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University of Chicago §
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This work affords new insights into Bayesian CART in the context of
structured wavelet shrinkage. The main thrust is to develop a formal infer-
ential framework for Bayesian tree-based regression. We reframe Bayesian
CART as a g-type prior which departs from the typical wavelet product pri-
ors by harnessing correlation induced by the tree topology. The practically
used Bayesian CART priors are shown to attain adaptive near rate-minimax
posterior concentration in the supremum norm in regression models. For the
fundamental goal of uncertainty quantification, we construct adaptive con-
fidence bands for the regression function with uniform coverage under self-
similarity. In addition, we show that tree-posteriors enable optimal inference
in the form of efficient confidence sets for smooth functionals of the regres-
sion function.

1. Introduction. The widespread popularity of Bayesian tree-based regression has
raised considerable interest in theoretical understanding of their empirical success. However,
theoretical literature on methods such as Bayesian CART and BART is still in its infancy. In
particular, statistical inferential theory for regression trees and forests (both frequentist and
Bayesian) has been severely under-developed.

This work sheds light on Bayesian CART [22, 25] which is a popular learning tool based
on ideas of recursive partitioning and which forms an integral constituent of BART [21].
Bayesian Additive Regression Trees (also known as BART) have emerged as one of today’s
most effective general approaches to predictive modeling under minimal assumptions. Their
empirical success has been amply illustrated in the context of non-parametric regression [21],
classification [49], variable selection [8, 48, 46], shape constrained inference [20], causal in-
ference [41, 40], to name a few. The BART model deploys an additive aggregate of individual
trees using Bayesian CART as its building block. While theory for random forests, the fre-
quentist counterpart, has seen numerous recent developments [64, 6, 56, 44, 63], theory for
Bayesian CART and BART has not kept pace with its application. With the first theoretical
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results (Hellinger convergence rates) emerging very recently [55, 47, 54], many fundamental
questions pertaining to, e.g., convergence in stronger losses such as the supremum norm, as
well as uncertainty quantification (UQ), have remained to be addressed. This work takes a
leap forward in this important direction by developing a formal frequentist statistical frame-
work for uncertainty quantification with confidence bands for Bayesian CART.

We first show that Bayesian CART reaches a (near-)optimal posterior convergence rate
under the supremum-norm loss, a natural loss for UQ of regression functions. Many methods
that are adaptive for the L2–loss actually fail to be adaptive in an L∞–sense, as we illustrate
below. We are actually not aware of any sharp supremum-norm convergence rate result for
related machine learning methods in the literature, including CART, random forests and deep
learning. Regarding inference, we provide a construction of an adaptive credible band for
the unknown regression function with (nearly, up a to logarithmic term) optimal uniform
coverage under self-similarity. In addition, we provide efficient confidence sets and bands for
a family of smooth functionals. Uncertainty quantification for related random forests or deep
learning has been an open problem, with distributional results available only for point-wise
prediction using bootstrap techniques [44]. Our results make a needed contribution to the
literature on the widely sought-after UQ for (tree-based) machine learning methods.

Regarding supremum-norm (and its associated discrete `∞ version) posterior contraction
rates, their derivation is typically more delicate compared to the more familiar testing dis-
tances (e.g. L2 or Hellinger) for which general theory has been available since the seminal
work [34]. Despite the lack of unifying theory, however, advances have been made in the last
few years [36, 14, 43] including specific models [58, 70, 51, 52]. However, Bayesian adap-
tation for the supremum loss has been obtained, to the best of our knowledge, only through
spike-and-slab priors (the work [69] uses Gaussian process priors, but adaptation is obtained
via Lepski’s method). In particular, [43] show that spike-and-slab priors on wavelet coeffi-
cients yield the exact adaptive minimax rate in the white noise model and [67] considers the
anisotropic case in a regression framework. For density estimation, [15, 16] derive optimal
‖ · ‖∞–rates for Pólya tree priors, while [50] considers adaptation for log-density spike and
slab priors. In this work, we consider Gaussian white noise and non-parametric regression
with Bayesian CART which is widely used in practice.

Bayesian CART is a method of function estimation based on ideas of recursive partition-
ing of the predictor space. The work [28] highlighted the link between dyadic CART and best
ortho-basis selection using Haar wavelets in two dimensions; [32] furthered this connection
by considering unbalanced Haar wavelets of [38]. CART methods have been also studied
in the machine learning literature, see e.g. [7, 57, 65] and references therein. Unlike plain
wavelet shrinkage methods and standard spike-and-slab priors, general Bayesian CART pri-
ors have extra flexibility by allowing for (some) basis selection. First results in this direction
are derived in Section 4. This aspect is particularly useful in higher-dimensional data, where
CART methods have been regarded as an attractive alternative to other methods [29].

By taking the Bayesian point of view, we relate Bayesian CART to structured wavelet
shrinkage using libraries of weakly balanced Haar bases. Each tree provides an underlying
skeleton or a ‘sparsity structure’ which supervises the sparsity pattern (see e.g. [2]). We show
that Bayesian CART borrows strength between coefficients in the tree ancestry by giving
rise to a variant of the g-prior [71]. Similarly as independent product priors, we show that
these dependent priors also lead to adaptive supremum norm concentration rates (up to a
logarithmic factor). To illustrate that local (internal) sparsity is a key driver of adaptivity, we
show that dense trees are incapable of adaptation.

To convey the main ideas, the mathematical development will be performed through
the lense of a Gaussian white noise model. Our techniques, however, also apply in non-
parametric regression. Results in this setting are briefly presented in Section 3.5 with details
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postponed until the Supplement (Section 7.1). The white noise model is defined through the
following stochastic differential equation, for an integer n≥ 1,

(1) dX(t) = f0(t)dt+
1√
n
dW (t), t ∈ [0,1],

where X(t) is an observation process, W (t) is the standard Wiener process on [0,1] and
f0 is unknown and belongs to L2[0,1], set of squared–integrable functions on [0,1]. The
model (1) is observationally equivalent to a Gaussian sequence space model after projecting
the observation process onto a wavelet basis {ψlk : l ≥ 0,0 ≤ k ≤ 2l − 1} of L2[0,1]. This
sequence model writes as

(2) Xlk = β0
lk +

εlk√
n
, εlk

iid∼ N (0,1),

where the wavelet coefficients β0
lk = 〈f0,ψlk〉 =

∫ 1
0 f0(t)ψlk(t)dt of f0 are indexed by a

scale index l ≥−1 and a location index k ∈ {0, . . . , (2l − 1)+}. A paradigmatic example is
the standard Haar wavelet basis

(3) ψ−10(x) = I[0,1](x) and ψlk(x) = 2l/2ψ(2lx− k) (l≥ 0),

obtained with orthonormal dilation-translations of ψ = I(0,1/2] − I(1/2,1], where IA denotes
the indicator of a set A. Later in the text, we also consider weakly balanced Haar wavelet
relaxations (Section 4), as well as smooth wavelet bases (Section 10.2).

One of the key motivations behind the Bayesian approach is the mere fact that the posterior
is an actual distribution, whose limiting shape can be analyzed towards obtaining uncertainty
quantification and inference. Our results in this direction can be grouped in two subsets.
First, for uncertainty quantification for f0 itself, we construct adaptive and honest confidence
bands under self-similarity (with coverage converging to one). Exact asymptotic coverage
is achieved through intersections with a multiscale credible band (along the lines of [53]).
Confidence bands construction for regression surfaces is a fundamental task in nonparamet-
ric regression and can indicate whether there is empirical evidence to support conjectured
features such as multi-modality or exceedance of a level. Results of this type are, to date,
unavailable for classical CART, random forests and/or deep learning. Second, we consider
inference for smooth functionals of f0, including linear ones and the primitive functional∫ ·

0 f0, for which exact optimal confidence sets are derived from posterior quantiles. While
these results for functionals are stated in the main paper (Theorem 4 below), their deriva-
tion is most naturally obtained through a general limiting shape result, stated and proved in
the Supplement (Theorem 9). Such an adaptive Bernstein-von Mises theorem for Bayesian
CART is obtained following the approach of [17, 18]; it is only the second result of this kind
(providing adaptation) after the recent result of Ray [53].

The paper is structured as follows. Section 2 introduces regression tree-priors, as well as
the notion of tree-shaped sparsity and the g-prior for trees. In Section 3, we state supremum-
norm inference properties of Bayesian dyadic CART (estimation and confidence bands). Sec-
tion 4 considers flexible partitionings allowing for basis choice. A brief discussion can be
found in Section 5. The proof of our master Theorem 1 can be found in Section 6. The sup-
plementary file [19] gathers the proofs of the remaining results. The sections and equations
of this supplement are referred to with an additional symbol “S-” in the numbering.

Notation. Let C([0,1]) denote the set of continuous functions on [0,1] and let φσ denote
the normal density with zero mean and variance σ2. Let N = {0,1,2, . . .} be the set of natural
integers and N∗ = N \ {0}. We denote by IK the K ×K identity matrix, Also, Bc denotes
the complement of a set B. For an interval I = (a, b]⊂ (0,1], let |I|= b− a be its diameter
and a ∨ b = max(a, b). The notation x . y means x ≤ Cy for C a large enough universal
constant, and := (or =:) means “the left-hand side is defined as”.
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2. Trees and Wavelets. In this section, we discuss multiscale prior assignments on func-
tions f ∈ L2[0,1] (i.e. priors on the sequence of wavelet coefficients βlk = 〈f,ψlk〉) inspired
by (and including) Bayesian CART. Such methods recursively subdivide the predictor space
into cells where f can be estimated locally. The partitioning process can be captured with
a tree object (a hierarchical collection of nodes) and a set of splitting rules attached to each
node. Section 2.1 discusses priors on the tree object. The splitting rules are ultimately tied
to a chosen basis, where the traditional Haar wavelet basis yields deterministic dyadic splits
(as we explain in Section 2.1.2). Later in Section 4, we extend our framework to random
unbalanced Haar bases which allow for more flexible splits. Beyond random partitioning, an
integral component of CART methods are histogram heights assigned to each partitioning
cell. We flesh out connections between Bayesian histograms and wavelets in Section 2.2.
Finally, we discuss Bayesian CART priors over histogram heights in Section 2.3.

