose a different partitioning prior on piecewise

constant functions which relates to variable knot spline techniques [51, 71]. We assume that

a partition S = (IS1 , · · · , ISJ ) of [0, 1] is not necessarily induced by a tree but arrives from

a ‘determinantal-type’ prior

S ∼ πS ∝
J∏
j=1
|ISj |BI(S ∈ S) for some B > 0, (4.9)

where S contains all partitions made out of blocks with endpoints belonging to a fixed grid

In = (z` : ` ≤ Nn) such that z0 = 0 and zNn = 1 and

0 ≤ z` < z`+1,
C1 log n

n
≤ z`+1 − z` ≤

C2 log n
n

, ` ≤ Nn for some C1, C2 > 0. (4.10)

Note that the size of an interval in S can be measured either in terms of its length or in

terms of its number of units, i.e. number of elements in the grid In belonging to it. We refer

to (4.9) as a repulsive partitioning prior because it prevents the splits from occurring too

close to one another. The prior (4.9) thus rewards partitions that are more regular. The set

In contains candidate knots for possible split, e.g. a subset of observed design points. While

in variable knot spline techniques (such as MARS [35]) knot points are added, removed and

allocated recursively using cross-vaildiation, here we let the posterior distribution choose

the knots in a data-adaptive way. Given the partition S ∈ S we reconstruct the regression

surface with

fSβ (x) =
J∑
j=1

βjIISj (x), where (βj : j ≤ J) ind∼ gj. (4.11)

Regarding the prior density gj, we will assume that there exist 0 < c0 ≤ c1 and B0 > 0

such that

c0 ≤ gj(β) ∀|β| ≤ B0, and ‖gj‖∞ ≤ c1 ∀j ≤ J. (4.12)

While in Section 4.2 we obtained the near-minimax rate under the assumption t1 > 1/2,

here we show rate-exactness without necessarily assuming t1 > 1/2. We are interested in
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bounding Π(Acεn(M̃) |Dn) where Dn = {(Yi, xi)}ni=1 and

Aεn(M̃) =
{

sup
x∈(0,1)

|fSβ (x)− f0(x)|
εn(x) ≤ M̃

}
and εn(x) =

(
n

log n

)− t(x)
2t(x)+1

. (4.13)

For a given point x ∈ [0, 1] and a partition S = {ISj }Jj=1 we denote with ISx ∈ S the

interval containing x and with R(ISx ) (resp. L(ISx )) its right (resp. left) neighbor. We then

define I(x) as the set of intervals which contain x and the two neighboring intervals, i.e.

I(x) =
⋃
S∈S
{ISx , R(ISx ), L(ISx )}, (4.14)

and we define, for a given x ∈ [0, 1] and some u1 > 0,

Ωn,x(u1) =
{
|nI − n× pI | ≤ u1

√
log n× n× pI ∀I ∈ I(x)

}
(4.15)

where nI = ∑n
i=1 I(xi ∈ I) and pI is a function of I which satisfies p0|I| ≤ pI ≤ p1|I| for

some 0 < p0 ≤ p1. Our results will be conditional on a large probability event which can

be loosely regarded as a design assumption. Namely, we require that the cells containing

the knot points zl (and the neighboring cells) are large enough in terms of the number

of observations falling inside, i.e. we consider an intersection of events in (4.15) Ωn(u1) =⋂Nn
l=1 Ωn,zl(u1). Our result below will hold on this event. If the design is regular, then Ωn(u1)

holds for any u1 > 0 and p0 = p1 = 1. If the design is random (with a density bounded away

from zero) then (4.15) holds with large probability if u1 is large enough, as shown in Lemma

F.6 (Supplemental Materials). Unlike in Section 4.2 where we assumed infx∈[0,1] t(x) > 1/2,

now we assume that 0 < t(·) ≤ 1 and that t(·) is piecewise Hölder.

Assumption 5. (Piecewise Hölder) Assume that there exists a fixed partition of [0, 1] into

k intervals say [aj, aj+1) (resp. (aj, aj+1]) with a0 = 0 and ak+1 = 1 such that t(·) is αj-

Hölder on (aj, aj+1), i.e. for L0 > 0 |t(x) − t(y)| ≤ L0|x − y|αj for x, y ∈ (aj, aj+1), and

such that t(·) is right (resp. left) Hölder at aj.

