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ABSTRACT

Thompson sampling is a heuristic algorithm for the multi-armed bandit problem which has a long tradition
in machine learning. The algorithm has a Bayesian spirit in the sense that it selects arms based on posterior
samples of reward probabilities of each arm. By forging a connection between combinatorial binary bandits
and spike-and-slab variable selection, we propose a stochastic optimization approach to subset selection
called Thompson variable selection (TVS). TVS is aframework for interpretable machine learning which does
not rely on the underlying model to be linear. TVS brings together Bayesian reinforcement and machine
learning in order to extend the reach of Bayesian subset selection to nonparametric models and large
datasets with very many predictors and/or very many observations. Depending on the choice of a reward,
TVS can be deployed in offline as well as online setups with streaming data batches. Tailoring multiplay
bandits to variable selection, we provide regret bounds without necessarily assuming that the arm mean
rewards be unrelated. We show a very strong empirical performance on both simulated and real data. Unlike
deterministic optimization methods for spike-and-slab variable selection, the stochastic nature makes TVS
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less prone to local convergence and thereby more robust.

1. Interpretable Machine Learning

A fundamental challenge in statistics that goes beyond mere pre-
diction is to glean interpretable insights into the nature of real-
world processes by identifying important correlates of variation.
Many today’s most powerful prediction tools, however, lack an
intuitive algebraic form which renders their interpretability (i.e.,
insight into the black-box decision process) far from straightfor-
ward. Substantial effort has been recently devoted to enhancing
the explainability of machine learning through the identification
of key variables that drive predictions (Garson 1991; Zhang,
Ge, and Hang 2000; Olden and Jackson 2002; Lu et al. 2018;
Horel and Giesecke 2019; Burns, Thomason, and Tansey 2020).
While these procedures may possess nice theoretical guarantees,
they may not yet be feasible for large-scale applications. This
work develops a new computational platform for understanding
black-box predictions which is based on reinforcement learning
and which can be applied to very large datasets.

A variable can be important because its change has a causal
impact or because leaving it out reduces overall prediction
capacity (Mase, Owen, and Seiler 2019). Such leave-one-
covariate-out type inference has a long tradition, going back
to at least Breiman (2001). In random forests, for example,
variable importance is assessed by the difference between
prediction errors in the out-of-bag sample before and after
noising the covariate through a permutation. Lei et al. (2018)
proposed the LOCO method which gauges local effects of
removing each covariate on the overall prediction capability
and derives an asymptotic distribution for this measure to
conduct proper statistical tests. There is a wealth of literature on

variable importance measures, see Fisher, Rudin, and Dominici
(2019) for a recent overview. In Bayesian forests, such as BART
(Chipman, George, and McCulloch 2001), one keeps track
of predictor inclusion frequencies and outputs an average
proportion of all splitting rules inside a tree ensemble that
split on a given variable. In deep learning, one can construct
variable importance measures using network weights (Garson
1991; Ye and Sun 2018). Owen and Prieur (2017) introduced
a variable importance based on a Shapley value and Hooker
(2007) investigated diagnostics of black-box functions using
functional ANOVA decompositions with dependent covariates.
While useful for ranking variables, importance measures are less
intuitive for model selection and are often not well-understood
theoretically (with a few exceptions including Ishwaran et al.
2007; Kazemitabar et al. 2017).

This work focuses on high-dimensional applications (either
very many predictors or very many observations, or both),
where computing importance measures and performing tests
for predictor effects quickly becomes infeasible. We consider
the nonparametric regression model which provides a natu-
ral statistical framework for supervised machine learning. The
data setup consists of a continuous response vector Y =
(Y1,...,Y,) that is linked stochastically to a fixed set of pre-
dictors x; = (x;1, - - - ,x,-p)’ for 1 <i < nthrough

id

Yi = fo(xi) + € whereg; < N(0,02), (1)
and where fp is an unknown regression function. The variable
selection problem occurs when there is a subset So C {1,-- -, p}

of qo =

|So| predictors which exert influence on the mixing
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function fy and we do not know which subset it is. In other
words, fy is constant in directions outside Sy and the goal is to
identify active directions (regressors) in Sp while, at the same
time, permitting nonlinearities and interactions. The traditional
Bayesian approach to this problem starts with a prior distribu-
tion over the 27 sets of active variables. This is typically done
in a hierarchical fashion by first assigning a prior distribution
7(q) on the subset size ¢ = |S| and then a conditionally
uniform prior on S, given g, that is, 7(S|q) = %. This prior
can be translated into the spike-and-slab prior wﬁere, for each
coordinate 1 < i < p, one assumes a binary indicator y; for
whether or not the variable x; is active and assigns a prior
P(y;10) =60, 6 ~ Beta(a,b) for some a,b > 0. (2)
The active subset S is then constructed as S = {j
¥j = 1}. There is no shortage of literature on spike-and-
slab variable selection in the linear model, addressing prior
choices (Mitchell and Beauchamp 1988; Rockova and George
2018; Rossell and Telesca 2017; Vannucci and Stingo 2010;
Brown, Vannucci, and Fearn 1998), computational aspects
(George and McCulloch 1993, 1997; Bottolo et al. 2010;
Carbonetto et al. 2012; Rockova and George 2014) and/or
variable selection consistency results (Johnson and Rossell 2012;
Narisetty et al. 2014; Castillo, Schmidt-Hieber, and Van der
Vaart 2015). Traditionally, spike-and-slab methodology relies
on the underlying model to be linear, which may be woefully
inaccurate, and can be computationally slow. In this work,
we leave behind the linear model framework and focus on
interpretable machine learning linking spike-and-slab methods
with binary bandits. The two major methodological benefits
are (a) ability to capture nonlinear effects and (b) scalability
to very large datasets. Existing nonlinear variable selection
approaches include grouped shrinkage/selection of basis-
expansion coeflicients (Lin and Zhang 2006; Ravikumar et al.
2009; Radchenko and James 2010; Scheipl 2011), regularization
of the derivative expectation operator (Lafferty and Wasserman
2008) or model-free knockoffs (Candes et al. 2018). The main
distinguishing feature of our approach is the development of a
new computational platform via a spike-and-slab wrapper that
extends the reach of machine learning to large-scale data.
This article introduces Thompson variable selection (TVS),
a stochastic optimization approach to subset selection based on
reinforcement learning. The key idea behind TVS is that variable
selection can be regarded as a combinatorial bandit problem
where each variable is treated as an arm. TVS sequentially learns
promising combinations of arms (variables) that are most likely
to provide a reward. Depending on the learning tool for mod-
eling fy (not necessarily a linear model), TVS accommodates a
wide range of rewards for both offline and online (streaming
batches) setups. The fundamental appeal of active learning for
subset selection (as opposed to MCMC sampling) is that those
variables which provided a small reward in the past are less
likely to be pulled again in the future. This exploitation aspect
steers model exploration toward more promising combinations
and offers dramatic computational dividends. Indeed, similarly
as with backward elimination TVS narrows down the inputs
contributing to fy but does so in a stochastic way by learn-
ing from past mistakes. TVS aggregates evidence for variable

inclusion and quickly separates signal from noise by minimizing
regret motivated by the median probability model (MPM) rule
(Barbieri and Berger 2004). We provide regret bounds which
do not necessarily assume that the arm outcomes be unre-
lated. In addition, we show strong empirical performance and
demonstrate the potential of TVS to meet demands of very large
datasets.

This article is structured as follows. Section 2 revisits known
facts about multi-armed bandits. Section 3 develops the bandits
framework for variable selection and Section 4 proposes TVS
and presents a regret analysis. Section 5 presents two implemen-
tations (offline and online) on two benchmark simulated data.
Section 6 presents a thorough simulation study and Section 7
showcases TVS performance on real data. We conclude with a
discussion in Section 8.

2. Multi-Armed Bandits Revisited

Before introducing TVS, it might be useful to review several
known facts about multi-armed bandits. The multi-armed ban-
dit (MAB) problem can be motivated by the following gam-
bling metaphor. A slot-machine player needs to decide between
multiple arms. When pulled at time ¢, the ith arm gives a ran-
dom payout y;(#). In the Bernoulli bandit problem, the rewards
yi(t) € {0,1} are binary and P(y;(t#) = 1) = 6;. The
distributions of rewards are unknown and the player can only
learn about them through playing. In doing so, the player faces
a dilemma: exploiting arms that have provided high yields in the
past and exploring alternatives that may give higher rewards in
the future.

More formally, an algorithm for MAB must decide which of
the p arms to play at time ¢, given the outcome of the previous
t — 1 plays. A natural goal in the MAB game is to minimize
regret, that is, the amount of money one loses by not playing
the optimal arm at each step. Denote with i(¢) the arm played

at time ¢, with * = max 0; the best average reward and with
1<i<p

A; = 60* — 6; the gap between the rewards of an optimal
action and a chosen action. The expected regret after T plays
can be then written as E[R(T)] = Zle A;E[k;(T)], where
ki(T) = Zthl I[i(t) = j] is the number of times an arm j has
been played up to step T. There have been two main types of
algorithms designed to minimize regret in the MAB problem:
upper confidence bound (UCB) of Lai and Robbins (1985) and
Thompson Sampling (TS) of Thompson (1933).

Thompson Sampling is a Bayesian-inspired heuristic algo-
rithm that achieves a logarithmic expected regret (Agrawal and
Goyal 2012) in the Bernoulli bandit problem. Starting with a

noninformative prior 6; id Beta(1,1) for 1 < i < p, this
algorithm: (a) updates the distribution of 6; as Beta(a;(t) +
1, b;(t) + 1), where a;(t) and b;(t) are the number of successes
and failures of the arm i up to time ¢, (b) samples 6;(t) from these
posterior distributions, and (c) plays the arm with the highest
0;(t). Agrawal and Goyal (2012) extended this algorithm to the
general case where rewards are not necessarily Bernoulli but
general random variables on the interval [0, 1].

The MAB problem is most often formulated as a single-play
problem, where only one arm can be selected at each round.



Komiyama, Honda, and Nakagawa (2015) extended Thompson
sampling to a multi-play scenario, where at each round ¢ the
player selects a subset S; of L < p arms and receives binary
rewards of all selected arms. For each 1 < i < p, these rewards
ri(t) are iid Bernoulli with unknown success probabilities 6;
where y;(¢) and y;(t) are independent for i # j and where,
without loss of generality, 61 > 6, > --- > 6. The player
is interested in maximizing the sum of expected rewards over
drawn arms, where the optimal action is playing the top L arms
So ={1,...,L}. Theregret depends on the combinatorial struc-
ture of arms drawn and, similarly as before, is defined as the gap
between an expected cumulative reward and the optimal draw-
ing policy, that is, E[R(T)] = EY L, (Xics, 0i = Xies, 0i)
Fixing L, the number of arms played, Komiyama, Honda, and
Nakagawa (2015) proposed a Thompson sampling algorithm
for this problem and show that it has a logarithmic expected
regret with respect to time and a linear regret with respect to the
number of arms. Our metamorphosis of multi-armed bandits
into a variable selection algorithm will ultimately require that
the number L of arms played is random and that the rewards at
each time ¢ can be dependent.

Finally, we complete the review of MAB techniques with
combinatorial bandits (Chen, Wang, and Yuan 2013; Gai, Krish-
namachari, and Jain 2012; Cesa-Bianchi and Lugosi 2012) which
are the closest relative to our proposed method here. Combina-
torial bandits can be seen as a generalization of multi-play ban-
dits, where any arbitrary combination of arms S (called super-
arms) is played at each round and where the reward r(S) can be
revealed for the entire collective S (a full-bandit feedback) or for
each contributing arm i € S (a semi-bandit feedback), see, for
example, Wang and Chen (2018), Combes and Proutiere (2014),
Kveton et al. (2015), Combes and Proutiere (2014), and Kveton
etal. (2015). We will draw upon connections between combina-
torial bandits and variable selection multiple times throughout
Section 3 and 4.

3. Variable Selection as a Bandit Problem

The purpose of this section is to link spike-and-slab model selec-
tion with multi-armed bandits. Before formalizing the ideas,
we discuss two possibilities inspired by the search for the MAP
(maximum-a-posteriori) model and the MPM (median proba-
bility) model.

Bayesian model selection with spike-and-slab priors has
often been synonymous to finding the MAP model S =
argmaxs 7 (S | Y™). Even when the marginal likelihood is
available, this model can computationally unattainable for p as
small as 20. In order to accelerate Bayesian variable selection
using multi-armed bandits techniques one idea immediately
comes to mind. One could treat each of the 27 models as a
base arm. Assigning prior model probabilities according to
0; ~ Beta(ayb;) for1 < i < 2P for some' g; > 0 and
b; > 0, one could play a game by sequentially trying out various
arms (variable subsets) and collect rewards to prioritize subsets
that were suitably “good.” Identifying the arm with the highest
mean reward could then serve as a proxy for the best model.

'chosen to correspond to marginals of a Dirichlet distribution
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This naive strategy, however, would not be operational due to
the exponential number of arms to explore.

Instead of the MAP model, it has now been standard practice
to report the MPM (Barbieri and Berger 2004) consisting of
those variables whose posterior inclusion probability 7; =
P(y; = 1| Y™) is at least 0.5. More formally, MPM is defined,
form = (m1,...,mp) , as

§MpM = arg msax rz(S) = {i:m; > 0.5} where

ra(S) = {]_[m]_[(l - m)} )
ieS ¢S

This is now the default model selection rule with spike-and-
slab priors (2). The MPM model is the optimal predictive model
in linear regression under some assumptions (Barbieri et al.
2020). Obtaining 7;’s, albeit easier than finding the MAP model,
requires posterior sampling over variable subsets. While this can
be done using standard MCMC sampling techniques in linear
regression (George and McCulloch 1997; Narisetty et al. 2014;
Bhattacharya, Chakraborty, and Mallick 2016), here we explore
new curious connections to bandits in order to develop a much
faster stochastic optimization routine for finding MPM-alike
models when the true model is not necessarily linear.

Having reviewed the two traditional Bayesian model choice
reporting methods (MAP and MPM), we can now forge connec-
tions to multi-armed bandits. While the MAP model suggests
treating each model S as a bandit arm, the MPM model suggests
treating each variable y; as a bandit arm. Under the MAP frame-
work, the player would be required to play a single arm (i.e., a
model) at each step. The MPM framework, on the other hand,
requires playing a random subset of arms (i.e., a model) at each
play opportunity. This is appealing for at least two reasons: (i)
there are fewer arms to explore more efficiently, (ii) the quantity
7z (S) in Equation (3) can be regarded as a mean regret of a
combinatorial arm (more below) which, given &, has MPM as its
computational oracle. The computational oracle is defined as the
regret minimizer when an oracle furnishes yield probabilities 6;
(see forthcoming Lemma 1). Based on the discussion above, we
regard the MPM framework as more intuitively appealing for
bandit techniques. We thereby reframe spike-and-slab selection
with priors (2) as a bandit problem treating each variable as an
arm. This idea is formalized below.

We view Bayesian spike-and-slab selection through the lens
of combinatorial bandit problems (reviewed earlier in Section 2)
by treating variable selection indicators y;’s in Equation (2) as
Bernoulli rewards. From now on, we will refer to each 6; as an
unknown mean reward, that is, a probability that the ith variable
exerts influence on the outcome. In sharp contrast to Equation
(2) which deploys one € for all arms, each arm i € {1,...,p}
now has its own prior inclusion probability 6;, that is,

P(y;=1|6;) =6, 6; nd Beta(a;, b;) for some a;, b; > 0. (4)

In the original spike-and-slab setup (2), the mixing weight 0
served as a global shrinkage parameter determining the level of
sparsity and linking coordinates to borrow strength (Rockova
and George 2018). In our new bandit formulation (4), on the
other hand, the reward probabilities 6; serve as a proxy for
posterior inclusion probabilities 7r; whose distribution we want
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to learn by playing the bandits game. Recasting the spike-and-
slab prior in this way allows one to approach Bayesian variable
selection from a more algorithmic (machine learning) perspec-
tive.

3.1. The Global Reward

Before proceeding, we need to define the reward in the context
of variable selection. One conceptually appealing strategy would
be to collect a joint reward R(S;) (e.g., goodness of model fit)
reflecting the collective effort of all contributing arms and then
redistribute it among arms inside the super-arm S; played at
time ¢. One example would be the Shapley value (Shapley 1953;
Owen and Prieur 2017), a construct from cooperative game
theory for the attribution problem that distributes the value
created by a team to its individual members.

We try a different route. Rather than distributing, we will
aggregate. Namely, instead of collecting a global reward first
and then redistributing it, we first collect individual rewards
)/l.t € {0, 1} for each played arm i € S; and then weave them into
a global reward R(S;). We assume that ;s are iid from Equation
(4) for each i € {1,...,p}. Unlike traditional combinatorial
bandits that define the global reward R(Sy) = )" ;c 5 yit asasum
of individual outcomes (Gai, Krishnamachari, and Jain 2012),
we consider a global reward for variable selection motivated by
the MPM.

One natural choice would be a binary global reward R(S;) =
[Tics, v Tligs,(1 — v{) € {0,1} for whether or not all arms
inside S; yielded a reward and, at the same time, none of the
arms outside Sy did. Assuming independent arms, the expected
reward equals E[R(S)] = [[;cs, 0 Hz‘¢$, (1—6;) = rg(Sy) and
has the “MPM” as its computational oracle, as can be seen from
Equation (3). However, this expected reward is not monotone
in 6;’s (a requirement needed for regret analysis) and, due to its
dichotomous nature, it penalizes all mistakes (false positives and
negatives) equally.

We consider an alternative reward function which also
admits a computational oracle but treats mistakes differentially.
For some 0 < C < 1, we define the global reward Rc(S;) for a
subset S; at time ¢ as

Re(St) =) log (C+ /). (5)
iESt

Similarly as R(S;) (defined above) the reward is maximized for
the model which includes all the positive arms and none of the
negative arms, that is, arg maxs Rc(S) = {i : yit = 1}. Unlike
R(S;), however, the reward will penalize subsets with false posi-
tives, a penalty log(C) for each, and there is an opportunity cost
oflog(1+ C) for each false negative. The expected global reward
depends on the subset Sy and the vector of yield probabilities
0 = (61,...,6,), that s,

C+1 1
- o) ()]

i€S;
(6)
Note that this expected reward is monotone in 6;’s and is Lips-
chitz continuous. Moreover, it also has the MPM as its compu-
tational oracle.

Lemma 1. Denote with So = argmaxs roc(S) the computa-
tional oracle. Then we have

_ log(1/C)
S0 = {’ 2 ogl(C+ /C } '

With C = (+/5 — 1)/2, the oracle is the MPM {i : 6; > 0.5}.

™)

Proof. It follows immediately from the definition of Rc(S;) and
the fact that log(1/C) = 0.5log[(1+C)/C] for C = (+/5—1)/2.