2.1. Priors on Trees ΠT(·). First, we need to make precise our definition of a tree object
which will form a skeleton of our prior on (βlk) for each given basis {ψlk}. Throughout this
paper, we will largely work with the Haar basis.

DEFINITION 1 (Tree terminology). We define a binary tree T as a collection of nodes
(l, k), where l ∈N, k ∈ {0, . . . ,2l − 1}, that satisfies

(l, k) ∈ T , l≥ 1 ⇒ (l− 1, bk/2c) ∈ T .

In the last display, the node (l, k) is a child of its parent node (l − 1, bk/2c). A full binary
tree consists of nodes with exactly 0 or 2 children. For a node (l, k), we refer to l as the layer
index (or also depth) and k as the position in the lth layer (from left to right). The cardinality
|T | of a tree T is its total number of nodes and the depth is defined as d(T ) = max

(l,k)∈T
l.

A node (l, k) ∈ T belongs to the set Text of external nodes (also called leaves) of T if it has
no children and to the set Tint of internal nodes, otherwise. By definition |T |= |Tint|+ |Text|,
where, for full binary trees, we have |T | = 2|Tint|+ 1. An example of a full binary tree is
depicted in Figure 1(a). In the sequel, T denotes the set of full binary trees of depth no
larger than L= Lmax = blog2 nc, a typical cut-off in wavelet analysis. Indeed, trees can be
associated with certain wavelet decompositions, as will be seen in Section 2.2.2.

Before defining tree-structured priors over the entire functions f ’s, we first discuss various
ways of assigning a prior distribution over T, that is over trees themselves. We focus on the
Bayesian CART prior [22], which became an integral component of many Bayesian tree
regression methods including BART [21].

2.1.1. Bayesian CART Priors. The Bayesian CART construction of [22] assigns a prior
over T via the heterogeneous Galton-Watson (GW) process. The prior description utilizes
the following top-down left-to-right exploration metaphor (see also [54]). Denote with Q a
queue of nodes waiting to be explored. Each node (l, k) is assigned a random binary indicator
γlk ∈ {0,1} for whether or not it is split. Starting with T = ∅, one initializes the exploration
process by putting the root node (0,0) tentatively in the queue, i.e. Q = {(0,0)}. One then
repeats the following three steps until Q= ∅:

(a) Pick a node (l, k) ∈ Q with the highest priority (i.e. the smallest index 2l + k) and if
l < Lmax, split it with probability

(4) plk = P(γlk = 1).

If l= Lmax, set γlk = 0.
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(a) A full binary tree
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p23p22
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(b) Binary tree of prior cut probabilities

FIG 1. (Left) A full binary tree T = Tint ∪ Text. Red nodes are external nodes Text and blue nodes are internal
nodes Tint. (Right) A binary tree of cut probabilities plk in (4).

(b) If γlk = 0, remove (l, k) from Q.
(c) If γlk = 1, then

(i) add (l, k) to the tree, i.e. Tint←Tint ∪ {(l, k)},
(ii) remove (l, k) from Q and if l < Lmax add its children to Q, i.e.

Q← Q\{(l, k)} ∪ {(l+ 1,2k), (l+ 1,2k+ 1)}.
The tree skeleton is probabilistically underpinned by the cut probabilities (plk) which are
typically assumed to decay with the depth l as a way to penalise too complex trees. While
[22] suggest plk = α/(1 + l)γ for some α ∈ (0,1) and γ > 0, [54] point out that this decay
may not be fast enough and suggest instead plk = Γ−l for some 2< Γ< n, which leads to a
(near) optimal empirical L2–convergence rate. We use a similar assumption in our analysis,
and also assume that the split probability depends only on l, and simply denote pl = plk.

Independently of [22], [25] proposed another variant of Bayesian CART, which first draws
the number of leaves (i.e. external nodes) K = |Text| at random from a certain prior on
integers, e.g. a Poisson distribution (say, conditioned to be non-zero). Then, a tree T is
sampled uniformly at random from all full binary trees with K leaves. Noting that there
are CK−1 such trees, with CK the K–th Catalan number (see Lemma 6), this leads to
Π(T ) = (λK/[K!(eλ − 1)]) · C−1

K−1. As we restrict to trees in T, i.e. with depth at most
L = Lmax, we slightly update the previous prior choice by setting, for some λ > 0, with
K = |Text|,

(5) ΠT(T )∝ λK

(eλ − 1)K!

1

CK−1
IT ∈T,

where ∝ means ‘proportional to’. We call the resulting prior ΠT the ‘conditionally uniform
prior’ with a parameter λ.

2.1.2. Trees and Random Partitions. Trees provide a structured framework for generat-
ing random partitions of the predictor space (here we choose (0,1] for simplicity of exposi-
tion). In CART methodology, each node (l, k) ∈ T is associated with a partitioning interval
Ilk ⊆ (0,1]. Starting from the trivial partition I00 = (0,1], the simplest way to obtain a parti-
tion is by successively dividing each Ilk into Ilk = Il+1 2k ∪ Il+1 2k+1. One central example
is dyadic intervals Ilk which correspond to the domain of the balanced Haar wavelets ψlk in
(3), i.e.

(6) I00 = (0,1], Ilk = (k2−l, (k+ 1)2−l] for l≥ 0 and 0≤ k < 2l.

For any fixed depth l ∈N, the intervals ∪0≤k<2lIlk form a deterministic regular (equispaced)
partition of (0,1]. Trees, however, generate more flexible partitions ∪(l,k)∈TextIlk by keeping
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only those intervals Ilk attached to the leaves of the tree. Since T is treated as random with a
prior ΠT (as defined in Section 2.1), the resulting partition will also be random.

EXAMPLE 1. Figure 1(a) shows a full binary tree T = Tint ∪ Text, where Tint =
{(0,0), (1,1), (2,2)} and Text = {(1,0), (2,3), (3,4), (3,5)}, resulting in the partition of
(0,1] given by

(7) (Ilk)(l,k)∈Text = {(0,1/2], (1/2,5/8], (5/8,3/4], (3/4,1]}.

The set of possible split points obtained with (6) is confined to dyadic rationals. One can
interpret the resulting partition as the result of recursive splitting where, at each level l, inter-
vals Ilk for each internal node (l, k) ∈ Tint are cut in half and intervals Ilk for each external
node (l, k) ∈ Text are left alone. We will refer to such a recursive splitting process as dyadic
CART. There are several ways to generalize this construction, for instance by considering
arbitrary splitting rules that iteratively dissect the intervals at values other than the midpoint.
We explore such extensions in Section 4.

2.2. Tree-shaped Priors on f . This section outlines two strategies for assigning a tree-
shaped prior distribution on f underpinned by a tree skeleton T ∈ T. Each tree T = Tint ∪
Text can be associated with two sets of coefficients: (a) internal coefficients βlk attached to
wavelets ψlk for (l, k) ∈ Tint and (b) external coefficients β̃lk attached to partitioning intervals
Ilk for (l, k) ∈ Text (see Section 2.1.2). While wavelet priors (Section 2.2.1) assign the prior
distribution internally on βlk, Bayesian CART priors [22, 25] (Section 2.2.2) assign the prior
externally on β̃lk. We discuss and relate these two strategies in more detail below.

2.2.1. Tree-shaped Wavelet Priors. Traditional (linear) Haar wavelet reconstructions for
f deploy all wavelet coefficients βlk with resolutions l smaller than some d > 0. This strategy
amounts to fitting a flat tree with d layers (i.e. a tree that contains all nodes up to a level
d, see Figure 2) or, equivalently, a regular dyadic regression histogram with 2d bins. This
construction can be made more flexible by selecting coefficients prescribed by trees that are
not necessarily flat. Given a full binary tree T ∈ T, one can build the following wavelet
reconstruction of f using only active wavelet coefficients that are inside a tree T

fT ,β(x) = β−10ψ−10(x) +
∑

(l,k)∈Tint

βlkψlk(x) =
∑

(l,k)∈T ′int

βlkψlk(x),(8)

where β = (β−10, (βlk)0≤l≤L−1,0≤k<2l)
′ is a vector of wavelet coefficients and where T ′int =

Tint ∪ {(−1,0)} is the ‘rooted’ tree with the index (−1,0) added to Tint. Note that |T ′int|=
|Text|.

Define a tree-shaped wavelet prior on fT ,β as the prior induced by the hierarchical model

T ∼ ΠT

(βlk)lk | T ∼
⊗

(l,k)∈T ′int

π(βlk) ⊗
⊗

(l,k)/∈T ′int

δ0(βlk),(9)

where ΠT is a prior on trees as described in Section 2.1.1 and where the active wavelet
coefficients βlk for (l, k) ∈ Tint follow a distribution with a bounded and positive density
π(βlk) on R. The prior (9) is seen as a distribution on R2L , where all remaining coefficients,
i.e. βlk’s for l≥ L, are set to 0.