Theorem 6. Consider the prior defined by (4.10)-(4.12) and (4.9) and with B > 9 and

C1 > 4u2
1/p0 and ‖f0‖∞ < B0. Under the Assumption 1 with t(·) piecewise Hölder according

to the Assumption 5, there exists M̃ > 0 such that Ef0

[
IΩn(u1)Π(Acεn(M̃) |Dn)

]
= o(1).
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The proof is provided in Section A.2 (Supplement). Theorem 6 shows that rate-

exactness can be achieved in regression uniformly over [0, 1] for local Hölderian functions

whose exponents are piece-wise Hölder. The prior construction (4.11), (4.12) and (4.9) can

be regarded as a version of variable-knot zeroth order splines. Note that the partition in

Assumption 5 needs not be known for our procedure to be valid.

While we have presented our result in the case of univariate densities, extension to

the multivariate case are possible but perhaps a bit more tedious. More interestingly,

the proving technique in Section A.2 may be extended to free-knot splines, which have

typically been devised to adapt spatially but for which no proofs exist. Finally, although

the repulsive prior used in Theorem 6 on the partition is not proved to be necessary, we

believe that some form repulsion is necessary.

5 Performance Evaluation
We demonstrate the benefits of our locally adaptive confidence bands (relative to widely

used methods in practice that are not spatially adaptive) in a simulation study as well as

on a real data example.

5.1 Simulation Study

We considered 4 test functions exhibiting various degrees of spatial inhomogeneity following

[29] (details are shown in Section G of the Supplement). One of the test functions was

discussed previously in Example 1. We summarize results from 100 repetitions from the

model (2.1) with σ = 1 and with xi = 1/n and n = 210. See Section G (Supplement)

for implementation details of Metropolis-Hastings samplers for Bayesian CART and Spike-

and-Slab priors.

We construct our confidence band according to (3.7) using an adaptive choice of vn in

(3.6) so that 6 the band contains (1−α)% of posterior draws. We choose α ∈ {0.05, 0} and

denote these two bands with C1
n (with α = 0.05) and C2

n (with α = 0) in our Tables. Next,
6We find such a vn by grid search over vn = {0.5 + k × 0.005 : 1 ≤ k ≤ 100}.
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Bayesian CART Spike-and-Slab CCF BIN1 BIN2 CLM
C1
n C2

n C̃n Pn L∞ C1
n C2

n C̃n Pn L∞
Doppler Curve

% 7.31 1.71 1.7 42.91 2.16 2.08 0.04 0.9 37.33 1.25 16.24 16.99 6.2 12.45
Avg W 2.12 3.76 3.41 0.65 2.81 2.4 5.82 3.06 0.72 2.68 0.5 0.88 0.86 1.66
Loss∞ 2.44 2.44 2.44 2.29 2.29 1.93 1.93 1.93 1.88 1.88 3.09 2.45 0.8 3.53
Loss2 0.24 0.24 0.24 0.21 0.21 0.2 0.2 0.2 0.18 0.18 0.52 0.16 0.05 0.47
Min W 1.12 1.96 3.41 0.32 2.81 1.25 3.03 3.06 0.34 2.68 0.39 0.56 0.56 1.66
Max W 5.35 9.56 3.41 2.32 2.81 5.63 13.73 3.06 2.08 2.68 1.45 1.54 2.2 1.66

Brownian Motion
% 7.45 1.53 4.58 29.01 6.12 2.32 0 2.05 26.86 2.71 37.02 24.98 20.51 8.58
Avg W 1.71 3.15 2.46 0.52 2.08 2.54 5.83 2.89 0.58 2.54 0.53 0.84 0.85 1.65
Loss∞ 1.96 1.96 1.96 1.96 1.96 1.93 1.93 1.93 1.88 1.88 2.22 1.83 1.47 1.76
Loss2 0.23 0.23 0.23 0.21 0.21 0.21 0.21 0.21 0.19 0.19 0.24 0.18 0.13 0.19
Min W 0.92 1.69 2.46 0.24 2.08 1.39 3.19 2.89 0.25 2.54 0.4 0.57 0.56 1.65
Max W 3.77 6.92 2.46 1.63 2.08 5.5 12.63 2.89 1.89 2.54 1.52 1.22 2.14 1.65