Note that the choice of C = (/5 — 1) /2 incurs the same
penalty/opportunity cost for false positives and negatives since
log(14+C) = —log(C). In streaming feature selection, for exam-
ple, Zhou et al. (2006) accommodated measurement cost and
place cheaper variables earlier in the stream. In our framework,
we can allow for different cost C; (e.g., a measurement cost) for
each variable 1 < i < p. The existence of the computational
oracle for the expected reward roc (S) is very comforting and will
be exploited in our Thompson sampling algorithm introduced
in Section 4

3.2. The Local Rewards

The global reward (5) is a deterministic functional of the local
rewards. We have opted for the reward functional (5) because
the regret minimizer is the MPM when the yield probabilities
are provided (see Lemma 1). We now clarify the definition of
local rewards y/. We regard S; as a smaller pool of candidate
variables, which can contain false positives and false negatives.
The goal is to play a game by sequentially trying out different
subsets and reward true signals so that they are selected in
the next round and to discourage false positives from being
included again in the future. Denote with S the set of all subsets
of {1,...,p} and with D the “data” at hand consisting of |D|
observations (Y;, x;) from Equation (1). We introduce a feedback
rule

r(SuD) : S x RPN (0,1}, (8)
which, when presented with data D and a subset Sy, outputs a
vector of binary rewards r(S;, D) = (y} : i € ;) for whether
or not a variable x; for i € &; is relevant for predicting or
explaining the outcome. This feedback is only revealed if i € S;.
We consider two sources of randomness that implicitly define
the reward distribution r(S;, D): (i) a stochastic feedback rule r(-)
assuming that data D is given, and (ii) a deterministic feedback
rule r(-) assuming that data D is stochastic.

The first reward type has a Bayesian flavor in the sense that
it is conditional on the observed data D, = {(Yi,x;) : 1 <
i < n}, where rewards can be sampled using Bayesian stochastic
computation (i.e., MCMC sampling). Such rewards are natural
in offline settings with Bayesian feedback rules, as we explore
in Section 5.1. As a lead example of this strategy in this paper,
we consider a stochastic reward based on BART (Chipman,
George, and McCulloch 2001). We refer to Hill, Linero, and
Murray (2020) and references therein for a nice recent overview
of BART. In particular, we use the following binary local reward
(S, Dy) = (v} 1i € S) where

yi = I(M™ sample from the BART posterior splits on the

variable x;).

€



The mean reward 6; = P(y/ = 1) = P[li € F|D,] can
be interpreted as the posterior probability that a variable x; is
split on in a Bayesian forest  given the entire data D,. The
stochastic nature of the BART computation allows one to regard
the reward (9) as an actual random variable, whose values can
be sampled from using standard software. Since BART is run
only with variables inside S; (where |S;| << p) and only for M
burn-in MCMC iterations, computational gains are dramatic (as
we will see in Section 5.1).

The second reward type has a frequentist flavor in the sense
that rewards are sampled by applying deterministic feedback
rules on new streams (or bootstrap replicates) D; of data. Such
rewards are natural in online settings, as we explore in Sec-
tion 5.2. As a lead example of this strategy in this article, we
assume that the dataset D,, consist of n = sT observations and is
partitioned into minibatches Dy = {(Y;,x;) : (t —1)s+1 <i <
ts} fort = 1,...,T. One could think of these batches as new
independent observations arriving in an online fashion or as
manageable snippets of big data. The “deterministic” screening
rule we consider here is running BART for a large number M
of MCMC iterations and collecting an aggregated importance
measure IM(i; D;, S;) for each variable.2 We define IM(3; Dy, Sy)
as the average number of times a variable x; was used in a forest
where the average is taken over the M iterations and we then
reward those arms which were used at least once on average,

vi =M@ Dy, Sp) > 11. (10)

The mean reward §; = P(y/ = 1) can be then interpreted as
the (frequentist) probability that BART, when runons = n/T
observations arising from (1), uses a variable x; at least once on
average over M iterations. We illustrate this online variant in
Section 5.2.

3.3. Other Feedback Rules

TVS is not confined to a BART reward function. Deploying any
variable selection method using only a subset S; will yield a
binary feedback rule. For example, the LASSO method yields
3,~ for i € S; which can be turned into the following feedback
yit = H(Bi # 0) for i € &;. In offline setups, random-
ness of y/’s can be induced by taking a bootstrap replicate
of D, at each play time 1 < ¢t < T. Another possibility
for a binary reward is dichotomizing p-values, similarly as in
alpha-investing for streaming variable selection by Zhou et al.
(2006). Instead of binary local rewards (8), one can also con-
sider continuous rewards yit € [0,1]'5! by rescaling variable
importance measures obtained by a machine learning method
(e.g., random forests (Louppe et al. 2013), deep learning (Horel
and Giesecke 2019), and BART (Chipman, George, and McCul-
loch 2010). Our Thompson sampling algorithm can be then
modified by dichotomizing these rewards through indepen-
dent Bernoulli trials with probabilities equal to the continuous
rewards (Agrawal and Goyal 2012).

2 This rule is deterministic in the sense that computing it again on the same
data should in principle provide the same answer. One could, in fact, deploy
any other machine learning method that outputs some measure of variable
importance.
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4. Introducing TVS

This section introduces TVS, a reinforcement learning algo-
rithm for subset selection in nonparametric regression environ-
ments. The computation alternates between Choose, Reward,
and Update steps that we describe in more detail below.

The unknown mean rewards will be denoted with 6 and the
ultimate goal of TVS is to learn their distribution once we have
seen the “data”® To this end, we take the combinatorial bandits
perspective (Chen, Wang, and Yuan 2013; Gai, Krishnamachari,
and Jain 2012) where, instead of playing one arm at each play
opportunity ¢, we play a random subset S; < {1,...,p} of
multiple arms. Each such super-arm S; corresponds to a model
configuration and the goal is to discover promising models by
playing more often the more promising variables.

Similarly as with traditional Thompson Sampling, the tth
iteration of TVS starts off by sampling mean rewards 0;(¢) ~
Beta(a;(t), bi(t)) from a posterior distribution that incorpo-
rates past reward experiences up to time ¢ (as we discussed
in Section 2). The Choose Step then decides which arms will
be played in the next round. While the single-play Thompson
sampling policy dictates playing the arm with the highest sam-
pled expected reward, the combinatorial Thompson sampling
policy (Wang and Chen 2018) dictates playing the subset that
maximizes the expected global reward, given the vector of sam-
pled probabilities () = (61(t),...,0,(t))". The availability
of the computational oracle (from Lemma 1) makes this step
awkwardly simple as it boils down to computing Sp in Equation
(7). Unlike multi-play bandits where the number of played arms
is predetermined (Komiyama 2015), this strategy allows one to
adapt to the size of the model. We do, however, consider a variant
of the computational oracle (see Equation (13)) for when the
size ¢ = |S*| of the “true” model S* = argmaxs roc, (S) is
known. The Choose Step is then followed by the Reward Step
(step R in Table 1) which assigns a prize to the chosen subset
S; by collecting individual rewards y/ (for the offline setup in
Equation (9) or for the online setup (10)). Finally, each TVS
iteration concludes with an Update Step which updates the beta
posterior distribution (step U in Table 1).

The fundamental goal of TVS is to learn the distribution
of mean rewards 6;’s by playing a game, that is, sequentially
creating a dataset of rewards by sampling from beta posterior*
distributions that incorporate past rewards and the observed
data D. One natural way to distill evidence for variable selection
is through the means m (t) = (71 (t),...,m,(t))" of these beta
distributions

ai(t)
ai(t) + bi(t)’
which serve as a proxy for posterior inclusion probabilities.
Similarly as with the classical MPM (Barbieri and Berger 2004),
one can deem important those variables with 7;(f) above 0.5
(this corresponds to one specific choice of C in Lemma 1). More
generally, at each iteration ¢ TVS outputs a model S;, which
satisfies Sy = argmaxs rg - From Lemma 1, this model can
be simply computed by truncating individual 77;(¢)’s. Upon con-
vergence, that is, when trajectories 7;(¢) stabilize over time, TVS

Ti(t) = 1<i<p, (11)

3The “data” here refers to the sequence of observed rewards.
4This posterior treats the past rewards as the actual data.
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Table 1. Computing times (in sec) and Hamming distance of BART on subsets of observations using all p covariates.

s =100 5s=200 s =500 s=1000 5=15000 5=10,000 s=20,000
T Time HAM  Time HAM Time HAM Time HAM Time HAM Time HAM Time HAM
5000 6.7 4 7.7 5 11.4 3 21.5 2 103.1 3 264.2 8 7941 16
10,000 16.2 4 16 4 23.6 2 37.8 3 213 8 549.9 18 2368.4 25
20,000 27.3 4 31.1 4 47.7 1 74.7 1 4184 10 1090.6 21 4207.4 29

NOTE: Hamming distance compares the true model with a model obtained by truncating the BART importance measure at 1.

will output the same model S;. We will see from our empirical
demonstrations in Section 5 that the separation between signal
and noise (based on 7;(t)’s) and the model stabilization occurs
fast. Before our empirical results, however, we will dive into the
regret analysis of TVS.

4.1. Regret Analysis

Thompson sampling (TS) is a policy that uses Bayesian ideas
to solve a fundamentally frequentist problem of regret mini-
mization. In this section, we explore regret properties of TVS
and expand current theoretical understanding of combinatorial
TS by allowing for correlation between arms. Theory for TS
was essentially unavailable until the path-breaking paper by
Agrawal and Goyal (2012) where the first finite-time analysis
was presented for single-play bandits. Later, Leike et al. (2016)
proved that TS converges to the optimal policy in probability
and almost surely under some assumptions. Several theoretical
and empirical studies for TS in multi-play bandits are also avail-
able. In particular, Komiyama, Honda, and Nakagawa (2015)
extended TS to multi-play problems with a fixed number of
played arms and showed that it achieves the optimal regret
bound. Recently, Wang and Chen (2018) introduced TS for
combinatorial bandits and derived regret bounds for Lipschitz-
continuous rewards under an offline oracle. We build on their
development and extend their results to the case of related arms.
Recall that the goal of the player is to minimize the total
(expected) regret under time horizon T defined below

T
Reg(T) = E [Z (r5u(S*) — 15 (3,))} , (12)

t=1

where §* = argmaxg rg*(St) with ¢* = |S8*], 6 = E[y/]
and where the expectation is taken over the unknown drawing

policy. Choosing C as in Lemma 1, one has log(1 + C) =
—log(C) = D and thereby

T p
Reg(T) = DIE|:Z > @0 — DIl e SN\S) — (i e St\S*)]:|.

t=1 i=1

Note that (26} — 1) is positive iff i € S*. Upper bounds for
the regret (12) under the drawing policy of our TVS Algorithm
1 can be obtained under various assumptions. Below, we first
review two available regret bounds following from Wang and
Chen (2018) for when (a) g* is known and arms are indepen-
dent (Lemma 2) and (b) arms are related and g* is unknown
(Lemma 3). Later in our Theorem 1, we relax these assumptions
and provide a regret bound assuming that g* unknown and, at
the same time, arms are related.

Assuming that the size g* of the optimal model S* is known,
one can modify Algorithm 1 to confine the search to models of
size up to g*. Denoting Z = {S C {1,...,p} : |S| < ¢*}, one
plays the optimal set of arms within the set Z, that is, replacing
the computational oracle in (7) with Sg* = argmaxsez 19(S).
We denote this modification with C2* in Table 1. It turns out
that this oracle can also be easily computed, where the solution
consists of (up to) the top g* arms that pass the selection
threshold, that is,

* . log(1/C)
q .0, -
% {l Y gl + C)/C]} e
= {(il,...,iq*)/ENQ* :9,‘1 >9,’2 >--->9,‘:}}. (13)

We have the following regret bound which, unlike the majority
of existing results for TS, does not require the arms to have
independent outcomes y/. The regret bound depends on the
amount of separation between signal and noise.

Lemma 2. Define the identifiability gap A; = min {Gj* : 0].* >
O}for j e S*} for each arm i ¢ S*. The Algorithm 1 with a

computational oracle S} in C2* achieves the following regret

bound
+C<p)+p2

(Ai—¢e)logT
(A —28)% et

Reg(T) < > A 20

i¢gS*
for any € > 0 such that A; > 2¢ for each i ¢ S* and for some
constant C > 0.

Proof. Since Z is a matroid (Kveton et al. (2014)) and our mean
regret function is Lipschitz continuous and it depends only on
expected rewards of revealed arms, one can apply Theorem 4 of
Wang and Chen (2018).

Assuming that the size g* of the optimal model is unknown
and the rewards y/ are independent, one can derive the following
bound for the original Algorithm 1 (without restricting the
solution to up to g* variables).

Lemma 3. Define the maximal reward gap Amax = maxs As
where As = [rg(S*) — r9(S)] and for each arm i € {1,...,p}

2
define ; = maxgs.ies % for B = log[(C + 1)/C].

Assume that y;’s are independent for each £. Then the Algorithm
1 achieves the following regret bound

2
P
2

P
Reg(T) < log(T) Y ni +p (

i=1

+3) Ao

8Amax

4 T o
+C 2 <52 + 1) log(g /82)




for some constant C > 0 and for any ¢ > 0 such that Ag >
2B(q** + 2)e for each S.

Proof. Follows from Theorem 1 of Wang and Chen (2018).

The bandit literature has largely focused on studying the
regret in terms of time T rather than the number of arms p. Note
that the dependence on p in Lemma 3 is cubic, which (albeit
relevant for large n setups) makes the bound less useful when p is
very large. Lai and Robbins (1985) showed a lower regret bound
(in terms of p) that is O(p) for any bandit algorithm. Agrawal
and Goyal (2012) (Remark 3) further showed that Thompson
Sampling does achieve this lower bound in a single-play bandit
problem. Our Theorem 1 below shows a linear dependence on
p for combinatorial bandits with correlated arms when g* is
unknown.

We now extend Lemma 3 to the case when the rewards
obtained from pulling different arms are related to one another.
Gupta, Joshi, and Yagan (2020) introduced a correlated single-
play bandit version of TS using pseudo-rewards (upper bounds
on the conditional mean reward of each arm). Similarly as with
structured bandits (Pandey, Chakrabarti, and Agarwal 2007) we
instead interweave the arms by allowing their mean rewards to
depend on &, that is, instead of a single success probability 6;
we now have

0,S) =P(y/ = 1|5 = S).

We are interested in obtaining a regret bound for the Algo-
rithm 1 assuming (14) in which case the expected global regret
(6) writes as

C
50 =EiResnl = Y- [aesotos (5 108 (3 )|

iESt

(14)

(15)
To this end we impose an identifiability assumption, which
requires a separation gap between the reward probabilities of
signal and noise arms.

Assumption 1. Denote with §* = arg maxg rg, (S;) the optimal
set of arms. We say that S* is strongly identifiable if there exists
0 < o < 1/2 such that

Vie S* wehave 6;(S*) > 6;(S) >05+a VS
such that i€ S,

Vi¢g S* wehave 6;(S) <05—a VS

such that ie S.

Under this assumption we provide the following regret
bound.

Theorem 1. Suppose that S* is strongly identifiable with o > 0.
Choosing C as in Lemma 1, the regret of Algorithm 1 satisfies

8plog(T)

4
Reg(T) < Amax|: o2 + C(Ol)q* + (2 + M)P} (16)

wheree@) = [ |+ it + e + 216+ 2)

1—e—a?/2

and C = (C1 + C3522) for some Cy,C; > 0 not related to

Algorithm 1, and Apax = maxg[rg (8" — roc S

Proof. Appendix (Section A, supplementary material)
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Algorithm 1: Thompson Variable Selection with BART
INPUT

for some 0 < C < 1and pick M,a,b > 0

Define C = @(ﬁ%
Initialize ;(0) := a and b;(0) := bforeacharm1 < i < p.
LOOP
Fort =1,..., T repeat steps C(1)-(3), Rand U.
Choose Step
C(1):Set Sy =W andfori=1---pdo
C(2): Sample 0;(t) ~ Betal(a;i(t), bi(t))
C(3): (Unknown g*) Compute Sy = {i : 6;(t) > 5} from (7)
C(3)*: (Known g*) Compute S; from (13)
Reward Step
R: Collect local rewards yit for each 1 < i < p from (9) (offline) or
(10) (online)

Update Step
U:If y/ = 1 then set a;(f + 1) = a;(t) + 1, else bj(t + 1) = b;(1) + 1
OUTPUT
Evidence probabilities ;(t) = a;(t)/[a;i(t) + bi(t)] for 1 <i <p
and1 <t <T.

Algorithm 1: TVS with BART (* is an alternative with known
qT)

Two of the most common problems studied in reinforce-
ment learning with bandits are (i) regret minimization, and (b)
best arm identification (Even-Dar, Mannor, and Mansour 2006;
Bubeck, Munos, and Stoltz 2009). Variable selection could be
loosely regarded as the “top g*-arms” identification problem
when g* is unknown. While TS is devised to minimize regret,
not necessarily to select the best arms (see, e.g., Russo 2016), we
nevertheless show that our sampling policy satisfies a version of
variable selection consistency in the sense that the event {S; =
S*} occurs all but finitely many times as t — oo. This result is
summarized in the following theorem.

Theorem 2. Under Assumption 1 with p fixed, the TVS
sampling policy in Table 1 with C = (/5 — 1)/2 satisfies

L Cen)
P (hm inf (=8 }) —1.
Proof. Appendix (Section B, supplementary material)

Remark 1. The proof proceeds by showing that the probability
of infinitely many events A(t) = {S; # S*} occurring is zero,
that is, P (hm sup A(t)

t—00
lemma, it suffices to show that ) 2, P(A(t)) < oo. Splitting
the arms into active and nonactive ones, the proof then follows
a strategy similar to the proof of Theorem 1.

) = 0. Deploying the Borel-Cantelli

5. TVSin Action

This section serves to illustrate TVS on benchmark simulated
datasets and to document its performance. While various
implementations are possible (by choosing different rewards
r(S1, D) in (8)), we will focus on two specific choices that
we broadly categorize into offline variants for when p >> n
(Section 5.1) and streaming/online variants for when n >> p
(Section 5.2).
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Figure 1. BART variable importance using sparse=TRUE and various number of trees D and MCMC iterations M. Red squares (the first five covariates) are signals and

black dots are noise variables.

5.1. Offline TVS

As a lead example in this section, we consider the benchmark
(Friedman 1991) dataset with a vastly larger number of p =
10,000 predictors x; € [0, 1]P obtained by iid sampling from
Uniform(0,1) and responses Y = (Y73, - - - Y,,)’ obtained from
(1) with 0?2 = 1 and

f()(x,') = 10sin(mwx;1xi2) + 20(xj3 — 0.5)2 + 10xj4 + 5x;5
fori=1,...,300.