The prior (9) contains the so-called sieve priors [18] (i.e. flat trees) as a special case,
where the sieve is with respect to the approximating spaces Vect{ψlk, l < d} for some d≥ 0.
For nonparametric estimation of f0, it is well-known that sieve priors can achieve (nearly)
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adaptive rates in the L2–sense (see e.g. [35]). In turns out, however, that sieve priors (and
therefore flat tree priors) are too rigid to enable adaptive results for stronger losses such as
the supremum norm, as we demonstrate in Theorem 5 in Section 3.4 (Supplement). This the-
orem illustrates that supremum norm adaptation using Bayesian (or other likelihood-based)
methods is a delicate phenomenon that is not attainable by many typical priors.

By definition, the prior (9) weeds out all wavelet coefficients βlk that are not supported
by the tree skeleton (i.e. are not internal nodes in T ). This has two shrinkage implications:
global and local. First, the global level of truncation (i.e. the depth of the tree) in (9) is not
fixed but random. Second, unlike in sieve priors, only some low resolution coefficients are
active depending on whether or not the tree splits the node (l, k). These two shrinkage aspects
create hope that tree-shaped wavelet priors (9) attain adaptive supremum norm rates (up to
log factors) and enable construction of adaptive confidence bands. We see later in Section 3
that this optimism is indeed warranted.

For adaptive wavelet shrinkage, [23] propose a Gaussian mixture spike-and-slab prior on
the wavelet coefficients. The point mass spike-and-slab incarnation of this prior was studied
by [43] and [53]. Independently for each wavelet coefficient βlk at resolutions larger than
some l0(n) (strictly increasing sequence), the prior in [53] can be written in the standard
spike-and-slab form

π(βlk | γlk) = γlkπ(βlk) + (1− γlk)δ0(βlk),(10)

where γlk ∈ {0,1} for whether or not the coefficient is active with P(γlk = 1 | θl) = θl. More-
over, the prior on all coefficients at resolutions no larger than l0(n) is dense, i.e. θl = 1 for
l ≤ l0(n). The value θl can be viewed as the probability that a given wavelet coefficient βlk
at resolution l will contain ‘signal’.

There are undeniable similarities between (9) and (10), in the sense that the binary inclu-
sion indicator γlk in (10) can be regarded as the node splitting indicator γlk in (4). While
the indicators γlk in (10) are independent under the spike-and-slab prior, they are hierarchi-
cally constrained under the CART prior, where the pattern of non-zeroes encodes the tree
oligarchy. The seeming resemblance of the CART-type prior (9) to the spike-and-slab prior
(10) makes one naturally wonder whether, unlike sieve-type priors, CART posteriors attain
adaptive supremum-norm inference.

2.2.2. Bayesian CART Priors. A perhaps more transparent approach to assigning a tree-
shaped prior on f is through histograms (as opposed to wavelet reconstructions from Section
2.2.1). Each tree T ∈ T generates a random partition via intervals Ilk (see Section 2.1.2) and
gives rise to the following histogram representation

f̃T ,β̃(x) =
∑

(l,k)∈Text

β̃lkIIlk(x),(11)

where β̃ = (β̃lk : (l, k) ∈ Text)′ is a vector of reals interpreted as step heights and where Ilk’s
are obtained from the tree T as in Section 2.1.2 (and as illustrated in Example 1). We now
define the (Dyadic) Bayesian CART prior on f using the following hierarchical model on the
external coefficients rather than internal coefficients (compare with (9))

T ∼ ΠT

(β̃lk)(l,k)∈Text | T ∼
⊗

(l,k)∈Text

π̃(β̃lk),(12)

where ΠT is as in Section 2.1, and where the height β̃lk at a specific (l, k) ∈ Text has
a bounded and positive density π̃(β̃lk) on R. This model coincides with the widely used
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FIG 2. Flat tree with edges weighted by the amplitude of the Haar wavelets.

Bayesian CART priors using a midpoint dyadic splitting rule (as we explained in Section
2.1.2). In practice, the density π̃ is often chosen as centered Gaussian with some variance
σ2 > 0 [22, 25].

The histogram prior (11) can be rephrased in terms of wavelets. Indeed, the histogram rep-
resentation (11) can be rewritten in terms of the internal coefficients, i.e. f̃T ,β̃(x) = fT ,β(x)

as in (8), with βlk’s and β̃lk’s linked via

(13) β̃lk = β−10 +

l−1∑
j=0

sbk/2l−j−1c2
j/2βjbk/2l−jc,

where sk = (−1)k+1. The identity (13) follows the fact that for x ∈ Ilk we obtain β̃lk =∑
(l′,k′)∈Plk βl′k′ψl′k′ from (11), where Plk ≡ {(j, bk/2l−jc) : j = 0, . . . , l − 1} are the an-

cestors of the bottom node (l, k). Note that ψjbk/2l−jc = 2j/2sbk/2l−j−1c where s= (−1)k+1

for whether x belongs to the left (positive sign) or right (negative sign) of the wavelet piece.
There is a pinball game metaphor behind (13). A ball is dropped through a series of dyadi-
cally arranged pins of which the ball can bounce off to the right (when sk = +1) or to the left
(when sk =−1). The ball ultimately lands in one of the histogram bins Ilk whose coefficient
β̃lk is obtained by aggregating βlk’s of those pins (l, k) that the ball encountered on its way
down. The pinball aggregation process can be understood from Figure 3. The duality be-
tween the equivalent representations (11) and (8) through (13) provides various avenues for
constructing prior distributions, and enables an interesting interpretation of Bayesian CART
[22, 25] as a correlated wavelet prior, as we now see.

2.3. The g-prior for Trees. We now discuss various ways of assigning a prior distribu-
tion on the bottom node histogram heights β̃lk and, equivalently, the internal Haar wavelet
coefficients βlk. This section also describes an interesting connection between the widely
used Bayesian CART prior [22, 25] and a g-prior [71] on wavelet coefficients. For a given
tree T , let βT = (βlk : (l, k) ∈ T ′int)′ denote the vector of ordered internal node coefficients
βlk including the extra root node (−1,0) (and with ascending ordering according to 2l + k).
Similarly, β̃T = (βlk : (l, k) ∈ Text)′ is the vector of ordered external node coefficients β̃lk.
The duality between βT and β̃T is apparent from the pinball equation (13) written in matrix
form

(14) β̃T =AT βT ,

where AT is a square |Text| × |T ′int| matrix (noting |Text|= |T ′int|), further referred to as the
pinball matrix. Each row ofAT encodes the ancestors of the external node, where the nonzero
entries correspond to the internal nodes in the family pedigree. The entries are rescaled, where
younger ancestors are assigned more weight. For example, the tree T in Figure 3(a) induces
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β00
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2
√

2
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1 −1
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1 −1
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β−10
β00
β10
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(b)

FIG 3. (a) Example of a full binary tree, edges weighted by the amplitude of the Haar wavelets. (b) Pinball matrix
of the tree in (a).

a pinball matrix AT in Figure 3(b). The pinball matrix AT can be easily expressed in terms
of a diagonal matrix and an orthogonal matrix as

(15) AT A
′
T =DT , where DT = diag{d̃lk,lk}(l,k)∈Text , d̃lk,lk = 2l.

This results from the fact that the collection (2l/2Ilk, (l, k) ∈ Text) is an orthonormal system
spanning the same space as (ψjk, (j, k) ∈ T ′int), so D−1/2

T AT is an orthonormal change–of–
basis matrix. We now exhibit precise connections between the theoretical wavelet prior (9)
which draws βlk ∼ π and the practical Bayesian CART histogram prior which draws β̃lk ∼ π̃.

Recall that the wavelet prior (9) assumes independent wavelet coefficients, e.g. through
the standard Gaussian prior βT ∼N (0, I|Text|). Starting from within the tree, this translates
into the following independent product prior on the bottom coefficients β̃lk through (14)

(16) β̃T ∼N (0,DT ), where DT was defined in (15),

i.e. var β̃lk = 2l where the variances increase with the resolution l.
The Bayesian CART prior [22, 25], on the other hand, starts from outside the tree by

assigning β̃T ∼N (0, gnI|Text|) for some gn > 0, ultimately setting the bottom node variances
equal. This translates into the following ‘g-prior’ on the internal wavelet coefficients through
the duality (14).

DEFINITION 2. Let T ∈ T with a pinball matrix AT and denote with βT the internal
wavelet coefficients. We define the g-prior for trees as

βT ∼N
(
0, gn (A′T AT )−1

)
for some gn > 0.(17)

Note that, except for very special cases (e.g. flat trees) A′T AT is in general not diagonal,
unlike AT A′T . This means that the correlation structure induced by the Bayesian CART prior
on internal wavelet coefficients is non-trivial, although A′T AT admits some partial sparsity.
We characterize basic properties of the pinball matrix in Section 8.1 in the Supplement. For
example, Proposition 3 shows that matrices A′T AT and AT A′T have the same eigenspectrum
consisting of values 2l where l corresponds to the depth of the bottom nodes. This means that
the g-prior variances (diagonal elements of gn(A′T AT )−1) are lower-bounded by the minimal
eigenvalue of gn(A′T AT )−1 which equals gn2−l (where l is the depth of the deepest external
node) which is lower-bounded by gn/n. Since the traditional wavelet prior assumes variance
1, the choice gn = n matches the lower bound 1 by undersmoothing all possible variance
combinations. While other choices could be potentially used (see [30, 45, 31] in the context
of linear regression), we will consider gn = n in our results below.



10

We regard (17) as the ‘g-prior for trees’ due to its apparent similarity to g-priors for linear
regression coefficients [71]. The g-prior has been shown to have many favorable properties in
terms of invariance or predictive matching [5, 4]. Here, we explore the benefits of the g-type
correlation structure in the context of structured wavelet shrinkage where each ‘model’ is
defined by a tree topology. The correlation structure (17) makes this prior very different from
any other prior studied in the context of wavelet shrinkage.