Bumps
% 6.33 2.56 2.89 33.65 4.01 2.02 0.34 1.46 25.22 2.01 74.19 29.36 29.71 32.92
Avg W 4.33 6.26 5.38 0.7 4.37 3.83 6.39 4.53 0.87 3.85 0.41 0.95 0.93 1.61
Loss∞ 4.06 4.06 4.06 3.92 3.92 3.26 3.26 3.26 3.2 3.2 4.09 3.25 2.98 3.44
Loss2 0.58 0.58 0.58 0.55 0.55 0.37 0.37 0.37 0.33 0.33 1.9 0.61 0.44 0.97
Min W 2.69 3.89 5.38 0.34 4.37 2.18 3.63 4.53 0.34 3.85 0.33 0.56 0.57 1.61
Max W 10.01 14.55 5.38 3.47 4.37 8.93 14.87 4.53 3.01 3.85 1.2 1.74 2.27 1.61

Blocks
% 5.38 2.98 1.77 19.27 2.65 1.44 0.44 1.19 18.59 1.68 62.69 26.81 39.24 33.65
Avg W 4.61 6.22 6.6 0.72 5.22 3.66 5.89 5.84 0.77 4.72 0.47 0.93 0.92 1.7
Loss∞ 4.11 4.11 4.11 4.08 4.08 4.34 4.34 4.34 4.16 4.16 3.88 4.45 3.1 3.23
Loss2 0.61 0.61 0.61 0.56 0.56 0.39 0.39 0.39 0.35 0.35 1.66 0.91 0.66 1.29
Min W 2.88 3.85 6.6 0.34 5.22 2.21 3.53 5.84 0.34 4.72 0.37 0.54 0.55 1.7
Max W 13.54 18.37 6.6 4.1 5.22 10.74 17.31 5.84 3.81 4.72 1.24 1.96 2.08 1.7

Table 1: The numbers are averages over 100 repetitions. % stands for the percentage of non-
covered points f0(x) for x ∈ X = {xi : 1 ≤ i ≤ n}; Avg W, Min W and Max W stand for
average (over X ), minimal and maximal width; Loss∞ = maxx∈X | f̂(x) − f0(x) | and Loss2 =
1
n

∑
i(f̂(xi)−f0(x0))2 are the losses of a point estimator (posterior median for C1

n, C2
n, C̃n, posterior

mean for Pn, L∞, the band midpoint for CLM, BIN1 and BIN2 and a point estimator of CCF
after adaptively choosing the number of bins before de-biasing).

we implement the locally non-adaptive band [18], denoted by C̃n, which uses supx∈[0,1] σn(x)

as the global diameter in (3.6). Again, we choose vn adaptively so that C̃n contains 95%

of posterior draws. We compare C̃n with a frequentist counterpart7 [14] where the global

level of truncation is estimated by performing tests on individual wavelet coefficients. We

denote this method by CLM in our tables, using α = 0.05. Next, we compare our bands

to 95% credible L∞ bands centered at the posterior mean estimator f̂ (i.e. L∞ ≡ {f :

supx∈[0,1] | f(x)− f̂(x) | ≤ Rα}, where Rα is the 95% sample quantile of maxx∈X | fi(x)−

f̂(x) | where fi for 1 ≤ i ≤ M are the posterior draws of f and X = {xi : 1 ≤ i ≤ n}.

This construction is locally non-adaptive and, although similar to the multiscale credible

band in [18], its coverage properties are not theoretically understood. We also included

a point-wise 95% credible band (denoted by Pn in our Tables) and a (pointwise) band

from a recent R package nprobust [15] (using default settings) which implements robust
7We used authors’ Matlab code with a Symmlet 8 basis with default tuning (β0 = 3 and M0 = 100).

26



Figure 3: Confidence bands for f0(t). Left: Bayesian CART prior with Γ = 1.001. Right: Spike-
and-Slab prior with Γ = 2. Blue lines are the confidence bands with an adaptively chosen vn
(α = 0.05) and the red dashed line is the posterior median. True data marked with black (dark
gray dotted) lines. The gray area are superimposed posterior samples after burnin (one line for
each sample).

bias-corrected bands using local polynomial regression. This method is denoted by CCF

in our Tables. Lastly, we compare our adaptive partitioning approach with the binscatter

[19] (regressogram) popular among econometricians [67]. The R package binsreg provides

confidence bands based on bias correction and adaptive selection of the number of bins.