Due to the considerable number of covariates, feeding ail 10, 000
predictors into a black box to obtain variable importance may
not be computationally feasible and/or reliable. However, TVS
can overcome this limitation by deploying subsets of predic-
tors. For instance, we considered variable importance using the
BART method (using the option sparse=TRUE for variable
selection) with D € {10,50} trees and M € {5000, 50,000}
MCMC iterations are plotted them in Figure 1. While increasing
the number of iterations certainly helps in separating signal
from noise, it is not necessarily obvious where to set the cutoff
for selection. One natural rule would be selecting those variables
which have been used at least once on average over the M
iterations. With D = 50 and M = 50,000, this rule would identify
four true signals, leaving out the quadratic signal variable x3.
The computation took around 8.5 min.

The premise of TVS is that one can deploy a weaker learner
(such as a forest with fewer trees) which generates a random
reward that roughly captures signal and is allowed to make
mistakes. With reinforcement learning, one hopes that each
round will be wrong in a different way so that mistakes will not
be propagated over time. The expectation is that (a) feeding only
a small subset S in a black box and (b) reinforcing positive out-
comes, one obtains a more principled way of selecting variables
and speeds up the computation. We illustrate the effectiveness
of this mechanism below.

We use the offline local binary reward defined in Equation
(9). We start with a noninformative prior a;(0) = b;(0) = 1
for1 < i < pand choose T = 10 trees in BART so that
variables are discouraged from entering the model too wildly.
This is a weak learner which does not seem to do perfectly well
for variable selection even after very many MCMC iterations
(see Figure 1(d)). We use the TVS implementation in Table 1

with a dramatically smaller number M € {100, 500, 1000} of
MCMC burn-in iterations for BART inside TVS. We will see
below that large M is not needed for TVS to unravel signal even
with as few as 10 trees.

TVS results are summarized in Figure 2, which depicts “pos-
terior inclusion probabilities” 7;(f) defined in Equation (11)
over time ¢ (the number of plays), one line for each of the
p 10,000 variables. To better appreciate informativeness
of m;(t)’s, true variables xj,...,x5 are depicted in red while
the noise variables are black. Figure 2 shows a very successful
demonstration for several reasons. The first panel (Figure 1(a))
shows a very weak learner (as was seen from Figure 1) obtained
by sampling rewards only after M 100 burnin iterations.
Despite the fact that learning at each step is weak, it took only
around T = 300 iterations (obtained in less than 40 seconds!)
for the m;(t) trajectories of the five signals to cross the 0.5
decision boundary. After T = 300 iterations, the noise covari-
ates are safely suppressed below the decision boundary and the
trajectories 7;(t) stabilize toward the end of the plot. Using more
MCMC iterations M, fewer TVS iterations are needed to obtain
a cleaner separation between signal and noise (noise 7;’s are
closer to zero while signal ;s are closer to one). With enough
internal MCMC iterations (M 1000 in the right panel),
TVS is able to effectively separate signal from noise in around
200 iterations (obtained in less than 2 minutes). We have not
seen such conclusive separation with plain BART (Figure 1)
even after very many MCMC iterations which took considerably
longer. Note that each iteration of TVS uses only a small subset
of predictors and much fewer iterations M and TVS is thereby
destined to be faster than BART on the entire dataset (compare
8.5 min for 20,000 iterations with 40 sec in Figure 2a). Applying
the more traditional variable selection techniques was also not
as successful. For example, the spike-and-slab LASSO (SSL)
method (A\; = 0.1and Ap € {0.1 +kx 10 : k = 1,...,10})
which relies on a linear model missed the quadratic predictor
but identified all 4 remaining signals with no false positives.

5.2. OnlineTVS

As the second TVS example, we focus on the case with many
more observations than covariates, that is, n >> p. As we
already pointed out in Section 3.2, we assume that the dataset
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TVS: Inclusion Probability Plot
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Figure 2. The evolution of inclusion probabilities (11) over “time” t for the Friedman dataset. The plot depicts posterior inclusion probabilities 7;(t) in (11) over time
(number of TVS iterations). Red lines indicate the 5 signal variables and black lines indicate the noise variables.

D, = {(Yix)) : 1 < i < n} has been partitioned into
mini-batches D; of size s = n/T. We deploy our online TVS
method (Table 1 with C2*) to sequentially screen each batch
and transmit the posterior information onto the next mini-batch
through a prior. This should be distinguished from streaming
variable selection, where new features arrive at different time
points (Foster and Stine 2008). Using the notation r; = r(St, Dy)
in (8) with Dy = {(Y;, %) : (t — 1)s+1 < i < ts} and having
processed t — 1 mini-batches, one can treat the beta posterior as
a new prior for the incoming data points, where

i ot
7@ |1, 0@ |, ore) [ [ 6] A —o)t
iESt

Parsing the observations in batches will be particularly benefi-
cial when processing the entire dataset (with overwhelmingly
many rows) is not feasible for the learning algorithm. TVS
leverages the fact that applying a machine learning method T
times using only a subset of s observations and a subset S; of
variables is a lot faster than processing the entire data. While the
posterior distribution® of 6;s after one pass through the entire
dataset will have seen all the data D,, 6;’s can be interpreted
as the frequentist probability that the screening rule picks a
variable x; having access to only s measurements.

We illustrate this sequential learning method on a challeng-
ing simulated example from (Liang, Li, and Zhou 2018, sec. 5.1)
. We assume that the explanatory variables x; € [0, 1]° have been
obtained from xij = (ei + z;j)/2 forl <i<mnandl <j <p,

d
where e, z;; NN (0, 1). This creates a sample correlation of about
0.5 between all variables. The responses Y = (Y1,---,Y,) are
then obtained from Equation (1), where

10x;,

Joxi) = T4l + 5sin(xizxis) + 2xis
with 02 = 0.5. This is a challenging scenario due to (a) the

non-negligible correlation between signal and noise, and (b) the

nonlinear contributions of x; — x4. Unlike Liang et al. (2018)
who set n = p = 500, we make the problem considerably more
difficult by choosing n = 20,000 and p = 1000. We would expect
a linear model selection method to miss these two nonlinear
signals. Indeed, the spike-and-slab LASSO method (using 11 =
0.l and Ap € {0.1 +k x 10 : k = 1,...,10} only identifies
variables x1,x; and xs. Next, we deploy the BART method
with variable selection (Linero 2018) by setting sparse=TRUE
(Linero and Yang 2018) and 50 trees® in the BART software
(Chipman, George, and McCulloch 2010). The choice of 50 trees
for variable selection was recommended in Bleich et al. (2014)
and was seen to work very well. Due to the large size of the
dataset, it might be reasonable to first inquire about variable
selection from smaller fractions of data. We consider random
subsets of different sizes s € {100,500, 1000} as well as the
entire dataset and we run BART for M = 20,000 iterations.
Figure 3 depicts BART importance measures (average number
of times each variable was used in the forest). We have seen
BART separating the signal from noise rather well on batches of
size s > 1000 and with MCMC iterations M > 10,000. The scale
of the importance measure depends on s and it is not necessarily
obvious where to make the cut for selection. A natural (but
perhaps ad hoc) criterion would be to pick variables which were
on average used at least once. This would produce false negatives
for smaller s and many false positives (29 in this example)
for s = 20,000. The Hamming distance between the true and
estimated model as well as the computing times are reported in
Table 1. This illustrates how selection based on the importance
measure is difficult to automate. While visually inspecting the
importance measure for M = 20,000 and s = 20,000 (the entire
dataset) in Figure 3(d) is very instructive for selection, it took
more than 70 min on this dataset. To enhance the scalability, we
deploy our reinforcement learning TVS method for streaming
batches of data.

Using the online local reward (10) with BART (with 10 trees
and sparse=TRUE and M iterations) on batches of data D,, of

>Treating the rewards as data.

SResults with 10 were not nearly as satisfactory.
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Figure 3. BART variable importance using T=20,000 (using 50 trees and sparse=TRUE) and various data subsets. Red squares (the first five covariates) are signals and

black dots are noise variables.
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Figure 4. TVS inclusion probabilities T=10,000 (using 10 trees and sparse=TRUE) and various batch sizes after single pass through the data.

size s. This is a weaker learning rule than the one considered in
Figure 3 (50 trees). Choosing s = 100 and M = 10,000, BART
may not be able to obtain perfect signal isolation on a single
data batch (see Figure 3(a) which identifies only one signal
variable). However, by propagating information from one batch
onto the next, TVS is able to tease out more signal (Figure 4(a)).
Comparing Figures 3(b) and 4(c) is even more interesting,
where TVS inclusion probabilities for all signals eventually cross
the decision boundary after merely 40 TVS iterations. There is
ultimately a tradeoff between the batch size s and the number
of iterations needed for the TVS to stabilize. For example, with
s = 1000 one obtains a far stronger learner (Figure 3(c)), but
the separation may not be as clear after only T = n/s = 20
TVS iterations (Figure 4(d)). One can increase the number of
TVS iterations by performing multiple passes through the data
after bootstrapping the entire dataset and chopping it into new
batches which are a proxy for future data streams. Plots of TVS
inclusion probabilities after 5 such passes through the data are in
Figure 5. Curiously, one obtains much better separation even for
s = 200 and with larger batches (s = 500) the signal is perfectly
separated. Note that TVS is a random algorithm and thereby

the trajectories in Figure 5 at the beginning are slightly different
from Figure 4. Despite the random nature, however, we have
seen the separation apparent from Figure 5 occur consistently
across multiple runs of the method.

Several observations can be made from the timing and per-
formance comparisons presented in Table 2. When the batch
size is not large enough, repeated runs will not help. The Ham-
ming distance in all cases only consists of false negatives and
can be decreased by increasing the batch size or increasing the
number of iterations and rounds. Computationally, it seems
beneficial to increase the batch size s and supply enough MCMC
iterations. Variable selection accuracy can also be increased with
multiple rounds.

6. Simulation Study

We further evaluate the performance of TVS in a more compre-
hensive simulation study. We compare TVS with several related
nonparametric variable selection methods and with classical
parametric ones. We assess these methods based on the fol-
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Figure 5. TVS inclusion probabilities T=10,000 (using 10 trees and sparse=TRUE) and various batch sizes after 5 passes through the data.

Table 2. Computing times (in seconds) and Hamming distance for TVS using different batch sizes s and BART iterations T and multiple passes through the data.

s =100 s =200 s =500 s = 1000
Time HAM Time HAM Time HAM Time HAM
T =500
1 round 58.9 4 341 3 19.3 3 15.7 4
5 rounds 251.5 4 165 3 91.2 3 68.7 2
10 rounds 467.5 4 348.8 3 187.8 3 137.2 1
T =1000
1 round 84 4 49.8 3 29.5 3 23.6 2
5 rounds 411.8 4 2415 3 140.8 1 114 0
10 rounds 870.6 3 507 2 288.2 1 2242 0
T=10,000
1 round 541.8 3 330.9 2 220.4 0 182.8 0
5 rounds 2421.2 3 1501.9 2 1060.2 0 972.2 0
10 rounds 48419 3 3027.9 0 22483 0 2087.6 0

NOTE: The Hamming distance compares the true model with a model truncating the last TVS inclusion probability at 0.5.

lowing performance criteria: false discovery proportion (FDP)
(i.e., the proportion of discoveries that are false), Power (i.e.,
the proportion of true signals discovered as such), Hamming
Distance (between the true and estimated model) and Time.

6.1. Offline Cases

For a more comprehensive performance evaluation, we consider
the following 4 mean functions fy (-) to generate outcomes using
(1). For each setup, we summarize results over 50 datasets of a
dimensionality p € {1000, 10,000}and a sample size n = 300.

o Linear setup: The regressors x; are drawn independently from
N(0, X), where ¥ = (ajk)i}le’l with 0j; = 1 and o =
0.9V~ for j # k. Only the first 5 variables are related to the
outcome (which is generated from (1) with 0% = 5) via the
mean function fy(x;) = xi1 + 2xi2 + 3%i3 — 2Xia — Xis.

o Friedman setup: The Friedman setup was described earlier
in Section 4.1. In addition, we now introduce correlations of
roughly 0.3 between the explanatory variables.

o Forest setup: We generate x; from N(0,X), where X
(Ujk)ﬁ}f:(u) with 0jj = 1 and o = 0.3kl forj # k. We

then draw the mean function fy(-) from a BART prior with
200 trees, using only first 5 covariates for splits. The outcome
is generated from (1) with 0% =0.5.

o Liang et al. (2018) setup: This setup was described earlier in
Section 5.2. We now use o2 = 0.5.

We run TVS with M = 500 and M = 1000 internal BART
MCMC iterations and with T = 500 TVS iterations. As two
benchmarks for comparison, we consider the original BART
method (in the R-package BART) and a newer variant called
DART (Linero and Yang 2018) which is tailored to high-
dimensional data and which can be obtained in BART by setting
sparse=TRUE ( a=1, b=1). We ran BART and DART for
M =50,000 MCMC iterations using the default prior settings
with D = 20, D = 50 and D = 200 trees for BART and D = 10,
D = 50, and D = 200 trees for DART. We considered two
variable selection criteria: (1) posterior inclusion probability
(calculated as the proportion of sampled forests that split on
a given variable) at least 0.5 (see Linero (2018) and Bleich
et al. (2014) for more discussion on variable selection using
BART), (ii) the average number of splits in the forest (where the
average is taken over the M iterations) at least 1. We report the
settings with the best performance, that is, BART with D = 20
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Figure 6. Graphs denoting FDP (a), Power (b), Hamming Distance (c), and Time (d) for the 4 choices of fy assuming p=10,000 and n = 300. The x-axis denotes the choice
of fy and the various methods are marked with various shades of gray. For TVS, we have two choices M = 500 and M = 1000.

trees and DART with D = 50 trees using the second inclusion
criterion. The third benchmark method we use for comparisons
is the Spike-and-Slab LASSO (Rockova and George 2018)
implemented in the R-package SSLASSO with lambdal=0.1
and the spike penalty ranging from A; to the number of variables
p (ie,lambda0 = seq(l, p, length=p)). We choose
the same set of variable chosen by SSLASSO function after the
regularization path has stabilized using the model output. We
have also implemented sure independence screen (SIS) (Fan
and Lv 2008) as a variable filter before applying BART variable
selection.” Next, we applied one of the benchmark Bayesian
variable selection methods, the horseshoe prior (Carvalho,
Polson, and Scott 2010; van der Pas et al. 2017) implementation
from the R-package horseshoe. We run the Markov chain
for 55,000 iterations, discarding the first 5000 as a burnin
period. Variable selection is performed by checking whether
0 is contained in the credible set (see van der Pas et al. 2019).
Finally, we implement the LASSO (Tibshirani 2011) and report
the model chosen according to the 1-s.e. rule (Friedman, Hastie,
and Tibshirani 2001).

We report the average performance (over 50 datasets) for
p =10,000 in Figure 6 and the rest (for p=1000) in the appendix

7SIS on its own yielded too many false positives.

(supplementary material). Recall that the model estimated by
TVS is obtained by truncating 7;(500)s at 0.5. In terms of
the Hamming distance, we notice that TVS performs the best
across-the-board. DART (with D = 50) performs consistently
well in terms of variable selection, but the timing comparisons
are less encouraging. BART (with D = 20) takes a relatively
comparable amount of time as TVS with M = 1000, but
suffers from less power. SS-LASSO’s performance is strong, in
particular for the less nonlinear data setups. The performance
of TVS is seen to improve with M. In its simplest form, SIS is a
screening method based on a linear model assumption. Albeit
faster than TVS, we observe that SIS generally over-selects.
In addition, SIS screens out key signals with nonlinear effects
(Liang and Friedman datasets). Note, however, that our SIS
implementation relies on the linear model where performance
could be further improved using nonlinear variants such as
distance correlation learning (Li, Zhong, and Zhu 2012). The
Horseshoe prior performs very well but is much slower. LASSO
seems to overfit, in spite of the 1-se rule.

We also implement a stopping criterion for TVS based on the
ai(t)
ai()+bi(t)
One possibility is to stop TVS when the estimated model S;
obtained by truncating 7;(t)’s at 0.5 has not changed for over, say,

100 consecutive TVS iterations. With this convergence criterion,

stabilization of the inclusion probabilities 7;(f) =
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Figure 7. Graphs denoting FDP (a), Power (b), Hamming Distance (c), and Time (c) for the 4 choices of fy assuming p=1000 and n = 10,000. The x-axis denotes the choice
of fy and the various methods are marked with various shades of gray. For TVS, we have two choices M = 500 and M=1000, both with s = 1000.

the convergence times differs across the different data set-ups.
Generally, TVS is able to converge in ~ 200 iterations for p =
1000 and ~ 300 iterations for p =10,000. While the computing
times are faster, TVS may be more conservative (lower FDP
but also lower Power). The Hamming distance is hence a bit
larger, but comparable to TVS with 500 iterations (Appendix
C.1, supplementary material)

6.2. Online Cases

We now consider a simulation scenario where n >> p, that is,
p = 1000 and n = 10,000. As described earlier in Section 5.2,
we partition the data into minibatches (YD X®)) of size s,
where YO = (Y; : b —Ds+1 < i < bs) and X® =
[x; : b—1Ds+1 < i < bs] forb = 1,...,n/s with
s € {500,1000} and M € {500,1000} using D = 10 trees. In
this study, we consider the same four set-ups as in Section 6.1.
We implemented TVS with a fixed number of rounds r €
{1,5,10} and a version with a stopping criterion based on the
stabilization of the inclusion probabilities 7;(f) = #(21(0
This means that TVS will terminate when the estimateé model
S; obtained by truncating 7 (¢)’s at 0.5 has not changed for 100
consecutive iterations. The results using the stopping criterion

are reported in Figure 7 and the rest is in the appendix (Section
C.2, supplementary material). As before, we report the best
configuration for BART and DART, namely D = 20 for BART
and D = 50 for DART (both with 50 000 MCMC iterations). For
both methods, there are nonnegligible false discoveries and the
timing comparisons are not encouraging. In addition, we could
not apply both BART and DART with n > 50,000 observations
due to insufficient memory. In the appendix (Section C.2, Tables
8-12, supplementary material), we report TVS results for n
as large as n=100,000 (which is beyond the scope of BART),
showing very satisfactory and scalable performance. For TVS,
we found the batch size s = 1000 to work better, as well as
running the algorithm for enough rounds until the inclusion
probabilities have stabilized (Figure 7 reports the results with a
stopping criterion). The results are very encouraging. Streaming
feature selection methods are still being developed (Ramdas
et al. 2017; Javanmard et al. 2018; Wang, Shen, and Li 2018;
Fahy and Yang 2019). We have compared our online variant
with the o-investing method for streaming variable selection
of Zhou et al. (2006). This method dynamically adjusts p-value
thresholds for adding features to the model. We run this method
using p-values from applying linear regression on batches of
streaming data. The results are shown in Figure 7. This proce-
dure performs well in Forest and Linear set-ups but misses the
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key nonlinear variables in Friedman and Liang setups. While
SSLASSO’s performance is very strong, we notice that in the
nonlinear setup of Liang, Li, and Zhou (2018), there are false
nondiscoveries.