3. Inference with (Dyadic) Bayesian CART. In this section we investigate the infer-
ence properties of tree-based posteriors, showing that (a) they attain the minimax rate of
posterior concentration in the supremum-norm sense (up to a log factor), and (b) enable un-
certainty quantification: for f in the form of adaptive confidence bands, and for smooth func-
tionals thereof, in terms of Bernstein-von Mises type results. For clarity of exposition, we fo-
cus now on the one-dimensional case, but the results readily extend to the multi-dimensional
setting with Rd, d≥ 1 fixed, as predictor space; see Section 7.4 for more details.

3.1. Posterior supremum-norm convergence. Let us recall the standard inequality (see
e.g. (60) below), for f0 a continuous function and f a Haar histogram (8), with coefficients
β0
lk and βlk,

(18) ‖f − f0‖∞ ≤ |β−10 − β0
−10|+

∑
l≥−1

2l/2 max
0≤k<2l

|βlk − β0
lk|=: `∞(f, f0).

As `∞ dominates ‖ · ‖∞, it is enough to derive results for the `∞–loss.
Given a tree T ∈ T, and recalling that trees in T have depth at most L := Lmax = blog2 nc,

we consider a generalized tree-shaped prior Π on the internal wavelet coefficients, recalling
the notation T ′int from Section 2.2,

T ∼ ΠT

(βlk)l≤L,k<2l | T ∼ π(βT ) ⊗
⊗

(l,k)/∈T ′int

δ0(βlk),(19)

where π(βT ) is a law to be chosen on R|T ′int|, not necessarily of a product form. This is a
generalization of (9), which allows for correlated wavelet coefficients (e.g. the g-prior). Let
XT denote the vector of ordered responses Xlk in (2) for (l, k) ∈ T ′int. From the white noise
model, we have

XT = βT +
1√
n
εT , with εT ∼N (0, I|Text|) (given T ).

By Bayes’ formula, the posterior distribution Π[· |X] of the variables (βlk)l≤L,k has density∑
T ∈T

Π[T |X] · π(βT |X) ·
∏

(l,k)/∈T ′int

I0(βlk),(20)

where, denoting as shorthand NX(T ) =
∫

e−
n

2
‖βT ‖22+nX′T βT π(βT )dβT ,

π(βT |X) =
e−

n

2
‖βT ‖22+nX′T βT π(βT )

NX(T )
,(21)

Π[T |X] =
WX(T )∑

T ∈T
WX(T )

, with WX(T ) = ΠT(T )NX(T ).(22)
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Let us note that the sum in the last display is finite, as we restrict to trees of depth at most
L = Lmax. Note that the classes of priors ΠT from Section 2 are non-conjugate, i.e. the
posterior on trees is given by the somewhat intricate expression (22) and does not belong
to one of the classes of ΠT priors. While the posterior expression (21) allows for general
priors π(βT ), we will focus on conditionally conjugate Gaussian priors for simplicity. This
assumption is not essential and can be relaxed. For instance, in case π(βT ) is of a product
form, one could use a product of e.g. Laplace distributions, using similar ideas as in [17],
Theorem 5.

Our first result exemplifies the potential of tree-shaped priors by showing that Dyadic
Bayesian CART achieves the minimax rate of posterior concentration over Hölder balls in
the sup-norm sense, i.e. εn = (n/ logn)−α/(2α+1), up to a logarithmic term. Define a Hölder-
type ball of functions on [0,1] as

(23) H(α,M) :=

{
f ∈ C[0,1] : max

l≥0, 0≤k<2l
2l(

1

2
+α)|〈f,ψlk〉| ∨ |〈f,ψ−10〉| ≤M

}
.

For balanced Haar wavelets ψlk as in (3), H(α,M) contains the a standard α-Hölder (resp.
Lipschitz when α= 1) ball of functions for any α ∈ (0,1], defined as

(24) HαM :=

{
f : ‖f‖∞ ≤M,

|f(x)− f(y)|
|x− y|α

≤M ∀x, y ∈ [0,1]

}
.

Our master rate-theorem, whose proof can be found in Section 6, is stated below. It will be
extended in various directions in the sequel.

THEOREM 1. Let ΠT be the Galton-Watson process prior from Section 2.1 with plk =
Γ−l and Γ > 2e3. Consider the tree-shaped wavelet prior (19) with π(βT ) ∼ N (0,ΣT ),
where ΣT is either I|T ′int| or gn(A′T AT )−1 with gn = n. Define

(25) εn =

(
log2 n

n

) α

2α+1

for α> 0.

Then for any α ∈ (0,1], M > 0, any sequence Mn→∞ we have for n→∞
(26) sup

f0∈H(α,M)
Ef0

Π [fT ,β : `∞(fT ,β, f0)>Mnεn |X]→ 0.

By (18), the statement (26) also holds for the supremum loss ‖ · ‖∞.

EXTENSION 1. While Theorem 1 is formulated for Bayesian CART obtained with Haar
wavelets, the concept of tree-shaped sparsity extends to general wavelets that give rise to
smoother objects than just step functions. With {ψlk} an S–regular wavelet basis on [0,1],
e.g. the boundary-corrected wavelet basis of [24] (see [37], Chapter 4, with adaptation of
the range of indices l), and with f0 ∈H(α,M) defined in (23) for some M > 0 and arbitrary
0< α≤ S, one indeed obtains the statement (26) by choosing Γ≥ Γ0(S)> 0 or c≥ c0 > 0
large enough, see Section 10.2.

Theorem 1 encompasses both original Bayesian CART proposals for priors on bottom
coefficients β̃T ∼ N (0, I|Text|) (the case ΣT = gn(AT A

′
T )−1 discussed in Section 2.3) as

well as the mathematically slightly simpler wavelet priors ΣT = I|Text| (discussed in Section
2.2.1). We did not fully optimize the constants in the statement; for instance, one can check
that Γ > 2 for the g-prior works. The rate εn in (25) coincides with the minimax rate for
the supremum norm in the white noise model up to a logarithmic factor (logn)

α

2α+1 . We
next show that this logarithmic factor is in fact real, i.e. not an artifact of the upper-bound
proof. We state the results for smooth-wavelet priors, which enable to cover arbitrarily large
regularities, but a similar result could also be formulated for the Haar basis.
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THEOREM 2. Let ΠT be one of the Bayesian CART priors from Theorem 1. Consider the
tree-shaped wavelet prior (19) with π(βT ) ∼ N (0,ΣT ), where ΣT is I|Text| and {ψlk} an
S–regular wavelet basis, S ≥ 1. Let εn be the rate defined in (25) for a given 0<α≤ S. Let
the parameters of ΠT verify either Γ≥ Γ0(S) a large enough constant, or c≥ c0 > 0 large
enough. For any M > 0, there exists m> 0 such that, as n→∞,

(27) inf
f0∈H(α,M)

Ef0
Π [`∞(fT ,β, f0)≤mεn |X]→ 0.

In other words, there exists a sequence of elements of H(α,M) along which the posterior
convergence rate is slower than mεn in terms of the `∞–metric. In particular, the upper-
bound rate of Theorem 1 cannot hold uniformly over H(α,M) with a rate faster than εn,
which shows that the obtained rate is sharp (note the reversed inequality in (27) with respect
to (26); we refer to [13] for more details on the notion of posterior rate lower bound). The
proof of Theorem 2 can be found in Section 10.3.

EXTENSION 2. Theorem 1 holds for a variety of other tree priors. This includes the con-
ditionally uniform prior mentioned in Section 2.1.1 with λ= 1/nc in (5), or an exponential-
type prior ΠT(T ) ∝ e−c|Text| lognIT ∈T for some c > 0. One can also assume a general Gaus-
sian prior on active wavelet coefficients with an unstructured covariance matrix ΣT which
satisfies λmin(ΣT ) & 1/

√
logn and λmax(ΣT ) . na for some a > 0. Detailed proofs can be

found in the Supplement (Section 10.1).

Only very few priors (actually only point mass spike-and-slab based priors, as discussed
in the Introduction) were shown to attain adaptive posterior sup-norm concentration rates.
Theorem 1 now certifies Dyadic Bayesian CART as one of them. The logarithmic penalty
in the rate (25) reflects that Bayesian CART priors occupy the middle ground between flat
trees (with only a depth cutoff) and spike-and-slab priors (with general sparsity patterns).
As mentioned earlier, flat trees are incapable of supremum-norm adaptation, as we formally
prove in Section 3.4. The fact that the more flexible Bayesian CART priors still achieves
supremum-norm adaptation in a near-optimal way is a rather notable feature. From a more
general perspective, we note that while general tools are available to derive adaptive L2– or
Hellinger–rate results in broad settings (e.g. model selection techniques, or the theory of pos-
terior rates in [34]), deriving adaptive L∞–results is often obtained in a case-by-case basis;
two possible techniques are wavelet thresholding (when empirical estimates of wavelet coef-
ficients are available) and Lepski’s method (which requires some ‘ordered’ set of estimators,
typically in terms of variance; for tree-estimators for instance it would not readily be appli-
cable). The fact that tree methods enable for supremum-norm adaptation in nonparametric
settings is one of the main take-away messages of this work.

3.2. Adaptive Honest Confidence Bands for f0. We now turn to the ultimate landing
point of this paper, uncertainty quantification for f0 and its functionals. The existence of
adaptive confidence sets in general is an interesting and delicate question (see Chapter 8 of
[37]). In the present context of regression function estimation under the supremum norm
loss, it is in fact impossible to build adaptive confidence bands without further restricting the
parameter space. We do so by imposing some classical self-similarity conditions (see [37],
[53] for more details).