We used both piece-wise step functions (option p = s = 0) with a non-adaptive placement

of splits (denoted as BIN1 in our Tables) as well as the recommended default option (with

p = s = 2) based on smoother local polynomials with a global smoothing penalty across

the bins (denoted as BIN2 in our Tables). While smoother approaches (CCF and BIN2)

work well on the Doppler curve (Example G.1), the Bumps and Blocks design dramatically

reveal the benefits of our locally adaptive (step function) approach. This simulation study

shows distinctive benefits of a Bayesian approach to adaptive confidence band construction.

Plots of the confidence bands for the Brownian motion example is in Figure 2 and for all

4 test functions in Section G (Figure 2 and 3).
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5.2 Call Center Data

The data set, studied in [11] and [14], consists of arrival times of regular service calls to

the call center of an Israeli bank from August to October in 1999. Following [11], the

number of calls are assumed to arrive according to an inhomogeneous Poisson process with

a mean function µ(t). We want to non-parametrically estimate µ(t) and to provide a

confidence band. Similarly as in [14] we divide daily operating times (7-AM till midnight)

into n = 2048 equispaced intervals and compute responses Yi for ith time interval as Yi =√
Ni + 1/4 where Ni ∼ Pois[µ(ti)] is the number of phone calls arriving in the ith interval.

These transformed data Yi approximately follow the model (2.1) with f0(t) =
√
µ(t) and

with a fixed variance σ2 = 1/4 [11]. We applied the Bayesian CART and Spike-and-Slab

priors with Γ = 1.001 (MH acceptance rate 12%) and Γ = 2 (MH acceptance rate8 4%),

respectively. Instead of fixing the variance at the theoretically justified value σ2 = 1/4, we

estimated it using the (1/2, 1/2)-inverse Gamma prior. The posterior mean and credible

interval for σ2 was 0.27(0.261, 0.296) for Bayesian CART and 0.28(0.263, 0.31), suggesting

that Bayesian CART leaves less unexplained variance and yields an estimate that is closer

to the true theoretical value 0.25. We also saw that the Markov chain under the Spike-

and-Slab prior took longer to escape from the initialization at (l, k) ∈ {(0, 0), (1, 0), (0, 1)}.

This example shows the benefits of tree-shaped regularization which prevents from the

inclusion of spurious high-resolution signals and thereby yields smoother reconstructions

and tighter bands. After burning 1 000 of the 5 000 MCMC iterations, we construct the

band Cn in (3.7) with an adaptively chosen vn so as the band consists of 95% posterior

probability (vn = 0.52 for Bayesian CART and vn = 1.85 for Spike-and-Slab). The results

are summarized in Figure 3 where we plot the transformed data Yi and confidence bands

for f0(t). In order to obtain bands for µ(t) one could transform the results by taking the

square [11].
8In order to achieve the acceptance rate 12% for the Spike-and-Slab prior, we would need to decrease

Γ to, say, 1.5. This results in inclusion of spurious deeper coefficients and thereby wider confidence bands.

28



6 Discussion

This work studies spatial adaptivity aspects of popular Bayesian machine learning pro-

cedures including Bayesian CART, Gaussian processes, spike-and-slab wavelet reconstruc-

tions and variable-knot splines. We have focused on Hölderian classes where the smoothness

is varying over the function domain. We have shown uniform (near)-minimax local adap-

tation in the supremum-norm sense in white noise as well as non-parametric regression

for Bayesian CART and spike-and-slab priors. We have also provided a valid frequentist

framework for uncertainty quantification with confidence set with asymptotic coverage 1

and whose width is optimal and varies with local smoothness. We proposed a new class

of repulsive partitioning priors which relate to variable-knot spline techniques and showed

that they are locally rate-exact. Although we have only treated regression-type models, our

results can be extended to, for example, density or Poisson intensity estimation estimation

using a formulation similar to [16]. Extensions to higher dimensions d > 1 are straight-

forward using, for example, tensor products of Haar basis functions. The spike-and-slab

approach extends naturally to tensor products while the Bayesian CART approach lends

itself to d-ary trees (as opposed to binary trees), where each internal node has 2d children

(see Section 7.4 in the Supplement of [18]). Alternatively, multivariate Bayesian CART

can be more transparently translated using anisotropic Haar wavelet basis functions which

more closely resemble recursive partitioning [28]. One would need to make sure that the

partition is sufficiently regular in the sense that the binary trees split roughly equally along

each direction during the anisotropic dictionary construction. A similar requirement would

be needed for the repulsive prior from Section 4.3.
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