7. Application on Real Data
7.1. HIV Data

We will apply (offline) TVS on a benchmark human immunod-
eficiency virus Type I (HIV-I) data described and analyzed in
Rhee et al. (2006) and Barber et al. (2015). This publicly avail-
able® dataset consists of genotype and resistance measurements
(decrease in susceptibility on a log scale) to three drug classes:
(i) protease inhibitors (PIs), (ii) nucleoside reverse transcriptase
inhibitors (NRTTIs), and (iii) nonnucleoside reverse transcrip-
tase inhibitors (NNRTIs).

The goal in this analysis is to find mutations in the HIV-1
protease or reverse transcriptase that are associated with drug
resistance. Similarly, as in Barber et al. (2015), we analyze each
drug separately. The response Y; is given by the log-fold increase
of lab-tested drug resistance in the ith sample with the design
matrix X consisting of binary indicators x;; € {0, 1} for whether
or not the jth mutation has occurred at the ith sample.’

In an independent experimental study, Rhee et al. (2005)
identified mutations that are present at a significantly higher
frequency in virus samples from patients who have been treated
with each class of drugs as compared to patients who never
received such treatments. While, as with any other real data
experiment, the ground truth is unknown, we treat this inde-
pendent study are a good approximation to the ground truth.
Similarly as Barber et al. (2015), we only compare mutation
positions since multiple mutations in the same position are often
associated with the same drug resistance outcomes.

For illustration, we now focus on one particular drug called
Lopinavir (LPV). There are p = 206 mutations and n = 824
independent samples available for this drug. TVS was applied
to this data for T = 500 iterations with M = 1000 inner BART
iterations. In Figure 8, we differentiate those mutations whose
position were identified by Rhee et al. (2005) and mutations
which were not identified with blue and red colors, respec-
tively. From the plot of inclusion probabilities in Figure 8, it
is comforting to see that only one unidentified mutation has
a posterior probability 7j(t) stabilized above the 0.5 threshold.
Generally, we observe the experimentally identified mutations
(blue curves) to have higher inclusion probabilities.

Comparisons are made with DART, Knockoffs (Barber et al.
2015), LASSO (10-fold cross-validation), and spike-and-slab
LASSO (Rockova and George 2018), choosing A; = 0.1 and
A € {A1 4+ 10 x kkk = 0,1,...,p}). Knockoffs, LASSO,
and the spike-and-slab LASSO assume a linear model with no
interactions. DART was implemented using T = 50 trees and
50,000 MCMC iterations, where we select those variables whose
average number splits was at least one. The numbers of discov-

8Stanford HIV Drug Resistance Database https://hivdb.stanford.edu/pages/
published_analysis/genophenoPNAS2006/

As suggested in the analysis of Barber et al. (2015), when analyzing each
drug, only mutations that appear 3 or more times in the samples are taken
into consideration.

ered Positions for each method are plotted in Figure 8(b). While
LASSO selects many more experimentally validated mutations,
it also includes many unvalidated ones. TVS, on the other hand,
has a very small number of “false discoveries” while maintaining
good power. Additional results are included in the appendix
(Section D, supplementary material).

7.2. Durable Goods Marketing Dataset

Our second application examines a cross-sectional dataset
described in Ni et al. (2012) consisting of durable goods sales
data from a major anonymous U.S. consumer electronics
retailer. The dataset features the results of a direct-mail
promotion campaign in November 2003 where roughly half
of the n = 176,961 households received a promotional mailer
with 10$ off their purchase during the promotion time period
(December 4-15). If they did purchase, they would get 10% off
on a subsequent purchase through December. The treatment
assignment was random. The data contains p = 146 descriptors
of all customers including prior purchase history, purchase of
warranties etc. We will investigate the effect of the promotional
campaign (as well as other covariates) on December sales.
In addition, we will interact the promotion mail indicator
with customer characteristics to identify the “mail-deal-prone”
customers.

We dichotomized December purchase (in dollars) to create
a binary outcome Y; = I(December-sales; > 0) for
whether or not the ith customer made any purchase in Decem-
ber. Regarding predictor variables, we removed any variables
with missing values and any binary variables with less than
10 samples in one group. This prefiltering leaves us with 114
variables whose names and descriptive statistics are reported in
Section E in the appendix (supplementary material). We interact
the promotion mail indicator with these variables to obtain p =
227 predictors. Due to the large volume of data (n ~ 180,000),
we were unable to run DART and BART (BART package imple-
mentation) due to memory problems. This highlights the need
for TVS as a variable selector which can handle such voluminous
data.

Unlike the HIV-I data in Section 7.1, there is no proxy for the
ground truth. To understand the performance quality of TVS,
we added 227 normally distributed knockofts. The knockofts
are generated using create.second order function in
the knockoff R package (Patterson and Sesia 2018) using
a Gaussian Distributions with the same mean and covariance
structure (Candes et al. 2018). We run TVS with a batch size s €
{1000, 2000, 5000} and M = 1000 inner iterations until the pos-
terior probabilities have stabilized. The inclusion probabilities
are plotted in Figure 9 for two cases (a) without knockoffs (the
first row) and (b) with knockoffs (the second row). It is interest-
ing to note that, apart from one setting with s =1000, the knock-
off trajectories are safely suppressed below 0.5 (dashed line).
Both with and without knockoffs, TVS chooses “the number of
months with purchases in past 24 month” and “the November
Promotion Sales” as important variables. The selected variables
for each combination of settings are summarized in Table 3.

Finally, we used the same set of variables (including knockoff
variables) for different variable selection methods and recorded
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the number of knockoffs chosen by each one. We used BART
(D = 20, MCMC iteration = 50,000), and DART (D = 50,
MCMC iteration = 50,000) with the same selection criteria as
before, that is, a variable is selected if it was split on average at
least once. We also consider LASSO where the sparsity penalty
A was chosen by cross-validation. BART and DART cannot be
run on the entire data set so we only run it on a random subset
of 10,000 data points. While TVS with large enough s does not

include any of the knockoffs, LASSO does include 14 and DART
includes 4.

8. Discussion

Our work pursues an intriguing connection between spike-and-
slab variable selection and binary bandit problems. This pursuit



16 (&) Y.LIUANDV.ROCKOVA

Table 3. Variables Selected by TVS with different s and with/without knockoff. The numbers report conditional inclusion probabilities 7z (t) after convergence, where values

above 0.5 are in bold.

s = 1000

Knockoff Yes No Yes No Yes No
total number of medium ticket items in previous 60 months 0.30 0.51 0.51 0.46 0.44 0.51
total number of small ticket items in previous 60 months 0.49 0.52 0.40 0.41 0.25 0.53
number of months shopped once in previous 12 months 0.34 0.41 0.44 0.42 0.41 0.57
number of months shopped once in previous 24 months 0.63 0.67 0.70 0.63 0.66 0.71
count of unique purchase trips in previous 24 months 0.55 0.26 0.48 0.53 0.68 0.67
total number of items purchased in previous 12 months 0.51 0.30 0.24 0.21 0.24 0.1
promo_nov period: total sales 0.58 0.58 0.71 0.70 0.33 0.45
mailed in holiday 2001 mailer 0.25 043 0.08 0.41 0.42 0.52
percent audio category sales of total sales x mail indicator 0.41 0.50 0.15 0.28 0.13 0.10
promo_nov period: total sales x mail indicator 0.15 0.35 0.46 0.41 0.66 0.71
indicator of holiday mailer 2002 promotion response x mail indicator 0.19 0.38 0.44 0.21 0.44 0.52

Table 4. The number of selected knockoffs in the marketing data. BART and DART
are run on a subset of 2 000 observations.

Method TVS TVS TVS BART DART LASSO
s 1000 2000 5000
Number of Selected Knockoffs 0 0 0 0 1 45

has led to a proposal of TVS, a reinforcement learning wrapper
algorithm for fast variable selection in high dimensional non-
parametric problems. In related work, Liu, Rockovd, and Wang
(2018) developed an ABC sampler for variable subsets through
a split-sample approach by (a) first proposing a subset S; from
a prior, (b) keeping only those subsets that yield pseudo-data
that are sufficiently close to the left-out sample. TVS can be
broadly regarded as a reinforcement learning elaboration of this
strategy where, instead of sampling from a (noninformative)
prior 7(S;), one “updates the prior 7(Sy)” by learning from
previous successes.

TVS can be regarded as a stochastic optimization approach
to subset selection which balances exploration and exploitation.
TVS is suitable in settings when very many predictors and/or
very many observations can be too overwhelming for machine
learning. By sequentially parsing subsets of data and reinforcing
promising covariates, TVS can effectively separate signal from
noise, providing a platform for interpretable machine learning.
TVS minimizes regret by sequentially computing an MPM rule
obtained by truncating sampled mean rewards. We provide
bounds for this regret without necessarily assuming that the
mean arm rewards be unrelated. We observe strong empirical
performance of TVS under various scenarios, on both real and
simulated data.

The TVS approach, coupled with BART, captures non-
linearities and may thus be beneficial over linear techniques.
In addition, TVS scales to very large datasets.

TS is ultimately designed to minimize regret, not to select
the best arms. Bubeck, Munos, and Stoltz (2009) pointed out
that algorithms satisfying regret bounds of order log(T) can
be far from optimal for finding the best arm. Russo (2016)
proposed a “top-two” sampling version of TS which is tailored
for single best-arm identification. Alternative algorithms have
been proposed including the successive elimination algorithm
of Even-Dar, Mannor, and Mansour (2006) for single top-arm
identification and the SAR (successive accepts rejects) algo-
rithm of Bubeck, Wang, and Viswanathan (2013) for top m-arm

identification. These works suggest possible refinements of our
approach for directly targeting multiple best arms in correlated
combinatorial bandits.

Supplementary Material

The Supplemental Materials contain proofs of Theorem 1 and 2 (Section
A and B, respectively), additional simulation results (Section C) and addi-
tional details on the real data analyses (Section D and E).
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Supplementary Material

A  Proof of Theorem 1

We will denote with 8* = arg maxs r§.(S) the optimal model where
C+1 1
c _ * _ —
rg-(S) = Z {91- (S) log( - ) log (C)} )
€S
First, we define the reward gap of a set of arms &; as

As, = Elrg-(8*) — 15 (S))]-
and write the expected regret in (12) as Reg(T) = EY.,_, As,. Before proceeding, we need
to introduce some notation. We denote with N;(t) = ", _,I(i € Si) the number of times
an arm ¢ has been pulled up to time z. Next,

ju(t) = R = s i € S 1)

k<t

denotes the empirical mean of an arm ¢, i.e. the proportion of times an arm ¢ has yielded
a reward when pulled, i.e. 7/ = 1 when i € ;. We will be using the following usual
Chernoff-Hoeffding bounds which we state without a proof.

Lemma 1 (Chernoff-Hoeffding Bound) Let X, ..., X,, be independent Bernoulli ran-
dom variables with E[X;] = p; and denote with X = £3" = X; and p = £ 3" p;.
Then, for any 0 < A <1 — pu, we have

P(X > pu+ A) < exp{—nd(u+ X\, p)},
and, for any 0 < X\ < p,
P(X <p—A) <exp{—nd(u—\ un)},

where d(a,b) =alna/b+ (1 —a)ln(l —a)/(1 — ).



Similarly as in other regret bound proofs (Komiyama et al., 2015; Wang and Chen,
2018) we will bound the expected regret separately on the intersection of combinations of
the following events:

A(t) ={S: # ™},

B(t) = {E!z' € S st ju(t) < 0.5+ % or 3i € S\S* s.t. ju(t) > 0.5 — %} ,

C(t) = {Eli € S* st ju(t) — 6i(t) > % or Ji € S\S* s.t. 6i(t) — jult) > 3} ,

D(t) =) {Ni(t) > 8IOgT}, 2

2
(6]
1€SE

where a occurred in Assumption 1. First, we focus on the following term

T

Regi(T) =Y E[As, x I(A(t) N B(1))). (2)

t=1
The following Lemma finds an upper bound on Reg; (7'):

Lemma 2 Under the Assumption 1, the TVS sampling policy in Table 1 with C = (\/_—
1)/2 yields, for Apq: = maxs Ag

T
Regy(T) < Amax ) E (ZH {ies.mt)<05+ %}) (3)
1€S* t:lT )
+ A >_E (Z]I{z € Sy, fui(t) > 0.5 — 5}) (4)
igS* t=1
gAmaXXp(H 4 ) (5)

Proof: We will first prove that

E(Zﬂ{ie&,ﬂi(t)<0.5+%}> §1+a24 : (6)

t=1 max

The second inequality for the term in (22) can be obtained analogously. With 6;(S;) as in
(14) we denote with

1
Ni(T)

0:(T) = D I(i € 8)6:(S))

=1

and with d(a,b) = alog[a/b] + (1 — a)log[(1 — a)/(1 — b)]. Note that for any b € (0,1)
both functions d(z,b) and d(b, x) are monotone increasing on [b, 1] and, at the same time,
monotone decreasing on [0,b]. Under the Assumption 1 and for i € §* we have 6,(T) >

0.5 + « and thereby
d(0.5+ a/2,0,(T)) > d(0.5+ a/2,0.5 + «).

2



Similarly as in the proof of Lemma 3 in Wang and Chen (2018), we denote with 71, 7o, ...
the times such that ¢ € S;, define 79 = 0 and write

E (Z I{i € S, ju(t) < 0.5+ a/2}> <14 Y P(i(rn) < 0.5+ a/2, Ny(t) = w)
<1+ Zexp (—wd (0.5+ a/2,0(T)))
<1+ exp(—wd(0.5+ /2,05 +a))

<1+ Zexp (—wd(0.5+ «/2,0.5 + a))
w=0

exp (—d(0.5 + «/2,0.5 4+ «))
1 —exp (—d(0.54+ «/2,0.5+ «a))

<1+

4
<1+
o

This concludes the proof of (29). The second term can be bounded analogously, which

concludes the proof of the Lemma. 0
Next, we focus on the following term
T
Regy(T) = E[As, x I(A(t) N B(t) N C(t) N D(t))]. (7)
t=1

To bound this term, we will be using the following Lemma (Lemma 4 from Wang and Chen
(2018)) which we, again, state without a proof.

Lemma 3 Denote with 6;(t) the mean reward for an arm i sampled from B(a;(t),b;(t))
during the step C1 in Table 1. Using the T'VS algorithm from Table 1, we have the following
two inequalities for any base arm i:

[ 20gT| 1
P |6,(t) — fu;(t < -,
0 =) > | oy | < 7

[ 2logT_ 1
P | i;(t) — 0;(t < —.
fui(t) — 0:(t) > D) T

Proof: The proof relies on the observation that 6;(t)’s only depend on values a;(t) and
b;(t). The proof is then the same as in Lemma 4 in Wang and Chen (2018).

The following lemma bounds the regret term (7).

Lemma 4 Using the TVS algorithm from Table 1, we have the following bound:

Rego(T) = Y E[As, x I(A(t) N B(#) N C(t) N D(1))] < Apmax X p.

3



Proof: On the event D(t), we have N;(¢) > %L and thereby § > 2;325(;. The set
Be(t) NC(t) N D(t) is then subsumed within

2logT
Ni(t)

2logT
{gi € S\S* 1 0:(t) — ui(t) > or 3 € S NS 1 fu(t) — 0i(t) > ]\f(gt) } :

We can then directly apply Lemma 3 to write

XT: As,P (A1) NB() NC(#) N D)) < Ao ZT: P (B(t) N C(t) N D(t))

t=1
T
< Apax »_p/T. O
t=1
Finally, we focus on the following term
T
Regs = > E(As, x I(A(t) N B(t) NC(t) N D(1))). (8)
t=1

Lemma 5 Leti € §* and let ff(j,s) be the probability that after j pulls of an arm i, s of
those pulls result in a reward. If s < [0.55] , then

2.9 < (1) 034 ar 05— ap= )

Proof: We denote with 7} the j* time such that the arm 4 has been pulled (i.e. 6;(t) > 0.5).
We denote the probability of yielding a reward at time 7; as p; = P (%T 7= 1|ST].) and, for
a given j and s write f7,(p1,- -+ ,p;) := fi'(j, ). Since we are studying one particular arm,
we have dropped the subscript ¢ without any loss of generality. Consider now a vector of
binary indicators B = (By, By, Bs,- -+, B;)’ € {0,1}7 where B, = ~/* € {0,1} for whether
or not the k™ pull of an arm i has yielded a reward. Denoting |B| = >"_, By, we can
write

J
f;,s(pla T 7pj) = Z leBl(]- _pl)l_Bl~

B:|B|=s l=1

We want to show that p* = (pj,...,p}) = argmax f; (p1, -+ ,p;) when p; = 0.5+«
for all 1 < ¢ < j. First, we notice is that this is a multi-linear polynomial in the sense

afr (b1 pj) . . . .
that W is independent of pg. Keeping every other coordinate constant, the value

pj, that maximizes f;,(-) in the & direction has to be either 0.5+ a or 1. The vector
(p1, -, p}) maximizing f; (p1,- -+, p;) will thus have each coordinate p; either equal to 1
or 0.5+a. Let r € NU{0} be the number of coordinates k for which p; = 1 and j—r be the
number of coordinates k for which p; = 0.5+ a (notice that r < s). Since f; (p1, -+ ,p;)
is a symmetric polynomial (i.e. the value of the function is not affected by a permutation
of its argument) we assume, without loss of generality, that pf = p5 = --- = pf = 1 and
Dyy1 = Prpg = -+ = p; = 0.5+ «. In this case, we have the constraint on the binary

4



indicators B where the first r indices have to be 1 and the remaining s — r 1’s can be
anywhere between the index r + 1 and j (j — r indices). Therefore, we have

fior (@) = (‘j - T) (0.5 +a)* (0.5 — )i~

S—7T

It is sufficient to prove that this function is maximized at r = 0. We have

Frawnn®) _ ()05 +a) 105 —ap ™ .
@) ()05 tar 05 —ape  G-n2+a)
jj2—r

< G-naaTa) (using the assumption s < |j/2])

(12— a)r+aj
(G —r)(1/2+a)

frswir@rpi)
IFsr(P1,0.p5) 5
maximized at » = 0. This concludes the proof. O

since 1/2 —a > 0 and a > 0. Since this is true for all r, the function

Lemma 6 Let i € S8 and let T; be the j time such that 0;(t) > 0.5. Suppose that
Assumption 1 is true, then the TVS Algorithm 1 with C = (/5 —1)/2 satisfies

4+ L when j<32

1+ ﬁz_ea = te %j/2 <01 + 024a12 fﬁl)> when j > %,

Elrj — 7] < { (10)

where constants Cy,Cy > 0 are not related to Algorithm 1.