DEFINITION 3. (Self-similarity) Given an integer j0 > 0, we say that f ∈ H(α,M) is
self-similar if, for some constant ε > 0,

(28) ‖Kj(f)− f‖∞ ≥ ε2−jα for all j ≥ j0,
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where Kj(f) =
∑

l≤j−1

∑
k 〈ψlk, f〉ψlk is the wavelet projection at level j. The class of all

such self-similar functions will be denoted by HSS(α,M,ε).

Section 8.3.3 in [37] describes self-similar functions as typical representatives of the
Hölder class. As shown in Proposition 8.3.21 of [37], self-dissimilar functions are nowhere
dense in the sense that they cannot approximate any open set in H(α,M). In addition,
Bayesian non-parametric priors for Hölder functions charge self-similar functions with prob-
ability 1. Finally, self-similarity does not affect the difficulty of the statistical estimation
problem, where the (`∞) minimax rate is not changed after adding this assumption. A vari-
ant of the self-similarity condition was shown to be necessary for adaptive inference, in that
such condition cannot essentially be weakened for uniform coverage with an optimal rate to
hold [11].

Following [53], we construct adaptive honest credible sets by first defining a pivot center-
ing estimator, and then determining a data-driven radius.

DEFINITION 4. (The Median Tree) Given a posterior ΠT[· |X] over trees, we define the
median tree T ∗X = T ∗(ΠT[· |X]) as the set of nodes

(29) T ∗X = {(l, k), l≤ Lmax, Π[(l, k) ∈ Tint |X]≥ 1/2} .

Similarly as in the median probability model [4, 3], a node belongs to T ∗X if its (marginal)
posterior probability to be selected by a tree estimator exceeds 1/2. Interestingly, as the
terminology suggests, T ∗X is an actual tree, i.e. the nodes follow hereditary constraints (see
Lemma 13 in the Supplement). We define the resulting median tree estimator as

(30) f̂T (x) =
∑

(l,k)∈T ∗X

Xlkψlk(x).

Moreover, we define a radius, for some vn→∞ to be chosen, as

(31) σn = σn(X) = sup
x∈[0,1]

Lmax∑
l=0

vn

√
logn

n

2l−1∑
k=0

I(l,k)∈T ∗X |ψlk(x)|.

A credible band with a radius σn(X) as in (31) and a center f̂T as in (30) is

(32) Cn =
{
f : ‖f − f̂T ‖∞ ≤ σn(X)

}
.

Theorem 3, proved in Section 10.4, shows that valid frequentist uncertainty quantification
with Bayesian CART is attainable (up to log factors). Indeed, the confidence band (32) has a
near-optimal diameter and a uniform frequentist coverage under self-similarity.

THEOREM 3. Let 0 < α1 ≤ α2 ≤ 1, M ≥ 1 and ε > 0. Let Π be any prior as in the
statement of Theorem 1. Let σn be as in (31) with vn such that (logn)1/2 = o(vn) and let
f̂T denote the median tree estimator (30). Then for Cn defined in (32), uniformly over α ∈
[α1, α2], as n→∞,

inf
f0∈HSS(α,M,ε)

Pf0
(f0 ∈ Cn)→ 1.

For every α ∈ [α1, α2] and uniformly over f0 ∈ HSS(α,M,ε), the diameter |Cn|∞ =
supf,g∈Cn ‖f − g‖∞ and the credibility of the band verify, as n→∞,

|Cn|∞ =OPf0 ((n/ logn)−α/(2α+1)vn),(33)

Π[Cn |X] = 1 + oPf0 (1).(34)
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FIG 4. (Left) Pointwise 0.95% credible intervals together with a 95% L∞–credible band (gray area).
(Right) Not-intersected multiscale 0.95% credible band (77) (gray area) using wl = l1/2+0.01 (see
Supplement, Section 7.3.5) together with the ‘optimal’ set (32) obtained with vn = 1. The true function
is f0(x) = (4x− 1)I(x≤ 1/2) + (−2x+ 2)I(x > 1/2).

Similarly as for Theorem 1, the results of Theorem 3 carry over to wavelet priors over
a smooth wavelet basis, leading to the construction of confidence sets with arbitrary regu-
larities 0< α1 ≤ α2 <∞. The undersmoothing factor vn is commonplace in the context of
confidence bands, with the condition vn� (logn)1/2 reflecting the slight logarithmic price
to pay for trees noted earlier in terms of L∞–estimation accuracy. In the previous statement
both confidence and credibility of Cn tend to 1. It is possible to achieve exact coverage by
intersecting Cn further with another ball. A natural way to do so (from the ‘estimating many
functionals’ perspective, see [18]) is to intersect with a multiscale ball (we refer to Section
7.3 and 7.2 in the Supplement for details and demonstrations). For stability reasons, this
intersection-band seems also preferable in practice and we present in Figure 7 on the right
an illustration of coverage of such a band in nonparametric regression. Apart from the in-
tersection band, another natural choice is an L∞–credible band. Namely, given a centering
estimator f̂ (such as the median-tree estimator), one can consider an L∞–ball around f̂ that
captures 0.95% of the posterior mass (see Figure 7 on the left). We are not aware of any
frequentist validation results for such bands in the adaptive L∞–setting. Results for such
type of credible sets have been obtained in the L2–setting, for instance, in [60]. To guarantee
coverage, the authors need to incorporate a ‘blow-up’ factor (diverging to infinity) to the ra-
dius of the set (see [53] for more discussion). Finally, another possibility would be to ‘paste
together’ marginal pointwise credible intervals (see Figure 7 on the left). It is not clear how
much ‘blow-up’ would be needed to guarantee frequentist coverage under self-similarity and,
again, we are not aware of any theoretical results for such sets.

3.3. Inference for Functionals of f0: Bernstein-von Mises Theorems. By slightly mod-
ifying the Bayesian CART prior on the coarsest scales, it is possible to obtain asymptotic
normality results, in the form of Bernstein-von Mises theorems, that imply that posterior
quantile-credible sets are optimal-size confidence sets. In the next result, βS denotes the
bounded-Lipschitz metric on the metric space S (see also the Supplement Section 7.3).

THEOREM 4. Assume the Bayesian CART priors ΠT from Theorem 1 constrained to
trees that fit j0(n) layers, i.e. γlk = 1 for l≤ j0(n), for j0(n)�

√
logn.
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1. BvM for smooth functionals ψb(f) := 〈f, b〉. Let b ∈ L∞[0,1] with coefficients (blk =
〈b,ψlk〉). Assume

∑
k |blk| ≤ cl for all l≥ 1 with

∑
l l

2cl <∞. Then, in Pf0
-probability,

βR

(
L(
√
n(ψb(f)− ψ̂b) |X),L(N (0,‖b‖22))

)
→ 0.

2. Functional BvM for the primitive F (·) =
∫ ·

0 f . Let (G(t) : t ∈ [0,1]) be a Brownian mo-
tion. Then, in Pf0

-probability,

βC([0,1])

(
L
(√

n(F (·)−
∫ ·

0
dX(n) |X)

)
,L(G)

)
→ 0

As a consequence of this result, quantile credible sets for the considered functionals are
optimal confidence sets. For α ∈ (0,1), let qψbα/2(X) and qψb1−α/2(X) be the α/2 and 1− α/2
quantiles of the induced posterior distribution on the functional ψb =

∫ 1
0 f(u)b(u)du and set

Ib(X) := [qψbα/2(X), qψb1−α/2(X)]. Theorem 4 (part 1) then implies (see [18] for a proof) that

Pf0
[ψb(f0) ∈ Ib(X)]→ 1− α.

Similarly, let Rn(X) be the data-dependent radius chosen from the induced posterior distri-
bution on F (·) =

∫ ·
0 f as follows, for F̂ (·) =

∫ ·
0 dX

(n),

(35) Π[‖F − F̂‖∞ ≤Rn(X) |X] = 1− α.

Consider the band CF (X) := {F : ‖F − F̂‖∞ ≤Rn(X)}. Then Theorem 4 (part 2) implies
(see [18], Corollary 2 for a related statement and proof), for F0(·) =

∫ ·
0 f0,

Pf0

[
F0 ∈ CF (X)

]
→ 1− α.

In other words, the band (35) has exact asymptotic coverage. It can also be checked that
it is optimal efficient in semiparametric terms (that is, its width is optimal asymptotically).
We derive Theorem 4 as a consequence of an adaptive nonparametric BvM (Theorem 9 in
the Supplement; see Section 10.5 for a proof, where other possible choices for j0(n) are
discussed), only obtained so far for adaptive priors in the work of Ray [53], which considered
(conjugate) spike and slab priors. Derivation of the band (35) in practice is easily obtained
once posterior samples are available. Theorem 4 is illustrated, in the regression framework
studied in Section 7.1, on a numerical example with a piece-wise linear regression function
(details on the implementation are in Section 7.2) in Figure 5. The left panel presents a
histogram of posterior samples (together with 2.5% and 97.5% quantiles) of the rescaled
primitive functional F̃ (x) = nF (x) =

∑
ti≤x f(ti) for x = 0.8 with true value is marked

with a red solid line. The right panel portrays the confidence band (35) which uniformly
captures the true functional (dotted line).

3.4. Lower bound: flat trees are (grossly) suboptimal for the ‖ · ‖∞–loss. Recall that
the spike-and-slab prior achieves the actual `∞–minimax rate without any additional factor.
Interestingly, the very same prior misses the `2–minimax rate by a log factor [43]. This il-
lustrates that `2 and `∞ adaptations require different desiderata when constructing priors.
Product priors that correspond to separable rules do not yield adaptation with exact rates in
the `2 sense [12]. Mixture priors that are adaptive in `2, on the other hand, may not yield `∞
adaptation. We now provide one example of this phenomenon in the context of flat (complete
binary) trees.

The flat tree of depth d = d(T ) is the binary tree which contains all possible nodes until
level d, i.e. γlk = Il<d. An example of a flat tree with d= 3 layers is in Figure 2. The simplest
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BvM: Primitive Functional (t= 0.8 )
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FIG 5. (Left) 0.95% credible interval for the (rescaled) primitive functional F̃ (x) with x= 0.8; (Right)
the confidence band (35) obtained for f0(x) = (4x− 1)I(x≤ 1/2) + (−2x+ 2)I(x > 1/2).

possible prior on tree topologies (confined to symmetric trees) is just the Dirac mass at a
given flat tree of fixed depth d=D; an adaptive version thereof puts a prior D and samples
from the set of all flat trees. Such priors coincide with so-called sieve priors, where the sieve
spans the expansion basis (e.g. Haar) up to level D. Flat dyadic trees only keep Haar wavelet
coefficients at resolutions smaller than some d > 0 (i.e. γlk = 0 for l≥ d). The implied prior
on (βlk)lk can be written as, with π(βlk)∝ σ−1

l φ (βlk/σl),

(βlk) | d ∼
⊗
l<d,k

π(βlk) ⊗
⊗
l≥d,k

δ0(βlk),(36)

where φ(·) is some bounded density that is strictly positive on R and σl are fixed positive
scalars. The sequence (σl) is customarily chosen so as it decays with the resolution index l,
e.g. σl = 2−l(β+1/2) for some 0 < β ≤ α. This “undersmoothing” prior requires the knowl-
edge of (a lower bound on) α and yields a non-adaptive non-parametric BvM behavior [18].

A tempting strategy to manufacture adaptation is to treat the threshold d as random through
a prior π(d) on integers (and take constant σl), which corresponds to the hierarchical prior
on regular regression histograms [55, 61]. It is not hard to check that the flat-tree prior (36)
with random d has a marginal mixture distribution similar to the one of the spike-and-slab
prior on each coordinate (l, k). Despite marginally similar, the probabilistic structure of
these two priors is very different. Zeroing out signals internally, the spike-and-slab prior
(10) is `∞–adaptive [43]. The flat tree prior (36), on the other hand, fits a few dense layers
without internal sparsity and is `2–adaptive (up to a log term) [61]. However, as shown in the
following Theorem, flat trees fall short of `∞–adaptation.

THEOREM 5. Assume the flat tree prior (36) with random d, where π(d) is non-
increasing and where the active wavelet coefficients βlk are Gaussian iidN (0,1). Moreover,
assume {ψlk} is an S–regular wavelet basis for some S ≥ 1. For any 0<α≤ S and M > 0,
there exists f0 ∈H(α,M) such that

Ef0
Π [`∞(fT ,β, f0)< ζn |X]→ 0,

where the lower-bound rate ζn is given by ζn =
(

logn
n

) α

2α+2

.
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Theorem 5, proved in Section 10.6, can be applied to standard priors π(d) with exponential
decrease, proportional to e−d or e−d logd, or to a uniform prior over {1, . . . ,Lmax}. In [1],
a negative result is also derived for sieve-type priors, but only for the posterior mean and
for Sobolev classes instead of the, here arguably more natural, Hölder classes for supremum
losses (which leads to different rates for estimating the functional–at–a–point). Here, we
show that when the target is the `∞–loss for Hölder classes the sieve-prior is severely sub-
optimal.

3.5. Nonparametric Regression: Overview of Results. Our results obtained under the
white noise model can be transported to the more practical nonparametric regression model.
While these two models are asymptotically equivalent [10] (under uniform smoothness as-
sumptions satisfied, e.g., by α-Hölderian functions with α > 1/2), it is not automatic that
the knowledge of a (wavelet shrinkage/non-linear) minimax procedure in one model im-
plies the optimality in the other. It turns out, however, that our results can be carried over
to fixed-design regression without necessarily assuming α > 1/2. We assume outcomes
Y = (Y1, . . . , Yn)′ arising from

(37) Yi = f0(ti) + εi, εi
iid∼ N (0,1), i= 1, . . . , n= 2Lmax+1

where f0 is an unknown regression function and {ti ∈ [0,1] : 1 ≤ i ≤ n} are fixed design
points. For simplicity, we consider a regular grid, i.e. ti = i/n for 1≤ i≤ n and assume n is
a power of 2. In Section 7.1, we show that most results for Bayesian CART obtained earlier in
white noise carry over to the model (64) with a few minor changes. One minor modification
concerns the loss function. We mainly consider the ‘canonical’ supremum-norm loss for the
fixed design setting, that is, the ‘max-norm’ defined for given functions f, g by

‖f − g‖∞,n = max
1≤i≤n

|f(ti)− g(ti)|,

but it is also possible to consider the whole supremum-norm loss ‖ · ‖∞. We postpone state-
ments and proofs to the Supplement, Sections 7.1 and 12.1. In a numerical study (Section
7.2), we illustrate that the implementation of Bayesian CART [22, 25] and the construction
of our confidence bands is rather straightforward. For example, Figure 7 shows how infer-
ence can be carried out with Bayesian CART posteriors in non-parametric regression with
a piece-wise linear regression function using the intersecting band construction (detailed in
Section 7.3.5). Contrary to point-wise credible intervals (on the left) that are easy to produce
but do not cover, our multiscale confidence band (on the right) uniformly captures the true
regression function. More details on this example are presented in Section 7.2.

4. Non-dyadic Bayesian CART. A limitation of midpoint splits in dyadic trees is that
they treat the basis as fixed, allowing the jumps to occur only at pre-specified dyadic locations
even when not justified by data. General CART regression methodology [9, 33] avoids this
restriction by treating the basis as unknown, where the partitioning cells shrink and stretch
with data. In this section, we leave behind ‘static’ dyadic trees to focus on the analysis of
Bayesian (non-dyadic) CART [22, 25] and its connection to Unbalanced Haar (UH) wavelet
basis selection.

4.1. Unbalanced Haar Wavelets. UH wavelet basis functions [38] are not necessarily
translates/dilates of any mother wavelet function and, as such, allow for different support
lengths and design-adapted split locations. Here, we particularize the constructive definition
of UH wavelets given by [32]. Assume that possible values for splits are chosen from a set
of n = 2Lmax breakpoints X = {xi : xi = i/n,1 ≤ i ≤ n}. Using the scale/location index
enumeration, pairs (l, k) in the tree are now equipped with (a) a breakpoint blk ∈ X and (b)
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left and right brackets (llk, rlk) ∈ X ∪{0,1}. Unlike balanced Haar wavelets (3), where blk =
(2k+1)/2l+1, the breakpoints blk are not required to be regularly dyadically constrained and
are chosen from X in a hierarchical fashion as follows. One starts by setting l00 = 0, r00 = 1.
Then

(a) The first breakpoint b00 is selected from X ∩ (0,1).
(b) For each 1≤ l≤ Lmax and 0≤ k < 2l, set

llk = l(l−1)bk/2c, rlk = b(l−1)bk/2c, if k is even,(38)

llk = b(l−1)bk/2c, rlk = r(l−1)bk/2c, if k is odd.

If X ∩ (llk, rlk] 6= ∅, choose blk from X ∩ (llk, rlk].

Let A denote the set of admissible nodes (l, k), in that (l, k) is such that X ∩ (llk, rlk] 6= ∅,
obtained through an instance of the sampling process described above and let

B = (blk)(l,k)∈A

be the corresponding set of breakpoints. Each collection of split locations B gives rise to
nested intervals

Llk = (llk, blk] and Rlk = (blk, rlk].

Starting with the mother wavelet ψB−10 = ψ−10 = I(0,1), one then recursively constructs
wavelet functions ψBlk with a support IBlk = Llk ∪Rlk as

(39) ψBlk(x) =
1√

|Llk|−1 + |Rlk|−1

(
ILlk(x)

|Llk|
− IRlk(x)

|Rlk|

)
.

By construction, the system ΨB
A = {ψB−10,ψ

B
lk : (l, k) ∈ A} is orthonormal in L2[0,1]. With

UH wavelets, the decay of wavelet coefficients βlk = 〈f,ψBlk〉 for a α–Hölder function
f verifies |βBlk| . max{|Llk|, |Rlk|}α+1/2, see Lemma 9. [32] points out that the com-
putational complexity of the discrete UH transform could be unnecessarily large and im-
poses the balancing requirement max{|Llk|, |Rlk|} ≤E(|Llk|+ |Rlk|) ∀(l, k) ∈A, for some
1/2≤E < 1. Similarly, in order to control the combinatorial complexity of the basis system,
we require that the UH wavelets are weakly balanced in the following sense.

DEFINITION 5. A system ΨB
A = {ψB−10,ψ

B
lk : (l, k) ∈ A} of UH wavelets is weakly bal-

anced with balancing constants E,D ∈N∗ if, for any (l, k) ∈A,

(40) max (|Llk|, |Rlk|) =
Mlk

2l+D
for some Mlk ∈ {1, . . . ,E + l}.

Note that in the actual BART implementation, the splits are chosen from sample quantiles
to ensure balancedness (similar to our condition (40)). Quantile splits (Example 2 below)
are a natural way to generate many weakly balanced systems, providing a much increased
flexibility compared to dyadic splits, which correspond to uniform quantiles. Other examples
together with a graphical depiction of the unbalanced Haar wavelets for certain non-dyadic
choices of split points blk are in the Supplement (Figure 9 in Section 9).