Proof: We denote with 7/ the j time such that the arm ¢ has been pulled (i.e. 6;(t) > 0.5).
First, we consider the tlme interval [TJ,TJ +1). For any t € [ T T 7!,1) we know that the arm
i has been played j times and, thereby, #;(¢) comes from a beta distribution

05(t) ~ Blai(t), bi(t)],

where j = a;(t) + b;(t) — 2. The parameters of the beta distribution are only updated if
the arm ¢ is pulled and the distribution thus does not change until we reach the iteration
Tj+1. Therefore, given fi;(7 ) the expected difference between 7 ]’ o T; has a geometric
distribution with an expectatlon

1 1

E [Tj+1 — 75 | 1&'1(7—;)] - P(B;; > 0.5) - pi;(0.5)

where B;; ~ Blai(Tj41), bi(Tj+1)]. Welet F, ,(-) and f, ,(-) denote the cumulative distribu-
tion function (CDF) and the probability density function of a Binomial distribution with
parameters (n,p). We now recall the following fact (see e.g. Fact 3 in Agrawal and Goyal
(2012)) about the CDF F2%*(x) of a beta distribution with parameters (a, ). We have
the following identity which links the CDF of a beta distribution and a CDF of a binomial
distribution:

Folé),eta(y) =1-Foyp1y(la—1) (11)

)



for all positive integers «, 8. Let f7(j,s) be the probability that after j pulls of an arm i, s
out of those j pulls result in a reward. Here, we have the following relationship a;(7;) = s+1
and b;(7;) = j+1—s. Using the identity (11) and given s successes among j pulls, we can
write p; ;(0.5) = F%_,11(0.5) = 1 — Fjy105(s) and thereby

E{pm } ij’ ' "

]+105

First, we consider the case when j < 8 In the following calculations, we will use the
result from Lemma 5. Let ppa.x = a + 0. 5 and R = pm—a"z. Using the fact Fj105(s) >
0.5F;05(s) and Fjo5(s) > 1/2 when s > [j/2] (since the median of Binomial distribution
with parameters (j,1/2) is either |j/2] or [j/2]) we have

=542

]05

LJ/QJ Nos (1 j—s J
=Dy (S)p‘““(l Pl D43 1) (14)

=0 fios(s) =13/2]
Li/2] i
p?nax(l — pmax)] °

<2 _ 4 1
- Z 1/2] T ( 5)

s=0

i Li/2]

(1 B pmax)] s

SQT Z; R +4 (16)
RU/21+1 _q (1— pmax)j
<2 , 4 17
- ( R—-1 ) 1/279 * (17)
R\ (L= Puax)’
< —— | R Ly 18
- (R——l) 1/2 i (18)
Sle_jd(l/Qapmax) + 4 (19)
o
1

<—+4+4 20
<—+4, (20)

where from (18) to (19) we have used the following two facts. First, using the definition of
d(+,+) in Lemma 4 and the fact that d(py, p2) > (p1 — p2)* we obtain

(= Poax)’ pisjy o (L= Pomax)’ o 51080 10001/ 2045/2 o) /210801
1/27 1/29

— o i{3108(5/pmax) +3 108[5/(1-pmar)]} _ o7 d(1/2,Pmax) < o=0%

Second, since ppa.x = 0.5 + «, we have Ri = p‘z“;" < i
When j > %, we will divide the sum ¥(0, j) = i:o % into 4 pieces and bound each
J ,U.



one of them

20, 5/2] —1) < ¢ [e_o‘2j %} +eze 2% (21)

2(15/2], L3/2]) < 3¢ (22)
(1321, 101/2 + a/2)j]) < e (e77") (23)
2 ([(1/2+/2)j1,5) < 1+ (24)

where ¢, > 0 and ¢3 > 0 are constants unrelated to Algorithm 1. This will complete the
proof. We now prove the bounds in the last display. We start with the first inequality in
(21). When s < (j+1)/2— /(5 + 1)/4, we use the following bound for the Binomial CDF

(Jerdbek (2004))
1[j+1—s (j+1) 1
Fonaso)2 | T3 (1) ]

for some co > 0. When s > (5 +1)/2 —+/(j + 1)/4 we use that fact that, for some c3 > 0,

1
Fit10s5(s) 2 — > 0.
C3

Altogether, we arrive at the following bound (using again Lemma 5 and denoting ppax =
1/2 4+ o and R = Lmax)

1_p'max

[G+1)/2—+/GHD)/41 . Li/2)-1

. fz ]’5 * [ -+
SO/ - <e S L S 1G>s)
— i+1—s
=0 Fies ( ) ) T a=lG)/2- /G +1
13/2)-1 . 9) l3/2) -1
<6 Z L zj—7|—1 1 +c3 Z fiG,s)
0 s ( s ) pT 5=
i Li/2]-1 li/2]-1
(1 _pmax)] 2s s /-
<6 i ; 1_j+1 R +es ; fi (G, 8). (25)



Now we bound the first term in (25) to obtain

i Li/2]-1
1 — Mmax ! 2
(1 — Prmax) j{: R
1/m+1 j+1

pmax {RU/QJ - 1 2

(U/QJ — 1)RU/2J RU2I _ R

}

1/2-7+1 ]+1 R—1 (R_1)2
~ Pmax)’ J%LJ/QJ (Li/2) = HRUA Rl
B 1/23+1 R— ]—I—l R—-1 (R—1)?
— Pmax)’ [ 2 RUﬂJ +2Kj+1V2-L”QJ+1yRWﬂ
- iUW“ j+1(R j+1 R—1

(1 pmax)j 6 RLJ/2J+1
<
- 1/2t1 j4+1(R—1)?
oo 12 R
- J+1(R-1)%

where we have used the following facts. First, for any x > 1 we have

n i nwn+2 _ (n + 1)xn+1 +x nmn—&-l xn-i—l —
Z ST = = f— .
(1—2)? r—1 (r—1)?2

Second, j/2+1/2 —|j/2] + 1 < 3 and (similarly as before)

J
(L= Pmax) plif2) < qmid1/2 pmae) < g0,

1/2i

Finally, since R/(R — 1) < i and 1/(R—1) = 125(1’

1 R < 1 -2«
G+1D/4(R—1)2 ~ 4a2(j + 1)

For the second term in (25), we notice that ZE:/ . 71 £2(5, s) is equal to the probability that
the total number of successes is less than [j/2] — 1. Here, we invoke Lemma 1 and note
that the success probability of each pull is always greater than 1/2 + « and the difference
between the average success probability over the j pulls and 1/2 is thereby greater than .
Hence, ZU/ 271 (. s) < e729% We put the two terms together to finally obtain

li/2)—1
. —a2i 1—2a
SO/~ S e[ e v 3 s (26)
—a2i 1 -2« —92a27
) e | R 0



Next, to bound the term 3(|j/2],|j/2]) in (22), we use Lemma 5 and the fact that
Pmaz > 1/2 to find that for s = [j/2]

(/2 if2)) = s < S0 g (10 Y e (L)’

Fit105(s) = fiz105(s J+1 1/2

2 ] j 1_pmax J
<2 (L49) pi/2 | _fmax
—j+1(2+) ( 1/2 )

2

(1 + i) =% < Qe

J+1
where we used the assumption j > 1/a > 2.

In order to bound the third term X([7/2], | (a4 1)7/2]) in (23), we first note that if
j>8>1>2 (our assumption above), we have \/(j +1)/4 > 1/3/4 > \/1/2 > 1/2 and
thereby (j +1)/2 — /(7 +1)/4 < j/2 < [j/2] < s. This implies that the condition in
Jetabek (2004) is satisfied and we can apply the bound Fji105(s) > é Then we have

[(a+1)5/2] [(a+1)5/2]
S22 e+ 1)5/2)<es | Y. fGs)| <l Y. £3.s)
s=[j/2] 5=0

S C3 (e—a2j/2> )

where the last inequality stems from the Chernoff-Hoeffding inequality in Lemma 1 and
Assumption 1 which guarantees that the success probability of each pull is greater than
1/2 + . This implies that the difference between the average probability of success over
all the 7 pulls and 1/2 + «/2 is greater than «/2.

Finally, to bound the term X([(« 4 1)j/2],7) in (24) we use the Hoeffding inequality
in Lemma 1 with A = (o + 1)j/[2(j +1)] = 1/2 < s/(j + 1) — 1/2 to find (for a r.v.
X ~ Bin(j +1,1/2)) that

X 1 —2(j+1)A2 N LI
Fipr05(s) 21— P (m 57 >\> L e 20+0% _ | _ (Bt tesd o)
Z 1- eia ]/27
Where.we used the fact that 1/7 < «/8 and thereby 2a > 2(]+1) + ajil 2(]“ Finally,
we write
j .
on fi(,s) 1 1
X 1)5/2 < ! < — =14+ —F.
(Ma+ 152100 < > Froeals) < T ewn = U gy

s=[(a+1)j/2]

Now, denoting C; = 2 + 2¢3 and Cy = ¢y we get the statement in the Lemma. This
concludes our proof. O

Using Lemma 6, we can achieve a similar bound in Lemma 6 of Wang and Chen (2018),



Lemma 7 Under Assumption 1, the TVS Algorithm 1 with C = (v/5 — 1)/2 satisfies the
following property. For any signal arm 1 € 8*, the expected number of total pulls before the
given arm t 1s pulled 81%2@) times is bounded by

Flog(:r)%m (3+§)+6 et 8 1 et

a2 1— e—a2/2 a2e2a — 1 1— e—a/8’

where C' = Ci+ Cs 13_220‘[1 for some Cy > 0 and Cy > 0 not related to the Algorithm 1.

Proof: We use the notation from Lemma 6, where Tj' is the time when the arm ¢ has been

pulled for the j* time. Denoting with T = L8log T)J we want to find an upper bound for
E[rk]. We can write

Jj=0 Jj=0

and using Lemma 6 we obtain
T 1 1 -2«
E § —a?j/2 —
TT < (4+ ) [1+—ea2j/4—1 +e (Cl+02—40é2(j—|—1>):| . (28)

s _
First, we note that Zﬁgé 4+ 1)+ Z?=L§J+1 1< [81%2(71)1 + [27(3+ 1). Next, we write

2 —4a

T
—le €
2 _—
2 S
J=la1+1

and
T T
2a ja? 2a ~ e Ao
Ci+0— ) < (1 + C <(C———.
2 e (“L *4 (+1)) 2, o (1+ 232a>_ 1—e /2
J=[21+1 j=131+1
Finally, —%/2 for £ > 1 to obtain

7 |5 | Slogl) |

T 1 a
> = < +Z

j=rfet —1 j:(gme -1 sy -1
LSlog(T)J
8 1 - 8 1 e !
o - -a?j/8 ~ ©
§a262a_1+ Z ! §a262a_1+1_e—a2/8 O

i=135]

Using these lemmas we can prove the following lemma about Regs(T).

10



Lemma 8 We denote with Regs(T) the regret term in (8). Under Assumption 1, the TVS
Algorithm 1 with C = (v/5 —1)/2 yields

8plog(T) ~ , e L8 1 e ! 8 1
Reg3(T)§Amax{T+0qm+q St | (32| b

where C = C+ Gy 13’22; for some Cy > 0 and Cy > 0 not related to the Algorithm 1.

Proof: We start with the following facts Regs(T) < Y0, Ag,E [T (A(t) N D<(t))] and

< E s a0 <20

t=1 i€S;

where we used the fact that on the event D(t), there exists at least one arm i € S; such
that N;(t) < 8bi—g). We now decompose the sum above into signal arms and noise arms

Regs(T) ng: [ S AsE [11 <A(t) n {Ni(t) < 810§§T)})H (29)

t=1 Lie&SinsS*

+§T: > AE [H(A(t)m{Ni(t)g&%Q(T)})] _ (30)

t=1 [ieS\S*

If i € §;\S*, then S; contributes to the regret but this can only happen SI%Z(T) times so the
total regret contribution of pulling a subset §; including an arm ¢ before N;(t) > SI%Q(T) is

bounded by maxgs.ics %ng. There are p — ¢* noise arms ¢ ¢ S* and the term (30) can

be thus bounded by (p — q*)Amawgl%g(T).
If i € S* NS, then the arm ¢ contributes to the regret when S; # S&*. However, by
Lemma 6 and Lemma 7 we can bound the expected number of pulls of an arm i before N;(t)

Sl(f(T) This means that the contribution to the regret when i € S*NS; is bounded
by Amax GM%Q(T)-‘ + [%W (3 + 1) + C 2/2 + %ﬁ + 1;’;%/8) Because there are ¢*
signal arms, we can combine (29) and (30) to arrive at the bound in the statement of this
lemma. O

reaches

We now put the various pieces together to finally prove Theorem 1.

Proof: We start by noticing that

TA()] = ILA(t) N B(1)] + T[A(t) N B(¢)]
= IJA@) N B(®)] + TLA@) N B(t) N C()] + TLA() N B() N C(1)].

Now we note that I[A(t) N B°(t) N C(t)] = 0 because

)
)

Be(t)NCe(t) = {Vi € §* we have 6;(t) > 0.5 and Vi e S§\S* we have 6;(t) < 0.5} = A(¢).
Thereby we can write

T[A(%)] =I[A(t) N B(t)] + L[A®t) N B(£) N C(t) N DE(t)] + L[A(t) N B(t) N C(t) N D(L)]

11



which leads to the following decomposition

Reg(T) =Y  AsE[L(A())]
< ET: E|As, x I[A(t) N B(t)] + As, x T[A(t) N B(t) N C(t) N D(t)]

As, x T[A(t) N B(t) N C(t) N D°(L)]

+

= Reg1(T) + Rega(T) + Regs(T).

Now, we bound Reg;(T), Rega(T) and Regs(T) with Lemma 2,Lemma 4, and Lemma 8.
This gives us Theorem 1.

B Proof of Theorem 2

Let’s define the event A(t) = {S; # S*}. It is sufficient to show that the probability of

infinitely many events A(t) occurring is zero, i.e. P (lim sup A(t)) = 0. This implies that

t—o0

P <hm tinf {& = S*}) = 1. By the Borel-Cantelli Lemma, it suffices to show that
—00

D P(A()) < oo (31)

For each i € {1,...,p} we define an event

~ J{6:(t) > 0.5} when i€ S\S*
Ait) = {{Ol(t) < 0.5} when i€S*

Using the fact that

Alt) < | JAit) (32)

one has )
D P (A(t).
i=1 t=1

t=1 i=1 ?

(ZP(A@))) < (ZZP(A@))) =

We now show that the sum on the right hand side is finite, splitting the arms into the
true arms i € §* and the fake arms i € S\S*.

Lemma 9 Under assumptions of Theorem 2 we have, for each i € S\S*,

- 4
;P(Ai(t)) <Lt =+ o (a8

12



Proof:
We can write

Ai(t) = {6i(t) > 0.5}

= {ju(t) > 0.5 — a/2,6i(t) > 0.5} U {u(t) < 0.5 — a/2,6i(t) > 0.5}
= {ju(t) = 0.5 — a/2,0i(t) > 0.5} U {ju(t) < 0.5 — /2, 0:(t) — fus(t) > /2, 0,(t) > 0.5}
C {fui(t) = 0.5 — a/2,0:(t) > 0.5} U {6:(t) — fus(t) > /2, 6,(t) > 0.5}.

Since {0;(t) > 0.5} = {i € S;}, we first show that
G 4
E P(i €S, fui(t) 205 —a/2) <1+ — (33)
a
=1

We can write, using our Lemma 2 in the Supplement,

['S) T
4
Y PieS, () >05-a/2)=lm EY I(i €S, ) >05—a/2) < L+

T—o0
t=1

Recall the definition of N;(t) = >, _,1(i € S) = a;(t) + bi(t) — 2 and [1;(t) = “}(]f)(;)l
Now, we want to show that for any fixed a;(t) > 1 and b;(t) > 1, we have

P (0:(t) > fui(t) + /2) = 1 = F0rid .0y (fa(t) + /2)
=1- (1 - Fai(t)—t-bi(t)—l,ﬂi(t)-i-a/Q(ai<t) - 1))
(Using equation (11) in the Appendix)
= Fai(t)+bi(t) 1, (1) +ay2 (i (1) (@i (t) + bs(t) — 2))
(Using the Chernoff-Hoeffding Bound)
< exp(—(ai(t) + bi(t) — 2)d(fi(t) + /2, (1))
< exp(—Ni(t)a?/8)

Then

S TE@{O:(t) — pi(t) > a/2,i € §})) < > exp(—N;a?/8)

N;=0

S T oxp (—a2/8)”

Combining the two cases, we finally obtain Y ;= E (I(4;(t))) < 1+ 25 + [

I S
1—exp(—a?/8)"

Lemma 10 Under the Assumption 1, the TVS sampling policy in Table 1 with C = (\/5—
1)/2 satisfies, for each i € S8* and for some suitable C(a) > 0,

o

D P (Ai) < C(a). (34)

t=1
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Proof: For a signal arm i € §* we have A;(t) = {0;(t) < 0.5}. We recall the arguments
from Lemma 6 in the Supplement. There we denoted with T; the j' time the arm i has
been pulled (i.e. 6;(t) > 0.5). Now, we note that in between [7; + 1,77,, — 1] we have
{6;(t) < 0.5} since the arm i is not being pulled. One can deduce that

D E (A1) = ZE (i — 7 —1). (35)

Then note that using the result from Lemma 6.

3+i when jg%

. 36
been G+ Cogeg) when G2

E[Tj+1—7j_1] S{

ea?i/4_1

From this expression we can immediately see that (35) is summable. Below, we provide
more details on the upper bound C(«) in (34).

o0 12 [5] o
ZE(T;H_T;_DS E(T;+1_T;_1)+ Z E(T;+1_T;_1)+ Z E<T;+1_

7=0 j=0 j:[%w_l j=457+1

Qoo

s . ,
Then we can bound each term separately as: Z;gg E(ri,—7—1) <[2]1B3+2),

' ) 4 1 2/r8 1 -2«
E U N 1) < [— - - (’—g])/Q S
| Z (T]—H 7; ) = (oﬂ} (eO‘Z([EDM 1 te G+ 024042([%1 +1) ’

ad , . > 1 , 1-2
Z E(T;H—T;—l)g Z [—eagj/4—1+ea2]/2(01+024 a >]

o?(7+1
J=l=51+1 j=[251+1 U+1)

Using the fact that exp(—z/2) > 1/(exp(x) — 1) for x > 1

o0

2, 2 1 — 2«

j=[251+1

1 1 1 -2«
< Ci+Co——FF.
ST ewB I ( v “402(T 5] + 1))

a2

14



C Additional Simulation Results
C.1 Offline Cases

The Figure 1 below shows simulation results for p = 1000 under the same settings as Figure
6. In addition, we report convergence diagnostics (number of iterations until cgnvergence)
for the simulation study from Section 6.1, using the convergence criterion “S; stays the
same for 100 consecutive TVS iterations”, are included in Table 1.