EXAMPLE 2 (Quantile Splits). Denote with G a c.d.f with a density g on [0,1] that sat-
isfies ‖g‖∞ ≤ 2D−1/(2E) for E,D > 0 chosen below and ‖1/g‖∞ ≤ Cq for some Cq > 0.
Let us define a dyadic projection of G as

G−1
l (x) := 2−lb2lG−1(x)c,
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FIG 6. Example of quantile splits for a uniform density g(x) and a non-uniform beta density g(x)
using Lmax = 6.

and next define the breakpoints, for l≤ Lmax and 0≤ k < 2l, as

(41) blk =G−1
Lmax+D[(2k+ 1)/2l+1].

The system ΨB
A obtained from steps (a) and (b) with splits (41) is weakly balanced for E =

2 + 3Cq2
D−1. This is verified in Lemma 12 in the Appendix (Section 9.4). Moreover, Figure 6

in illustrates the implementation of the quantile system, where splits are placed more densely
in areas where G(x) changes more rapidly.

The non-dyadic Bayesian CART prior is then defined as follows:

• Step 1. (Basis Generation) Sample B = (blk)0≤k<2l−1,l≤L from ΠB by following the steps
a)–b) around (38) subject to satisfying the balancing condition (40).

• Step 2. (Tree Generation) Independently of B, sample a binary tree T from one of the
priors ΠT described in Section 2.1.

• Step 3. (Step Heights Generation) Given T , we obtain the coefficients (βBlk) from the tree-
shaped prior (19). Using the UH wavelets, the prior on the internal coefficients βBlk can be
translated into a model on the histogram heights β̃Blk through (8).

An example of such a prior is obtained by first randomly drawing quantiles (e.g. by drawing a
density at random verifying conditions as in Example 2) to generate the breakpoints for Step
1 and then following the construction from Section 2 for Steps 2–3. The following theorem
is proved in Section 11.

THEOREM 6. Let ΠB be any prior on breakpoint collections that satisfy weak balanced-
ness according to Definition 5. Let ΠT be the Galton-Watson process prior from Section 2.1
with plk = Γ−l

4

. Consider the tree-shaped wavelet prior (19) with π(βT )∼N (0, I|Text|). Let
f0 ∈HαM as in (24) for some M > 0 and 0<α≤ 1 and define

(42) εn = (logn)1+ 3

2

(
logn

n

) α

2α+1

.

Then, there exist Γ0, c0 > 0 depending only on the constants E,D in the weak balancedness
condition such that, for any Γ≥ Γ0 and c≥ c0, for any Mn→∞, we have, for n→∞

(43) Ef0
Π [ `∞(fT ,β, f0)≥ ‖fT ,β − f0‖∞ >Mnεn |X]→ 0.

In the context of piecewise constant priors, Theorem 6 allows further flexibility in the
choice of the prior as compared to Theorem 1 in that the location of the breakpoints, on the
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top of their structure given by the tree prior, can vary in their location according to its own
specific prior. Whether one can further weaken the balancing condition to still get optimal
multiscale results is an interesting open question that goes beyond the scope of this paper. In
addition, the log-factor in (42) could be further optimized, similarly as in Theorem 1.

5. Discussion. In this paper we explored connections between Bayesian tree-based re-
gression methods and structured wavelet shrinkage. We demonstrated that Bayesian tree-
based methods attain (almost) optimal convergence rates in the supremum norm and obtain
limiting results for functionals, that follow from a non-parametric and adaptive Bernstein–
von Mises theorem. The developed framework also allows us to construct adaptive credible
bands around f0 under self-similarity. To allow for non-dyadically organized splits, we in-
troduced weakly balanced Haar wavelets (an elaboration on unbalanced Haar wavelets of
[38]) and showed that Bayesian CART performs basis selection from this library and attains
a near-minimax rate of posterior concentration under the sup-norm loss.

Although for clarity of exposition we focused on the white noise model, our results can
be extended to the more practical regression model for fixed regular designs (Section 7.1 in
the Supplement) or possibly more general designs under some conditions. We note that the
techniques of proof are non-conjugate in their key tree aspect, which opens the door to appli-
cations in many other statistical settings. A version of Bayesian CART for density estimation
following the ideas of the present work is currently investigated by T. Randrianarisoa as part
of his PhD thesis. More precisely, using the present techniques, it is possible to develop mul-
tiscale rate results for Pólya trees with ‘optional stopping’ along a tree, in the spirit of [66].
Our confidence set construction can be also shown to have local adaptation properties. The
ability of Bayesian CART to spatially adapt in this way will be investigated in a followup
work. Further natural extensions include high-dimensional versions of the model, extending
the multi-dimensional version briefly presented here, as well as forest priors. These will be
considered elsewhere.

6. Proof of Theorem 1. The proof proceeds in three steps. In Section 6.1 we first show
that the posterior concentrates on not too deep trees. In Section 6.2, we then show that the
posterior probability of missing signal vanishes and, finally, in Section 6.3 we show that the
posterior distribution concentrates around signals. To better convey main ideas, we present
the proof for the independent prior βT ∼ N (0,ΣT ) with ΣT = IK for K = |Text| and the
Galton-Watson (GW) tree prior from Section 2.1.1 with a split probability pl. The proof for
the g-prior ΣT = gn(A′T AT )−1 is more technically involved and is presented in Section 10.1
in the Supplement.

We will be working conditionally on the event

(44) A=

{
max

−1≤l≤L,0≤k<2l
ε2
lk ≤ 2 log

(
2L+1

)}
,

where L = Lmax = blog2 nc. Since εlk ∼ N (0,1), this event has a large probability

in the sense that P (Ac) . (logn)−1, which follows from P

[
max

1≤i≤N
|Zi|>

√
2 logN

]
≤

c0/
√

logN for some c0 > 0 when Zi ∼N (0,1) for 1≤ i≤N .

6.1. Posterior Probability of Deep Trees. The first step is to show that, on the event A,
the posterior concentrates on reasonably small trees, i.e. trees whose depth d(T ) is no larger
than an ‘optimal’ depth which depends on the unknown smoothness α. Let us define such a
depth Lc = Lc(α,M) as

(45) Lc =

⌈
log2

(
(8M)

1

α+1/2

(
n

logn

) 1

2α+1

)⌉
.
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LEMMA 1. Under the assumptions of Theorem 1, on the event A,

(46) Π[d(T )> Lc |X]→ 0 (n→∞).

PROOF. Consider one tree T ∈ T such that d(T )≥ 1 and denote with T − a pruned subtree
obtained from T by turning its deepest rightmost internal node, say (l1, k1), into a terminal
node. Then T − = T −int ∪ T

−
ext, where

T −int = Tint\{(l1, k1)}, T −ext = Text\{(l1 + 1,2k1), (l1 + 1,2k1 + 1)} ∪ {(l1, k1)}.

Note that T − is a full binary tree and that the mapping T → T − is not necessarily injective.
Indeed, there are up to 2d(T −) trees T that give rise to the same pruned tree T −. Let Td =
{T ∈ T : d(T ) = d} denote the set of all full binary trees of depth exactly d≥ 1. Then, using
the notation (22),

Π[Td |X] =

∑
T ∈TdWX(T )∑
T ∈TWX(T )

=

∑
T ∈Td

WX(T )
WX(T −)WX(T −)∑
T ∈TWX(T )

,(47)

where
WX(T )

WX(T −)
=

ΠT(T )

ΠT(T −)

∫ ∏
(l,k)∈T ′int enXlkβlk−nβ

2
lk/2dπ(βT )∫ ∏

(l,k)∈T −int
′ enXlkβlk−nβ

2
lk/2dπ(βT −)

.

Let XT = (Xlk : (l, k) ∈ T ′int)′ and βT = (βlk : (l, k) ∈ T ′int)′ be the top-down left-to-right
ordered sequences (recall that we order nodes according to the index 2l + k). Assuming
βT ∼N (0,ΣT ), and denoting K = |Text|= |Tint|+ 1,

WX(T )

WX(T −)
=

ΠT(T )

ΠT(T −)

√
|ΣT − |

2π|ΣT |

∫
enX

′
T βT−β′T [nIK+Σ−1

T ]βT /2dβT∫
enX

′
T −βT−−β

′
T − [nIK−1+Σ−1

T−
]βT−/2dβT −

=
ΠT(T )

ΠT(T −)

√
|ΣT − |
|ΣT |

√
|nIK−1 + Σ−1

T − |
|nIK + Σ−1

T |
en

2X′T (nIK+Σ−1
T )−1XT /2

en
2X′T − (nIK−1+Σ−1

T−
)−1XT−/2

.(48)

Since Xl1k1
corresponds to the node (l, k) with the highest index 2l+k, one can writeXT =

(XT − ,Xl1k1
)′.

We focus on the GW prior from Section 2.1.1 and on the independent prior ΣT = IK and
present proofs for the remaining priors in Section 10.1. Using the expression (48) and since
(l1, k1) is the deepest rightmost internal node in T , and T is of depth d = d(T ) = l1 + 1,
using the definition of the GW prior,

WX(T )

WX(T −)
=

ΠT(T )

ΠT(T −)

∏
(l,k)∈T ′int\T

′−
int

e
n2

2(n+1)
X2
lk

√
n+ 1

=
pd−1(1− pd)2

1− pd−1

e
n2

2(n+1)
X2
l1k1

√
n+ 1

.