FDP Power
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Figure 1: Graphs denoting FDP (1a), Power (1b), Hamming Distance (1c), and Time (1d) for
the 4 choices of fy assuming p = 1000 and n = 300. The z-axis denotes the choice of fy and the
various methods are marked with various shades of gray. For TVS, we have two choices M = 500
and M = 1000.

In addition to the convergence criterion, we tried different number of trees (D) for
DART and BART. We also considered a different variable selection rule, i.e. the Median
Probability Model using the inclusion probability of BART and DART (as mentioned in
Linero (2018)). Due to space constraints, we showed only the best settings for BART
and DART in Section 6.1. The following tables present the entire simulation study and
show that TVS yields better Hamming distance and computational speed gains. Tables
2-5 present the offline simulation study, one table for each data setup.
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Friedman Linear Forest Liang

Mean SD Mean SD Mean SD Mean SD
500  216.40 112.69 216.50 112.68 126.16 31.11 283.58 162.44
1000 196.34 94.79  197.48 94.20 11530 11.02 232.06 130.52
500  298.04 100.51 299.58 101.01 230.14 39.74 247.20 156.05
1000 280.46 82.96  280.28 82.98  205.10 31.86 235.74 109.29

P M

1000

10000

Table 1: The table records the number of iterations needed for TVS to converge in the
simulation study in Section 6.1.
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Table 2: Linear Setup: BART and DART are implemented using Prob (median probability
model) rule or Avg Split (truncating the importance measure at 1)

p = 1000
Method g‘r’:;‘b’fffpnce M Mean Time SD Time Mean FDP SD FDP  Mean Power SD Power Mean Ham SD Ham
YES 100 30.27 1114 016 0.15 0.76 0.10 2.10 1.04
NO 100 37.67 5.35 0.22 0.14 0.82 0.09 2.20 111
vs  YES 500 84.02 39.67  0.03 0.10 0.71 0.14 1.64 1.01
NO 500 115.41 8.44 0.15 0.16 0.77 0.12 2.04 118
YES 1000 147.72 TL70 007 0.12 0.66 0.16 2.04 0.90
NO 1000 213.62 1482 019 0.16 0.72 0.15 2.38 1.23
Avg Split/ Prob
Avg Split 2872 0.39 0.07 0.15 0.52 0.15 2.64 0.96
Prob 28.72 0.39 0.17 0.17 0.56 0.16 2.82 1.10
DART  Ave Split 68.30 145 0.22 0.18 0.72 0.16 2.70 1.43
Prob 68.30 145 0.31 0.19 0.76 0.16 3.28 1.90
Avg Split 241.04 2649 0.42 0.19 0.66 0.18 4.48 1.98
Prob 241.04 2649 0.48 0.20 0.68 0.19 5.38 2.51
Avg Split 28.49 0.81 0.03 0.10 0.57 0.15 2.2 0.87
Prob 28.49 0.81 0.18 0.17 0.70 0.12 2.38 1.34
BART  Ave Split 69.31 1.51 0.03 0.08 0.66 0.15 1.82 0.83
Prob 69.31 151 0.24 0.16 0.76 0.11 2.58 1.20
Avg Split 277.25 8.21 0.06 0.11 0.72 0.1 170 0.76
Prob 277.25 8.21 0.39 0.18 0.81 0.07 4.02 1.88
SSLASSO 0.25 0.01 0.00 0.00 0.80 0.10 0.98 0.51
SIS 23.89 1.95 0.30 0.24 0.58 0.22 3.58 2.02
Horseshoe Prior 557.39 1279 0.00 0.00 0.63 0.14 1.84 0.71
LASSO 135 0.11 0.72 0.13 0.80 0.10 15.50 9.29
p=10000
YES 100 4318 1383 0.08 0.16 0.21 0.20 122 0.81
NO 100 54.28 7.37 0.27 0.20 0.49 0.13 3.56 115
tvg  YES 500 113.64 3334 015 0.22 0.48 0.17 3.14 1.31
NO 500 146.72 1823 013 0.20 0.57 0.14 2.70 1.25
YES 1000 184.65 5260 0.07 0.15 0.50 0.12 2.74 0.90
NO 1000 262.24 3022 0.07 0.15 0.59 0.15 2.38 1.09
Avg Split/ Prob
Avg Split 187.63 8.88 0.17 0.23 0.44 0.14 3.30 1.23
Prob 187.63 8.88 0.24 0.23 0.48 0.16 3.48 142
DART  Ave Split 407.09 2489 023 0.20 0.66 0.15 2.84 1.60
Prob 407.09 24890 0.44 0.19 0.70 0.17 4.74 2.45
Avg Split 127218 14401 0.74 0.09 0.68 0.19 11.64 3.46
Prob 127218 14401 0.84 0.05 0.70 0.19 21.40 5.70
Avg Split 163.60 6.82 0.00 0.00 0.24 0.15 3.78 0.76
Prob 163.60 6.82 0.28 0.24 0.48 0.18 3.88 1.42
BART  Ave Split 377.84 1465 0.06 0.16 0.38 0.15 3.22 0.91
Prob 377.84 1465 025 0.22 0.58 0.15 3.30 143
Avg Split 144424 5017 0.1 0.05 0.42 0.15 2.92 0.78
Prob 144424 5917 0.14 0.17 0.57 0.12 2.78 0.97
SSLASSO 3.09 0.27 0.00 0.00 0.45 0.09 2.74 0.44
SIS 82.69 1973 0.66 0.15 0.39 0.15 718 1.92
Horseshoe Prior 4899.46 245.11 0.01 0.05 0.57 0.13 2.18 0.69
LASSO 4.60 0.33 0.79 0.13 0.6 0.10 20.12 13.90
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Table 3: Liang Setup: BART and DART are implemented using Prob (median probability
model) rule or Avg Split (truncating the importance measure at 1)

p = 1000
Method g‘r’:;‘b’fffpnce M Mean Time SD Time Mean FDP SD FDP  Mean Power SD Power Mean Ham SD Ham
YES 100 37.75 159 0.5 0.15 0.78 0.19 1.96 121
NO 100 42.59 .77 0.20 0.14 087 0.13 1.86 1.23
v YES 500 9521 3711 0.10 0.12 0.88 0.14 1.10 1.05
NO 500 133.27 1576 0.12 0.12 0.95 0.11 0.94 1.10
YES 1000 149.92 7676 0.0 0.11 0.88 0.15 0.84 1.08
NO 1000 251.07 2856 0.09 0.12 0.97 0.07 0.68 0.98
Avg Split/ Prob
Avg Split 30.06 2.05 0.14 018 056 0.16 2.71 1.23
Prob 30.06 2.05 0.26 0.21 0.59 0.16 3.24 1.61
DART  Ave Split 70.66 5.10 0.24 017 087 0.16 2.20 1.74
Prob 70.66 5.10 0.41 0.20 0.90 0.14 4.36 2.83
Avg Split 231.07 2033 0.33 0.21 0.91 0.14 3.18 2.69
Prob 231.07 2033 0.46 0.20 0.92 0.13 5.26 3.71
Avg Split 28.65 2.57 0.07 0.15 0.50 0.17 2.74 112
Prob 28.65 2.57 0.44 017 0.69 0.17 4.70 1.98
BART  Ave Split 68.51 6.16 0.09 0.15 0.62 0.17 2.30 111
Prob 68.51 6.16 0.43 0.21 0.76 0.15 4.86 2.73
Avg Split 270.07 1884 0.01 0.06  0.57 0.16 2.18 0.83
Prob 270.07 1884 0.39 0.16 0.79 0.17 3.96 2.00
SSLASSO 0.21 0.02 0.00 0.00 022 0.08 3.90 0.42
SIS 16.51 2.75 0.53 020 040 0.05 5.82 161
Horseshoe Prior 540.75 4710 0.00 0.00 040 0.13 3.00 0.64
LASSO 0.64 0.05 0.46 0.14 047 0.11 5.24 2.05
p=10000
YES 100 38.60 1524 0.00 0.00 012 0.13 1.38 0.64
NO 100 53.96 5.40 0.04 013 0.36 0.12 3.28 0.73
tvg  YES 500 116.28 3497 0.03 0.11 0.34 0.14 3.38 0.73
NO 500 144.99 1245 0.06 013 0.54 0.14 2.50 0.91
YES 1000 202.16 7907 0.04 0.15 0.41 0.17 3.14 1.32
NO 1000 264.79 4649 0.4 020 065 0.17 2.36 157
Avg Split/ Prob
Avg Split 189.60 1565  0.12 0.21 0.33 0.14 3.64 101
Prob 189.60 1565 0.50 024 037 0.15 5.34 178
DART  Ave Split 413.25 3433 041 024 058 0.18 4.46 2.37
Prob 413.25 3433 065 0.18 0.61 0.19 8.62 3.81
Avg Split 122067 16741 068 016 0.69 0.21 9.98 444
Prob 122067 16741 081 0.11 0.70 0.21 18.92 .73
Avg Split 160.87 1281 0.02 010 021 0.05 3.98 0.32
Prob 160.87 1281 0.62 0.16 0.30 0.12 6.32 1.61
BART  Ave Split 383.95 3630 0.03 013 025 0.09 3.82 0.63
Prob 383.95 3630 0.5 0.23 0.40 0.1 7.14 3.21
Avg Split 150036 14830  0.02 010 028 0.10 3.64 0.53
Prob 150936 148.30  0.15 0.20 0.40 0.09 3.48 0.86
SSLASSO 0.97 0.09 0.00 0.00 020 0.00 4.00 0.00
SIS 41.56 2018 055 017 036 0.08 5.84 127
Horseshoe Prior 499522 32547 0.00 0.00 040 0.16 3.00 0.78
LASSO 4.20 0.40 0.47 018 043 0.07 5.80 3.45
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Table 4: Friedman Setup: BART and DART are implemented using Prob (median prob-
ability model) rule or Avg Split (truncating the importance measure at 1)

p = 1000
Method g‘r’:;‘b’fffpnce M Mean Time SD Time Mean FDP SD FDP  Mean Power SD Power Mean Ham SD Ham
YES 100 19.98 1071 0.01 0.03 1.00 0.00 0.04 0.20
NO 100 36.27 2.78 0.04 0.08 1.00 0.00 0.26 0.49
v YES 500 3044 5.11 0.00 0.00 1.00 0.00 0.00 0.00
NO 500 119.00 9.83 0.00 0.02 1.00 0.00 0.02 0.14
YES 1000 53.77 7.52 0.00 0.00 1.00 0.00 0.00 0.00
NO 1000 223.02 18.68  0.00 0.00 1.00 0.00 0.00 0.00
Avg Split/ Prob
Avg Split 32,51 2.74 0.01 0.05 0.98 0.06 0.16 0.51
Prob 32.54 2.74 0.02 0.06 0.99 0.04 0.14 0.50
DART  Ave Split 73.39 .14 0.03 0.09 1.00 0.00 0.22 0.62
Prob 73.39 .14 0.11 0.16 1.00 0.00 0.84 142
Avg Split 233.49 2026 0.09 0.14 1.00 0.00 0.64 1.12
Prob 233.49 2026 0.18 0.19 1.00 0.00 1.56 1.94
Avg Split 30.89 3.57 0.02 0.06 1.00 0.00 0.10 0.36
Prob 30.89 3.57 0.28 0.14 1.00 0.00 2.26 1.61
BART  Ave Split 73.92 8.55 0.03 0.09 1.00 0.00 0.22 0.62
Prob 73.92 8.55 0.36 0.16 1.00 0.00 3.34 2.54
Avg Split 292.91 3089 0.01 0.03 1.00 0.00 0.04 0.20
Prob 202.91 3089  0.35 0.13 1.00 0.00 2.94 157
SSLASSO 0.20 0.02 0.00 0.00 072 0.10 1.38 0.49
SIS 19.86 2.98 0.18 013 080 0.03 2.00 0.81
Horseshoe Prior 520.18 6519 0.00 0.00 080 0.00 1.00 0.00
LASSO 0.70 0.08 0.66 0.12 0.80 0.03 10.42 487
p=10000
YES 100 40.05 1015 0.02 0.08 081 0.21 1.08 1.19
NO 100 50.89 6.06 0.03 0.09 094 0.09 0.50 0.79
tvg  YES 500 78.89 2061 0.01 0.05 0.92 0.10 0.42 0.61
NO 500 138.36 1476 0.00 0.00 099 0.05 0.06 0.24
YES 1000 126.72 31.25 0.0 0.00 097 0.07 0.14 0.35
NO 1000 252.09 25.96  0.00 0.00 1.00 0.00 0.00 0.00
Avg Split/ Prob
Avg Split 180.42 1616 0.04 0.12 0.89 0.15 0.74 119
Prob 180.42 1616 0.11 0.14 093 0.12 1.02 1.19
DART  Ave Split 362.53 4076 0.04 0.09 1.00 0.03 0.30 0.65
Prob 362.53 4076 0.16 0.19 1.00 0.03 1.44 2.28
Avg Split 999.99 11057 0.35 0.22 1.00 0.00 3.90 3.93
Prob 999.99 11057 0.61 0.19 1.00 0.00 10.90 7.76
Avg Split 160.78 1768 0.00 0.00 068 0.22 1.60 112
Prob 160.78 17.68  0.34 0.13 0.95 0.10 2.98 157
BART  Ave Split 376.98 2379 0.02 0.06 082 0.15 0.98 0.84
Prob 376.98 2379 035 017 099 0.05 3.30 2.50
Avg Split 151324 14672 0.00 0.00 097 0.08 0.16 0.42
Prob 151324 146.72 002 0.06 1.00 0.00 0.14 0.35
SSLASSO 0.88 0.15 0.00 0.00  0.64 0.08 1.82 0.39
SIS 51.47 1939 0.22 017 078 0.08 2.44 173
Horseshoe Prior 195896 41852 0.00 0.00 080 0.00 1.00 0.00
LASSO 1.06 0.45 0.78 008 080 0.00 17.96 7.5
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Table 5: Forest Setup: BART and DART are implemented using Prob (median probability
model) rule or Avg Split (truncating the importance measure at 1)

p = 1000
Method g‘r’:;‘b’fffpnce M Mean Time SD Time Mean FDP  SD FDP  Mean Power SD Power Mean Ham  SD Ham
YES 100 15.90 1003 0.00 0.00 1.00 0.00 0.00 0.00
NO 100 42.05 3.87 0.03 0.06 1.00 0.00 0.16 0.37
v YES 500 5171 3899 0.00 0.00 1.00 0.00 0.00 0.00
NO 500 135.51 1220 0.04 0.07 1.00 0.00 0.26 0.44
YES 1000 96.23 7536 0.01 0.05 1.00 0.00 0.08 0.34
NO 1000 252.49 2241 005 0.09 1.00 0.00 0.34 0.56
Avg Split/ Prob
Avg Split 30.14 2.91 0.00 0.00 0.99 0.04 0.04 0.20
Prob 30.14 2.91 0.00 0.02 1.00 0.00 0.02 0.14
DART  Ave Split 68.50 7.06 0.07 0.09 1.00 0.00 0.42 0.61
Prob 68.50 7.06 0.17 0.15 1.00 0.00 1.22 1.20
Avg Split 229.58 3254 032 0.14 1.00 0.00 2.68 1.58
Prob 229.58 3254 042 0.14 1.00 0.00 4.10 1.99
Avg Split 28.86 3.59 0.01 0.05 1.00 0.00 0.06 0.31
Prob 28.86 3.59 0.25 0.14 1.00 0.00 1.96 1.38
BART  Ave Split 69.29 8.55 0.02 0.06 1.00 0.00 0.14 0.35
Prob 69.29 8.55 0.39 0.18 1.00 0.00 3.94 2.87
Avg Split 270.18 2070 0.03 0.06 1.00 0.00 0.18 0.39
Prob 270.18 2070 051 0.10 1.00 0.00 5.72 2.19
SSLASSO 0.22 0.04 0.00 0.00 1.00 0.00 0.00 0.00
SIS 18.24 3.05 0.13 0.12 1.00 0.00 0.84 0.84
Horseshoe Prior 521.76 6215 0.00 0.00 1.00 0.00 0.00 0.00
LASSO 0.63 0.07 0.25 0.12 1.00 0.00 2.04 2.55
p=10000
YES 100 36.15 9.08 0.00 0.00 0.84 0.24 0.82 121
NO 100 54.64 6.00 0.00 0.00 0.98 0.05 0.08 0.27
tvg  YES 500 81.83 13.00  0.00 0.00 0.97 0.08 0.14 0.40
NO 500 151.05 1424 0.00 0.00 1.00 0.00 0.00 0.00
YES 1000 13271 3125 0.00 0.00 0.98 0.05 0.08 0.27
NO 1000 271.24 2454 001 0.03 1.00 0.00 0.04 0.20
Avg Split/ Prob
Avg Split 179.51 1296 0.00 0.00 0.94 0.10 0.30 0.51
Prob 179.51 1296 0.02 0.06 0.98 0.07 0.24 0.48
DART  Ave Split 388.44 3099 0.5 0.14 1.00 0.00 1.10 115
Prob 388.44 3099 041 0.13 1.00 0.00 3.80 1.80
Avg Split 1260.70  157.27  0.69 0.09 1.00 0.00 12.06 3.77
Prob 1260.70  157.27 081 0.05 1.00 0.00 22.90 6.39
Avg Split 161.10 1741 0.00 0.00 0.75 0.17 1.24 0.85
Prob 161.10 1741 0.28 0.17 0.99 0.05 2.42 1.87
BART  Ave Split 384.74 4236 0.02 0.05 0.96 0.12 0.32 0.62
Prob 384.74 4236 0.38 0.15 1.00 0.00 3.50 2.07
Avg Split 152633 176.86  0.00 0.00 1.00 0.03 0.02 0.14
Prob 1526.33  176.86  0.09 0.12 1.00 0.00 0.60 0.86
SSLASSO 115 0.35 0.00 0.00 0.90 0.15 0.52 0.74
SIS 1250 1798 0.26 0.16 1.00 0.00 2.06 172
Horseshoe Prior 507345 49590 0.00 0.00 1.00 0.00 0.00 0.00
LASSO 3.94 0.45 0.30 0.19 1.00 0.00 3.46 5.71
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C.2 Online Cases

In Table 6, we report convergence diagnostics of the simulation from Section 6.2, where the
convergence criterion is chosen as “S; stays the same for 100 consecutive TVS iterations”.
Table 7,9,11 and 13 report the results with 10000, comparing TVS with BART. These
results show that TVS at the very least highly competitive with DART in terms of Hamming
distance but offers vast computational benefits compared to BART and DART. Tables 8,
10,12 and 14 report TVS results with n = 50000 and n = 100000. We could not run
BART on these large datasets and thereby we report only on TVS.

Friedman Forest Linear Liang

Mean SD Mean SD Mean SD  Mean SD
500 500 940 274 656 1.16 9.40 2.74 10.00 1.60
1000 500 832 132 6.06 024 832 132 854 1.31

n M S

10000 500 1000 23.46 7.99 13.64 294 2346 7.99 18.14 3.83
1000 100 21.14 7.15 1244 2.15 21.14 7.15 15.58 2.92
500 500 242 0.76 2.00 0.00 242 076 228 045
50000 1000 500 214 035 2.00 0.00 214 035 212 0.33
500 1000 494 1.75 3.10 036 494 1.75 4.04 083
1000 100 4.10 1.25 3.08 0.27 4.10 1.25 348 0.71
500 500 1.20 0.45 1.00 0.00 1.22 046 1.38 049
100000 1000 500 1.18 0.39 1.00 0.00 1.18 039 1.10 0.30

500 1000 2.72  0.73 2.04 020 274 0.72 224 048
1000 100 2.66 0.87 2.04 020 264 088 214 0.35

Table 6: The table records the number of rounds needed for TVS to converge in the simulation
study in Section 6.2.

In addition to the results shown in Section 6.2, we tried a different number of trees D
for DART and BART. We also considered a different variable selection rule, i.e. the Median
Probability Model using the inclusion probability of BART and DART (as mentioned in
Linero (2018)). Due to space constraints, we showed only the best settings for BART and
DART in Section 6.2. Now we present additional simulation results for n = 50000 and
n = 100000. Since BART and DART cannot be run with such large n, we only show the
results for TVS.
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Table 7: Linear Setup with n = 10000, BART and DART are implemented using Prob
(median probability model) rule or Avg Split (truncating the importance measure at 1);
s is the batch size, r is the number of rounds and M is the number of internal MCMC
iterations in TVS.

Method M S r Mean Time SD Time Mean FDR SD FDR Mean Power SD Power Mean Ham SD Ham
500 500  Till Converge 52.80 12.24 0.00 0.02 1.00 0.00 0.02 0.14
500 500 1 8.33 1.21 0.00 0.00 0.96 0.09 0.18 0.44
500 500 5 40.29 5.31 0.00 0.00 1.00 0.00 0.00 0.00
500 500 10 79.77 10.26 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 88.68 11.37 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 1 14.79 1.95 0.00 0.00 0.98 0.05 0.08 0.27
1000 500 5 73.30 9.15 0.00 0.00 1.00 0.00 0.00 0.00
VS 1000 500 10 145.98 18.12 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 91.11 23.10 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 1 6.42 1.01 0.03 0.09 0.69 0.19 1.68 1.00
500 1000 5 33.02 5.05 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 10 66.82 9.69 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 Till Converge 152.94 33.50 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 1 11.15 1.61 0.02 0.05 0.83 0.15 0.94 0.77
1000 1000 5 60.73 8.66 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 10 122.70 16.98 0.00 0.02 1.00 0.00 0.02 0.14
Avg Split
b /Prob
10 Avg Split 67.86 11.51 0.00 0.02 0.98 0.06 0.12 0.33
10 Prob 196.43 43.41 0.00 0.00 1.00 0.00 0.00 0.00
DART 50 Avg Split 12.77 2.04 0.15 0.25 0.45 0.18 3.30 1.49
50 Prob 196.80 43.34 0.00 0.00 1.00 0.00 0.00 0.00
200  Avg Split 61.14 9.85 0.00 0.00 0.94 0.10 0.30 0.51
200  Prob 196.89 43.85 0.00 0.00 1.00 0.00 0.00 0.00
10 Avg Split 125.31 19.75 0.00 0.02 0.98 0.05 0.10 0.30
10 Prob 949.38 128.93 0.63 0.06 1.00 0.00 9.00 2.18
BART 50 Avg Split 1715.54 218.52 0.37 0.13 1.00 0.00 3.32 1.66
50 Prob 1715.54 218.52 0.66 0.06 1.00 0.00 10.26 2.95
200  Avg Split 5717.13 529.43 0.29 0.14 1.00 0.00 2.36 1.43
200  Prob 5717.13 529.43 0.73 0.06 1.00 0.00 14.38 3.76
SSLASSO 9.40 0.93 0.00 0.02 1.00 0.00 0.02 0.14
Alpha 4.98 0.17 0.04 0.09 1.00 0.00 0.28 0.61
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Table 8: Linear Setup with n = 50000 and n = 100 000; s is the batch size, r is the number
of rounds and M is the number of internal MCMC iterations in TVS.

n = 50000

Method M s r Mean Time SD Time Mean FDR SD FDR Mean Power SD Power Mean Ham SD Ham
500 500  Till Converge 89.20 31.75 0.00 0.00 0.82 0.07 0.92 0.34
500 500 1 37.34 5.51 0.04 0.08 0.76 0.11 1.38 0.64
500 500 5 181.80 26.01 0.00 0.00 0.88 0.10 0.60 0.49
500 500 10 364.25 51.93 0.00 0.00 0.96 0.08 0.18 0.39
1000 500  Till Converge 140.49 31.04 0.00 0.00 0.80 0.03 0.98 0.14
1000 500 1 66.15 9.06 0.00 0.00 0.76 0.08 1.22 0.42
1000 500 5 326.66 43.50 0.00 0.00 0.88 0.10 0.60 0.49

VS 1000 500 10 656.69 85.25 0.00 0.00 0.97 0.07 0.16 0.37
500 1000 Till Converge 150.23 63.39 0.09 0.08 0.96 0.08 0.70 0.46
500 1000 1 29.93 4.74 0.08 0.11 0.76 0.13 1.56 0.76
500 1000 5 151.28 21.95 0.09 0.08 0.98 0.05 0.60 0.49
500 1000 10 304.49 43.17 0.14 0.07 1.00 0.03 0.84 0.42
1000 1000 Till Converge 220.03 65.18 0.02 0.05 0.96 0.08 0.30 0.46
1000 1000 1 53.29 7.90 0.04 0.08 0.81 0.14 1.14 0.67
1000 1000 5 270.67 37.17 0.02 0.05 0.99 0.04 0.14 0.35
1000 1000 10 545.72 72.54 0.02 0.06 1.00 0.00 0.14 0.35

n = 100000

500 500  Till Converge 93.14 39.67 0.00 0.02 0.82 0.07 0.92 0.34
500 500 1 76.60 12.54 0.00 0.02 0.81 0.06 0.96 0.28
500 500 5 379.48 58.92 0.00 0.00 0.99 0.05 0.06 0.24
500 500 10 764.01 116.22 0.00 0.00 1.00 0.03 0.02 0.14
1000 500  Till Converge 159.10 55.08 0.00 0.00 0.80 0.06 1.00 0.29
1000 500 1 135.46 19.98 0.00 0.00 0.79 0.04 1.04 0.20
1000 500 5 677.18 98.13 0.00 0.00 0.95 0.09 0.26 0.44

VS 1000 500 1(? 1363.99 200.85 0.00 0.00 0.99 0.05 0.06 0.24
500 1000 Till Converge 173.36 60.13 0.07 0.08 0.97 0.07 0.58 0.57
500 1000 1 62.23 10.77 0.06 0.09 0.84 0.13 1.12 0.77
500 1000 5 315.53 51.68 0.13 0.07 1.00 0.00 0.78 0.42
500 1000 10 635.09 102.95 0.15 0.05 1.00 0.00 0.92 0.27
1000 1000 Till Converge 293.65 96.59 0.01 0.04 0.98 0.05 0.14 0.35
1000 1000 1 111.14 18.43 0.01 0.05 0.90 0.11 0.60 0.61
1000 1000 5 566.08 85.57 0.03 0.06 1.00 0.00 0.18 0.39
1000 1000 10 1140.65 166.47 0.09 0.08 1.00 0.00 0.52 0.50
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Table 9: Liang Setup with n = 10000, BART and DART are implemented using Prob
(median probability model) rule or Avg Split (truncating the importance measure at 1);
s is the batch size, r is the number of rounds and M is the number of internal MCMC
iterations in TVS.

Method M S r Mean Time SD Time Mean FDR SD FDR Mean Power SD Power Mean Ham SD Ham
500 500  Till Converge 80.68 18.66 0.00 0.02 0.99 0.04 0.06 0.24
500 500 1 9.16 1.55 0.02 0.08 0.38 0.14 3.12 0.75
500 500 5 39.81 6.38 0.00 0.00 0.92 0.11 0.40 0.57
500 500 10 79.97 12.62 0.00 0.00 0.99 0.05 0.06 0.24
1000 500  Till Converge 125.43 30.63 0.00 0.00 0.99 0.05 0.06 0.24
1000 500 1 15.31 2.49 0.01 0.07 0.53 0.18 2.40 0.93
1000 500 5 72.52 10.90 0.00 0.00 0.97 0.07 0.14 0.35
VS 1000 500 10 146.75 21.39 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 124.65 37.15 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 1 7.53 1.33 0.23 0.25 0.34 0.15 4.04 1.14
500 1000 5 33.59 5.93 0.00 0.02 0.84 0.14 0.80 0.70
500 1000 10 67.86 11.51 0.00 0.02 0.98 0.06 0.12 0.33
1000 1000 Till Converge 196.43 43.41 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 1 12.77 2.04 0.15 0.25 0.45 0.18 3.30 1.49
1000 1000 5 61.14 9.85 0.00 0.00 0.94 0.10 0.30 0.51
1000 1000 10 125.31 19.75 0.00 0.02 0.98 0.05 0.10 0.30
Avg Split
b /Prob
10 Avg Split 965.45 151.88 0.85 0.05 0.58 0.18 19.10 3.31
10 Prob 965.45 151.88 0.87 0.04 0.58 0.18 22.90 4.07
DART 50 Avg Split 1647.39 110.13 0.55 0.18 0.98 0.05 7.76 4.63
50 Prob 1647.39 110.13 0.67 0.14 0.98 0.05 11.86 5.27
200  Avg Split 4695.72 626.39 0.27 0.19 1.00 0.00 2.48 2.60
200  Prob 4695.72 626.39 0.42 0.20 1.00 0.00 5.18 5.29
10 Avg Split 1525.58 221.31 0.71 0.07 1.00 0.00 13.22 3.77
10 Prob 1525.58 221.31 0.91 0.01 1.00 0.00 48.66 6.26
BART 50 Avg Split 2315.53 294.10 0.71 0.07 1.00 0.00 13.34 4.35
50 Prob 2315.53 294.10 0.91 0.01 1.00 0.00 52.74 9.04
200  Avg Split 5801.02 605.46 0.74 0.05 1.00 0.00 15.34 3.92
200  Prob 5801.02 605.46 0.90 0.01 1.00 0.00 46.92 6.89
SSLASSO 16.14 1.64 0.00 0.00 0.60 0.00 2.00 0.00
Alpha 4.91 0.66 0.00 0.00 0.62 0.05 1.92 0.27

24



Table 10: Liang Setup with n = 50000 and n = 100 000; s is the batch size, r is the number
of rounds and M is the number of internal MCMC iterations in TVS.

n = 50000

Method M S T Mean Time SD Time Mean FDR SD FDR Mean Power SD Power Mean Ham SD Ham
500 500  Till Converge 92.32 20.87 0.00 0.00 0.99 0.05 0.06 0.24
500 500 1 40.68 6.15 0.00 0.00 0.90 0.13 0.52 0.65
500 500 5 203.82 29.86 0.00 0.00 1.00 0.00 0.00 0.00
500 500 10 410.74 59.11 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 157.52 33.75 0.00 0.00 0.98 0.07 0.08 0.34
1000 500 1 73.48 10.50 0.00 0.00 0.96 0.10 0.20 0.49
1000 500 5 376.54 51.66 0.00 0.00 1.00 0.00 0.00 0.00

VS 1000 500 10 759.76 103.03 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 139.35 33.68 0.00 0.00 0.99 0.05 0.06 0.24
500 1000 1 33.99 5.70 0.00 0.00 0.82 0.16 0.88 0.82
500 1000 5 172.82 26.65 0.00 0.02 1.00 0.03 0.04 0.20
500 1000 10 348.24 53.31 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 Till Converge 221.64 57.18 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 1 61.49 10.03 0.00 0.00 0.96 0.08 0.20 0.40
1000 1000 5 320.88 47.84 0.01 0.03 1.00 0.00 0.04 0.20
1000 1000 10 649.88 92.55 0.00 0.02 1.00 0.00 0.02 0.14

n = 100000

500 500  Till Converge 120.82 49.24 0.00 0.00 0.99 0.04 0.04 0.20
500 500 1 86.77 13.57 0.00 0.00 0.99 0.05 0.06 0.24
500 500 5 438.57 66.16 0.00 0.00 1.00 0.00 0.00 0.00
500 500 10 883.47 129.33 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 175.25 59.12 0.00 0.00 0.99 0.04 0.04 0.20
1000 500 1 158.25 22.10 0.00 0.00 0.99 0.04 0.04 0.20
1000 500 5 807.36 109.70 0.00 0.00 1.00 0.00 0.00 0.00

VS 1000 500 1(? 1625.51 219.19 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 167.40 46.18 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 1 74.04 11.86 0.01 0.03 0.98 0.06 0.14 0.35
500 1000 5 374.54 56.43 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 10 752.86 112.17 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 Till Converge 293.39 68.52 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 1 134.11 20.44 0.00 0.00 0.98 0.05 0.08 0.27
1000 1000 5 690.95 96.24 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 10 1380.91 192.17 0.00 0.00 1.00 0.00 0.00 0.00
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Table 11: Friedman Setup with n = 10000, BART and DART are implemented using Prob
(median probability model) rule or Avg Split (truncating the importance measure at 1);
s is the batch size, r is the number of rounds and M is the number of internal MCMC
iterations in TVS.

Method M S r Mean Time SD Time Mean FDR SD FDR Mean Power SD Power Mean Ham SD Ham
500 500  Till Converge 46.26 6.71 0.00 0.00 1.00 0.00 0.00 0.00
500 500 1 7.42 0.50 0.00 0.00 0.94 0.10 0.32 0.51
500 500 5 35.04 2.46 0.00 0.00 1.00 0.00 0.00 0.00
500 500 10 69.44 5.05 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 80.81 6.85 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 1 13.08 1.01 0.00 0.00 0.98 0.06 0.10 0.30
1000 500 5 65.29 4.65 0.00 0.00 1.00 0.00 0.00 0.00
VS 1000 500 10 129.90 9.27 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 110.23 41.32 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 1 6.46 0.50 0.07 0.12 0.86 0.15 1.08 1.16
500 1000 5 32.55 2.33 0.01 0.04 1.00 0.00 0.06 0.24
500 1000 10 65.30 4.27 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 Till Converge 181.50 50.55 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 1 11.51 0.87 0.04 0.08 0.94 0.11 0.56 0.70
1000 1000 5 60.74 4.40 0.00 0.02 1.00 0.03 0.04 0.20
1000 1000 10 122.46 8.51 0.00 0.00 1.00 0.00 0.00 0.00
Avg Split
b /Prob
10 Avg Split 1022.94 194.68 0.72 0.16 0.89 0.12 15.62 7.70
10 Prob 1022.94 194.68 0.80 0.08 0.90 0.12 21.00 7.48
DART 50 Avg Split 1442.99 136.58 0.02 0.05 1.00 0.00 0.12 0.33
50 Prob 1442.99 136.58 0.08 0.14 1.00 0.00 0.66 1.61
200  Avg Split 4939.07 788.75 0.00 0.00 1.00 0.00 0.00 0.00
200  Prob 4939.07 788.75 0.01 0.05 1.00 0.00 0.06 0.31
10 Avg Split 1751.38 274.31 0.80 0.06 1.00 0.00 21.70 6.53
10 Prob 1751.38 274.31 0.89 0.02 1.00 0.00 43.30 9.50
BART 50 Avg Split 1861.83 229.61 0.24 0.13 1.00 0.00 1.80 1.20
50 Prob 1861.83 229.61 0.57 0.11 1.00 0.00 7.44 3.47
200  Avg Split 6009.07 892.87 0.21 0.14 1.00 0.00 1.56 1.26
200  Prob 6009.07 892.87 0.70 0.08 1.00 0.00 12.54 4.08
SSLASSO 16.75 2.62 0.00 0.00 0.80 0.00 1.00 0.00
Alpha 4.96 0.91 0.03 0.08 0.81 0.05 1.10 0.51
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Table 12: Friedman Setup with n = 50000 and n = 100000; s is the batch size, r is the
number of rounds and M is the number of internal MCMC iterations in TVS.

n = 50000

Method M S T Mean Time SD Time Mean FDR SD FDR Mean Power SD Power Mean Ham SD Ham
500 500  Till Converge 71.12 8.71 0.00 0.00 1.00 0.00 0.00 0.00
500 500 1 35.49 3.52 0.00 0.00 1.00 0.00 0.00 0.00
500 500 5 174.43 16.98 0.00 0.02 1.00 0.00 0.02 0.14
500 500 10 347.30 35.24 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 130.57 13.44 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 1 65.60 6.82 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 5 324.83 33.21 0.00 0.00 1.00 0.00 0.00 0.00

VS 1000 500 10 647.04 65.02 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 122.22 45.41 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 1 32.26 3.27 0.01 0.03 1.00 0.00 0.04 0.20
500 1000 5 162.98 16.85 0.00 0.02 1.00 0.00 0.02 0.14
500 1000 10 325.19 32.44 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 Till Converge 227.68 73.92 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 1 60.99 7.37 0.00 0.02 1.00 0.03 0.04 0.20
1000 1000 5 307.25 31.56 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 10 612.30 60.46 0.00 0.02 1.00 0.00 0.02 0.14

n = 100000

500 500  Till Converge 70.27 6.16 0.00 0.00 1.00 0.00 0.00 0.00
500 500 1 70.27 6.16 0.00 0.00 1.00 0.00 0.00 0.00
500 500 5 344.26 28.89 0.00 0.00 1.00 0.00 0.00 0.00
500 500 10 680.12 48.41 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 127.92 9.35 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 1 127.92 9.35 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 5 635.11 46.23 0.00 0.00 1.00 0.00 0.00 0.00

VS 1000 500 10 1266.57 94.32 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 160.84 45.59 0.01 0.05 1.00 0.00 0.08 0.27
500 1000 1 63.31 4.11 0.01 0.03 1.00 0.00 0.04 0.20
500 1000 5 316.52 20.79 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 10 633.90 37.48 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 Till Converge 272.04 68.80 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 1 119.85 7.15 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 5 599.73 35.98 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 10 1192.89 68.52 0.00 0.02 1.00 0.00 0.02 0.14
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Table 13: Forest Setup with n = 10000, BART and DART are implemented using Prob
(median probability model) rule or Avg Split (truncating the importance measure at 1);
s is the batch size, r is the number of rounds and M is the number of internal MCMC
iterations in TVS.

Method M S r Mean Time SD Time Mean FDR SD FDR Mean Power SD Power Mean Ham SD Ham
500 500  Till Converge 52.80 12.24 0.00 0.02 1.00 0.00 0.02 0.14
500 500 1 8.33 1.21 0.00 0.00 0.96 0.09 0.18 0.44
500 500 5 40.29 5.31 0.00 0.00 1.00 0.00 0.00 0.00
500 500 10 79.77 10.26 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 88.68 11.37 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 1 14.79 1.95 0.00 0.00 0.98 0.05 0.08 0.27
1000 500 5 73.30 9.15 0.00 0.00 1.00 0.00 0.00 0.00
VS 1000 500 10 145.98 18.12 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 91.11 23.10 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 1 6.42 1.01 0.03 0.09 0.69 0.19 1.68 1.00
500 1000 5 33.02 5.05 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 10 66.82 9.69 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 Till Converge 152.94 33.50 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 1 11.15 1.61 0.02 0.05 0.83 0.15 0.94 0.77
1000 1000 5 60.73 8.66 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 10 122.70 16.98 0.00 0.02 1.00 0.00 0.02 0.14
Avg Split
b /Prob
10 Avg Split 509.13 65.73 0.13 0.13 0.93 0.10 1.14 1.14
10 Prob 509.13 65.73 0.14 0.14 0.93 0.10 1.22 1.17
DART 50 Avg Split 1132.98 190.56 0.16 0.16 1.00 0.00 1.18 1.34
50 Prob 1132.98 190.56 0.32 0.16 1.00 0.00 2.78 1.80
200  Avg Split 4028.27 931.10 0.59 0.09 1.00 0.00 7.76 2.92
200  Prob 4028.27 931.10 0.68 0.07 1.00 0.00 11.18 3.35
10 Avg Split 1099.59 270.16 0.34 0.16 1.00 0.00 3.08 1.91
10 Prob 1099.59 270.16 0.68 0.05 1.00 0.00 11.14 2.60
BART 50 Avg Split 1857.85 280.43 0.47 0.15 1.00 0.00 5.08 2.30
50 Prob 1857.85 280.43 0.82 0.03 1.00 0.00 23.26 3.86
200  Avg Split 5620.33 847.79 0.83 0.03 1.00 0.00 25.50 4.81
200  Prob 5620.33 847.79 0.91 0.01 1.00 0.00 53.72 6.32
SSLASSO 1.26 0.16 0.00 0.00 1.00 0.00 0.00 0.00
Alpha 5.03 1.08 0.11 0.13 1.00 0.00 0.78 1.02
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Table 14: Forest Setup with n = 50000 and n = 100000; s is the batch size, r is the
number of rounds and M is the number of internal MCMC iterations in TVS.

n = 50000

Method M S T Mean Time SD Time Mean FDR SD FDR Mean Power SD Power Mean Ham SD Ham
500 500  Till Converge 90.28 13.28 0.00 0.00 1.00 0.00 0.00 0.00
500 500 1 45.60 6.80 0.00 0.00 1.00 0.00 0.00 0.00
500 500 5 224.06 32.44 0.00 0.00 1.00 0.00 0.00 0.00
500 500 10 446.61 63.34 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 163.70 22.66 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 1 82.49 11.65 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 5 408.11 55.52 0.00 0.00 1.00 0.00 0.00 0.00

VS 1000 500 10 812.39 111.83 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 117.99 23.19 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 1 37.73 6.62 0.00 0.02 0.99 0.04 0.06 0.24
500 1000 5 189.66 30.05 0.00 0.02 1.00 0.00 0.02 0.14
500 1000 10 377.06 60.06 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 Till Converge 211.24 31.96 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 1 68.27 11.64 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 5 341.68 54.73 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 10 676.40 105.33 0.00 0.02 1.00 0.00 0.02 0.14

n = 100000

500 500  Till Converge 81.54 11.43 0.00 0.00 1.00 0.00 0.00 0.00
500 500 1 81.54 11.43 0.00 0.00 1.00 0.00 0.00 0.00
500 500 5 398.59 49.39 0.00 0.00 1.00 0.00 0.00 0.00
500 500 10 796.94 98.24 0.00 0.00 1.00 0.00 0.00 0.00
1000 500  Till Converge 146.05 17.39 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 1 146.05 17.39 0.00 0.00 1.00 0.00 0.00 0.00
1000 500 5 718.56 79.50 0.00 0.00 1.00 0.00 0.00 0.00

VS 1000 500 1(? 1457.97 130.28 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 Till Converge 142.28 20.80 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 1 69.61 8.27 0.00 0.02 1.00 0.00 0.02 0.14
500 1000 5 348.10 37.10 0.00 0.00 1.00 0.00 0.00 0.00
500 1000 10 692.50 72.61 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 Till Converge 256.28 40.84 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 1 125.82 14.09 0.00 0.02 1.00 0.00 0.02 0.14
1000 1000 5 622.97 59.21 0.00 0.00 1.00 0.00 0.00 0.00
1000 1000 10 1251.07 133.65 0.00 0.00 1.00 0.00 0.00 0.00
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D Additional Results for the HIV Dataset

In this section, we show additional results on the analysis of the HIV dataset. First,

we present some basic statistics about the data. The entire data comes from Stanford
HIV Drug Resistance Database. The raw data can be downloaded from https://hivdb.
stanford.edu/pages/published_analysis/genophenoPNAS2006/. Barber et al. (2015)
published cleaning codes (available at https://web.stanford.edu/group/candes/knockoffs/
software/knockoffs/tutorial-4-r.html) which we adopt. We provide a basic overview

of the dataset in Table 15.

HIV Virus Life Cycle Drug Class Mean Log DS Number of Mutations Number of Samples

APV 0.75 201 767
ATV 1.59 147 328
IDV 1.33 206 825
PI LPV 1.74 184 515
NFV 2.00 207 842
RTV 1.72 205 793
sQv 1.22 206 824
X3TC 3.10 283 629
ABC 1.14 283 623
AZT 1.55 283 626
NRTI DAT 0.43 281 625
DDI 0.43 283 628
TDF 0.22 215 351
DLV 0.08 305 730
NNRTI EFV 1.08 312 732
NVP 1.80 313 744

Table 15: Basic summary statistics of the HIV dataset. DS refers to the decrease in
susceptibility of the drug once the mutations has occurred.

In Section 7.1, we illustrated TVS on only the drug LPV. Here, we present the rest
of the results. As is done in Barber et al. (2015), we record both the number of verified
positions discovered (True Discoveries) and the number of discovered unverified positions
(False Discoveries) for each of the five methods.

30



Table 16: PI Drugs

Methods Knockoff LASSO DART SSLASSO TVS
APV

True Discoveries 19 20 16 8 18

False Discoveries 3 3 0 0 1
ATV

True Discoveries 22 29 19 6 20

False Discoveries 8 20 0 0 0
IDV

True Discoveries 19 28 18 5 17

False Discoveries 12 24 3 0 4
LPV

True Discoveries 16 30 15 4 17

False Discoveries 1 22 1 0 1
NFV

True Discoveries 21 23 19 6 20

False Discoveries 2 2 2 0 3
RTV

True Discoveries 19 34 16 4 18

False Discoveries 8 29 4 0 3
SQV

True Discoveries 17 22 17 5 17

False Discoveries 4 8 1 0 2

Table 17: NRTI Drugs

Methods Knockoff LASSO DART SSLASSO TVS
ABC

True Discoveries 10 15 10 11 14

False Discoveries 7 4 3 6
AZT

True Discoveries 16 23 15 5 18

False Discoveries 4 51 5 0 8
D4T

True Discoveries 6 13 13 12 13

False Discoveries 1 2 5 4 6
DDI

True Discoveries 0 23 11 17 12

False Discoveries 0 34 6 7 6
TDF

True Discoveries 0 13 14 7 12

False Discoveries 0 9 7 1 6
X3TC

True Discoveries 0 14 11 1 11

False Discoveries 0 8 4 0
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Table 18: NNRTT Drugs

Methods Knockoff LASSO DART SSLASSO TVS
DLV

True Discoveries 10 11 9 3 9

False Discoveries 14 31 6 1 9
EFV

True Discoveries 11 14 10 5 11

False Discoveries 11 83 5 0 6
NVP

True Discoveries 7 14 8 6 9

False Discoveries 10 87 6 0 11
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E Details ont the Marketing Data

Summary of Predictor Variables

Name Indicator | Mean | Sd Max Min Skewness
mail indicator 0.50 NA NA NA NA
largest sale amount 169.02 | 286.77 | 7999.99 | -3999.99 | 4.63
count of product categories that make up 20% or more of total sales 2.15 0.37 4.00 2.00 2.10
number of months since first esp or first esp return 30.14 | 16.05 | 60.00 2.00 0.17
number of months since most recent esp purchase or return 23.00 | 14.22 | 60.00 2.00 0.60
day of first purchase: weekend day 0.37 NA NA NA NA
day of first purchase: weekday day 0.63 NA NA NA NA
total number of sales in previous 12 months 5.09 4.76 189.00 2.00 5.79
total number of sales in previous 24 months 5.95 6.16 270.00 2.00 6.23
total number of sales in previous 36 months 6.53 7.10 344.00 2.00 6.44
total number of large ticket items in previous 12 months 2.37 0.94 21.00 2.00 6.95
total number of large ticket items in previous 24 months 2.50 1.08 32.00 2.00 5.79
total number of large ticket items in previous 36 months 2.58 1.24 46.00 2.00 6.94
total number of large ticket items in previous 60 months 2.80 1.47 50.00 -1.00 5.37
total number of medium ticket items in previous 12 months 3.06 1.92 46.00 2.00 4.62
total number of medium ticket items in previous 24 months 3.43 2.49 81.00 2.00 5.10
total number of medium ticket items in previous 36 months 3.71 2.90 124.00 2.00 5.48
total number of medium ticket items in previous 60 months 4.36 3.68 198.00 2.00 6.39
total number of small ticket items in previous 12 months 4.49 7.83 507.00 2.00 34.98
total number of small ticket items in previous 24 months 5.14 10.18 | 667.00 2.00 29.59
total number of small ticket items in previous 36 months 5.54 10.73 | 667.00 2.00 25.12
total number of small ticket items in previous 60 months 6.55 12.73 | 673.00 2.00 20.36

total sales amount in previous 12 months 524.90 | 766.12 | 18380.40 | -437.80 | 4.31

total sales amount in previous 24 months 650.24 | 935.70 | 33664.26 | -250.01 | 4.36

(== Ren] Hen) fen) fen) fen) fen) o) Ren) Fen) fen) fen] H o) J o) o) o) fol o) o) fol fo] ol o] ol ol =] k=] =] =] o] o] o] o] o) o] o] ko] o] o] =] =] o] fo] o] f] fo] f] Jw] Jw)l S Lol k=] k=] K] Kl i

count of unique categories in previous 12 months 2.94 1.28 12.00 2.00 1.78
count of unique categories in previous 24 months 3.15 1.47 12.00 2.00 1.62
count of unique class numbers in previous 12 months 4.13 2.84 55.00 2.00 3.00
count of unique class numbers in previous 24 months 4.74 3.58 60.00 2.00 3.00
percent gift cards category sales of total sales 0.09 0.13 1.03 0.00 3.22
percent home ins category sales of total sales 0.02 0.05 0.42 0.00 4.48
percent imaging category sales of total sales 0.29 0.28 1.00 -0.20 1.08
percent mobile category sales of total sales 0.35 0.26 1.00 -0.03 0.60
percent music category sales of total sales 0.18 0.21 1.00 0.00 1.72
percent other category sales of total sales 0.36 0.33 0.99 0.01 0.63
percent pc hardware category sales of total sales 0.50 0.30 1.49 -2.88 -0.02
percent pst category sales of total sales 0.17 0.19 1.11 -0.49 1.89
percent tv category sales of total sales 0.40 0.29 1.00 -0.03 0.38
percent ver category sales of total sales 0.29 0.25 3.13 -0.16 1.04
percent wireless category sales of total sales 0.24 0.24 1.45 -0.06 1.26
percent audio category sales of total sales 0.24 0.24 1.12 -0.08 1.17
percent dss category sales of total sales 0.32 0.28 1.00 0.00 0.94
largest return amount 176.57 | 273.43 | 4999.99 | -2699.99 | 4.14
number of months since oldest return 26.20 | 15.33 | 56.00 2.00 0.28
number of months since most recent return 20.61 | 13.93 | 56.00 2.00 0.67
number of distinct merchandise classes returned 2.35 0.78 11.00 2.00 3.61
total return amount in previous 12 months 301.28 | 530.07 | 24926.85 | 0.01 10.03
total return amount in previous 24 months 326.14 | 584.04 | 31826.61 | 0.01 12.74
total number of items returned in previous 12 months 3.16 2.87 100.00 2.00 17.05
total number of items returned in previous 24 months 3.40 5.50 527.00 2.00 63.78
number of months shopped once in previous 12 months 2.59 1.07 12.00 2.00 2.89
number of months shopped once in previous 24 months 3.01 1.67 24.00 2.00 3.19
count of unique purchase trips in previous 12 months 2.95 1.97 81.00 2.00 8.23
count of unique purchase trips in previous 24 months 341 2.74 126.00 2.00 8.76
total number of items purchased in previous 12 months 5.23 7.24 513.00 2.00 28.99
total number of items purchased in previous 24 months 6.17 9.55 672.00 2.00 24.33
total number of weekday items in previous 12 months 4.65 6.68 506.00 2.00 35.47
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Name Indicator | Mean | Sd Max Min Skewness
total number of weekend items in previous 12 months 0 4.15 5.18 403.00 2.00 40.58
total number of weekend items in previous 24 months 0 4.62 6.76 504.00 2.00 34.99
total christmas sales amount in previous 12 months 0 379.85 | 560.04 | 9877.93 | -660.00 | 4.33
total christmas sales amount in previous 24 months 0 430.10 | 611.41 | 10500.09 | -660.00 | 4.05
total christmas items in previous 12 months 0 4.13 6.63 506.00 2.00 44.49
total christmas items in previous 24 months 0 4.46 7.03 506.00 2.00 41.25
total amount of back to school sales in previous 12 months 0 396.37 | 619.21 | 10159.37 | -150.00 | 4.23
total amount of back to school sales in previous 24 months 0 416.13 | 623.76 | 10159.37 | -485.02 | 3.93
total amount of graduation sales in previous 12 months 0 376.62 | 564.66 | 13670.70 | -200.00 | 5.34
total amount of graduation sales in previous 24 months 0 405.84 | 585.14 | 13678.65 | -252.00 | 4.33
total spring sales amount in previous 12 months 0 381.35 | 567.06 | 13190.30 | -308.90 | 4.63
total spring sales amount in previous 24 months 0 421.00 | 612.91 | 13190.30 | -340.00 | 4.31
total summer sales amount in previous 12 months 0 407.91 | 623.00 | 13205.62 | -300.00 | 4.51
total summer sales amount in previous 24 months 0 439.29 | 643.85 | 17671.37 | -300.00 | 4.23
total autumn sales amount in previous 12 months 0 401.56 | 616.92 | 10650.45 | -437.80 | 4.12
total autumn sales amount in previous 24 months 0 447.43 | 663.93 | 11819.31 | -372.00 | 4.05
total winter sales amount in previous 24 months 0 453.60 | 645.40 | 13921.45 | -189.99 | 4.02
total spring items in previous 12 months 0 4.02 4.72 325.00 2.00 30.25
total spring items in previous 24 months 0 4.35 5.95 400.00 2.00 28.17
total summer items in previous 12 months 0 4.44 4.79 362.00 2.00 32.61
total summer items in previous 24 months 0 4.69 7.63 504.00 2.00 38.59
total autumn items in previous 12 months 0 4.20 7.47 501.00 2.00 41.44
total autumn items in previous 24 months 0 4.46 7.51 501.00 2.00 42.06
total winter items in previous 12 months 0 4.12 5.76 506.00 2.00 48.15
total winter items in previous 24 months 0 4.54 6.97 506.00 2.00 38.14
total count of back to school items in previous 12 months 0 4.29 5.38 362.00 2.00 38.67
total count of back to school items in previous 24 months 0 4.41 7.12 502.00 2.00 36.16
total count of graduation items in previous 12 months 0 4.15 3.83 190.00 2.00 14.61
total count of graduation items in previous 24 months 0 4.41 6.34 504.00 2.00 37.55
total number of net instore esps in previous 12 months 0 2.60 1.17 17.00 2.00 3.74
total number of net instore esps in previous 24 months 0 2.81 1.45 35.00 2.00 4.48
total number of net instore esps lifetime 0 3.14 1.98 43.00 2.00 4.09
avg term of all esps in previous 12 months 0 25.32 | 14.48 | 120.00 0.48 0.89
total number of returned instore esps in previous 12 months 0 2.55 1.19 14.00 2.00 4.00
total number of returned instore esps in previous 24 months 0 2.61 1.38 23.00 2.00 5.36
total number of returned instore esps lifetime 0 2.71 1.52 25.00 2.00 5.19
total items purchased during back to school gift guide 2002 promotion | 0 4.26 9.39 170.00 -1.00 15.76
total items purchased during bond 2002 promotion 0 3.97 9.15 307.00 -2.00 29.86
total items purchased during expo 2001 promotion 0 3.68 3.95 76.00 -2.00 11.07
total items purchased during holiday gift guide 2001 promotion 0 2.94 1.97 20.00 -2.00 3.43
total items purchased during holiday gift guide 2002 promotion 0 3.31 2.42 26.00 -1.00 3.36
total items purchased during holiday mailer 2001 promotion 0 3.59 2.22 18.00 -3.00 2.09
total items purchased during holiday mailer 2002 promotion 0 3.81 2.84 44.00 -3.00 4.20
promo_nov period: total sales 0 333.94 | 674.07 | 11633.21 | -111.09 | 5.97
total $ spent during bond 2002 promotion 0 338.26 | 526.43 | 6821.51 | -134.00 | 4.29
total § spent during expo 2001 promotion 0 366.73 | 570.37 | 6491.80 | -372.00 | 3.94
total $ spent during holiday mailer 2002 promotion 0 344.76 | 493.71 | 5639.97 | -165.00 | 3.85
total $ spent during holiday mailer promotions 0 366.64 | 498.45 | 5818.81 | -165.00 | 3.52
mailed in holiday 2001 mailer 1 0.18 NA NA NA NA
mailed in holiday 2002 mailer 1 0.20 NA NA NA NA
indicator of holiday gift guide 2002 promotion response 1 0.01 NA NA NA NA
indicator of back to school gift guide 2002 promotion response 1 0.01 NA NA NA NA
indicator of bond 2002 promotion response 1 0.01 NA NA NA NA
indicator of expo 2001 promotion response 1 0.01 NA NA NA NA
indicator of holiday gift guide 2001 promotion response 1 0.00 NA NA NA NA
indicator of holiday mailer 2001 promotion response 1 0.01 NA NA NA NA
indicator of holiday mailer 2002 promotion response 1 0.01 NA NA NA NA
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