Suppose T has depth d(T )> Lc. Then l1 ≥Lc and from the Hölder continuity (23), one gets
8|βl1k1

| ≤
√

logn/n, where Lc is as in (45). Then, conditionally on the event (44),

(49) |Xl1k1
| ≤ 1√

n

[
1

8

√
logn+

√
2 logn+ log 4

]
and thereby 2X2

l1k1
≤ 5 logn/n. Recall that, under the GW-prior, the split probability is pd =

Γ−d. As Γ> 2, one has pd < 1/2 and so, for any d > Lc,

WX(T )

WX(T −)
≤ 2pd−1 exp

(
5n logn

4(n+ 1)
− 1

2
log(1 + n)

)
< 2n3/4pd−1.
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Going back to the ratio (47), we now bound, with a(n,d) =: 2n3/4pd−1,

Π[Td |X]

a(n,d)
≤
∑
T ∈TdWX(T −)∑
T ∈TWX(T )

≤
∑
T ∈T−d 2d(T −)WX(T )∑

T ∈TWX(T )
≤ 2d,

where T−d is the image of Td under the map T → T −, and using that at most 2d(T −) trees
are mapped to the same T −. Using this bound one deduces that, on the event A, with L =
Lmax = log2 n,

Π[d(T )> Lc |X] =

L∑
d=Lc+1

Π[Td |X]≤ 4n3/4
L∑

d=Lc+1

2d−1pd−1

< 4n3/4L exp [−Lc log(Γ/2)] .

As Lc � (logn)/(1 + 2α), the right hand side goes to zero as soon as, e.g. log(Γ/2) >
7(1 + 2α)/8 that is, for α≤ 1, Γ> 2e3.

6.2. Posterior Probability of Missing Signal. The next step is showing that the posterior
probability of missing a node with large enough signal vanishes.

LEMMA 2. Let us denote, for A> 0 to be chosen suitably large,

(50) S(f0;A) =

{
(l, k) : |β0

lk| ≥A
logn√
n

}
.

Under the assumptions of Theorem 1, on the event A from (44),

(51) Π [{T : S(f0;A) * T } |X]→ 0 (n→∞).

PROOF. As before, we present the proof with the GW prior from Section 2.1.1 and for the
independent prior with ΣT = IK , referring to Section 10.1 for the g-prior. Let us first consider
a given node (lS , kS) ∈ S(f0;A), for A to be specified below, and note that the Hölder con-
dition on f0 implies lS ≤ Lc (for n large enough). Let T\(lS ,kS) = {T ∈ T : (lS , kS) /∈ Tint}
denote the set of trees that miss the signal node in the sense that they do not have a cut at
(lS , kS). For any such tree T ∈ T\(lS ,kS) we then denote by T + the smallest full binary tree
(in terms of the number of nodes) that contains T and that splits on (lS , kS). Such a tree can
be constructed from T ∈ T\(lS ,kS) as follows. Denote by (l0, k0) ∈ Text ∩ [(0,0)↔ (lS , kS)]
the external node of T which is closest to (lS , kS) on the route from the root to (lS , kS) in
a flat tree (denoted by [(0,0)↔ (lS , kS)]). Next, denote by T + the extended tree obtained
from T by sequentially splitting all (l, k) ∈ [(l0, k0)↔ (lS , kS)]. Similarly as for T → T −
above, the map T → T + is not injective and we denote by T(lS ,kS) the set of all extended
trees T + obtained from some T ∈ T\(lS ,kS). Now, the posterior probability Π

[
T\(lS ,kS) |X

]
of missing the signal node (lS , kS) equals∑

T ∈T\(lS,kS)
WX(T )∑

T ∈TWX(T )
≤
∑
T ∈T\(lS,kS)

WX(T )
WX(T +)WX(T +)∑

T ∈T(lS,kS)
WX(T )

.(52)

Let us denote by T (j) for j =−1, . . . , s the sequence of nested trees obtained by extending
one branch of T towards (lS , kS) by splitting the nodes [(l0, k0)↔ (lS , kS)], where T + =
T (s) and T = T (−1). Then

(53)
WX(T )

WX(T +)
=

ΠT(T )

ΠT(T +)

s∏
j=0

NX(T (j−1))

NX(T (j))
.
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Under the GW process prior with pl = Γ−l for some Γ> 2, the ratio of prior tree probabilities
in the last expression satisfies

(54)
ΠT(T )

ΠT(T +)
=

1− pl0
pl0

×

(
lS∏

l=l0+1

1

pl(1− pl)

)
× 1

(1− plS+1)2
.

The first term is due to the fact that T + splits the node (l0, k0) while T does not. The second
term in the denominator is the extra prior probability of T + over T that is due to the branch
reaching out to (lS , kS). Along this branch (note that this is the smallest possible branch), one
splits only one daughter node for each layer l (thereby the term pl) and not the other (thereby
the term 1− pl). The third term above is due to the fact that the two daughters of (lS , kS) are
not split. The quantity (54) is bounded by 2lS−l0+2Γ(l0+lS)(lS−l0+1)/2 < 4Γ2l2S .

Assuming ΣT = IK , we can write for any T in T\(lS ,kS)

(55)
WX(T )

WX(T +)
=

ΠT(T )

ΠT(T +)

∏
(l,k)∈T +\T

√
n+ 1

e
n2

2(n+1)
X2
lk

.

Using the definition of the model and the inequality 2ab ≥ −a2/2 − 2b2 for a, b ∈ R, we
obtain X2

lSkS
≥ (β0

lSkS
)2/2− ε2

lSkS
/n. On the event A, one gets

exp

{
− n2

2(n+ 1)
X2
lSkS

}
≤ exp

{
−
n2(β0

lSkS
)2

4(n+ 1)
+
n(log 2)(log2 n+ 1)

n+ 1

}
.

The term in (55) can be thus bounded, for any T ∈ T\(lS ,kS), by

WX(T )

WX(T +)
≤CΓ2l2S exp

{
3(lS − l0 + 1)(log2 n+ 1)

2
− nA2 log2 n

4(n+ 1)

}
=: b(n, lS).

We now continue to bound the ratio (52). For each given T +, there are at most lS trees
T̃ ∈ T\(lS ,kS) which have the same extended tree T̃ + = T +. This is because T + is obtained
by extending one given branch by adding no more than lS nodes. Using this fact, (52), and
the definition of b(n, lS) on the last display,

Π
[
T\(lS ,kS) |X

]
b(n, lS)

≤
∑
T ∈T\(lS,kS)

WX(T +)∑
T ∈T(lS,kS)

WX(T )
≤ lS

∑
T ∈T(lS,kS)

WX(T )∑
T ∈T(lS,kS)

WX(T )
.

By choosing A=A(Γ)> 0 large enough, this leads to

Π
[
T\(lS ,kS) |X

]
. e(3/2+3 log Γ)(log2 n+1)2−A2

8
log2 n . e−

A2

16
log2 n.

Then the result follows as, on the event A,∑
(lS ,kS)∈S(f0,A)

Π
[
T\(lS ,kS) |X

]
. 2Lc+1e−

A2

16
log2 n . e−

A2

32
log2 n→ 0.

6.3. Posterior Concentration Around Signals. Let us now show that the posterior does
not distort large signals too much.

LEMMA 3. Let us denote, for Lc as in (45) and S(f0;A) as in (50),

(56) T = {T : d(T )≤Lc, S(f0;A)⊂ T }.
Then, on the event A, for some C ′ > 0, uniformly over T ∈ T,

(57)
∫

max
(l,k)∈T ′int

|βlk − β0
lk|dΠ[βT |XT ]<C ′

√
logn

n
,

with XT = (Xlk : (l, k) ∈ T ′int)′ the ordered vector of active responses.
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PROOF. For a given tree T with K = |Text| leaves, we denote by βT = (βlk : (l, k) ∈
T ′int)′ the vector of wavelet (internal node) coefficients, with XT the corresponding re-
sponses and with εT the white noise disturbances. It follows from (21) that, givenXT (so for
fixed εlk) and T , the vector βT has a Gaussian distribution βT |XT ∼N (µT , Σ̃T ), where
Σ̃T = (nIK + Σ−1

T )−1 and µT = nΣ̃T

(
β0
T + 1√

n
εT

)
. Next, using Lemma 7, we have

E
[
‖βT −β0

T ‖∞ |XT
]
≤ ‖µT −β0

T ‖∞ +
√

2 σ̄2 logK + 2
√

2πσ̄2,(58)

where σ̄2 = max diag(Σ̃T ). Focusing on the first term, we can write

‖µT −β0
T ‖∞ ≤

√
n‖Σ̃T εT ‖∞ + ‖(nΣ̃T − IK)β0

T ‖∞.(59)

Using the fact (I+B)−1 = I−(I+B−1)−1, we obtain nΣ̃T −IK =−(IK +nΣT )−1. From
now on, we focus on the simpler case ΣT = IK and refer to Section 10.1.3 (Supplement) for
the proof for the g-prior. With ΣT = IK we can write ‖(nΣ̃T − IK)β0

T ‖∞ = ‖β0
T ‖∞

1+n <C/n.

Using the fact that ‖εT ‖∞ .
√

logn on the eventA, we obtain
√
n‖Σ̃T εT ‖∞ .

√
logn
n . The

sum of the remaining two terms in (58) can be bounded by a multiple of
√

logn/n by noting
that σ̄2 = 1/(n+ 1). The statement (57) then follows from (58).

6.4. Supremum-norm Convergence Rate. Let us write f0 = fLc0 + f
\Lc
0 , where fLc0

is the L2–projection of f0 onto the first Lc layers of wavelet coefficients. Under the
Hölder condition the equality holds pointwise and ‖f\Lc0 ‖∞ ≤

∑
l>Lc 2l/22−l(1/2+α) .

(logn/n)α/(2α+1).
The following inequality bounds the supremum norm by the `∞–norm,

‖f − f0‖∞ ≤
∑
l≥−1

max
0≤k<2l

|βlk − β0
lk| ·

∥∥∥ ∑
0≤k<2−l

|ψlk|
∥∥∥
∞

≤ |〈f − f0,ϕ〉|+
∑
l≥0

2l/2 max
0≤k<2l

|βlk − β0
lk|= `∞(f, f0).(60)

We use the notation S(f0;A),T as in (50) and (56) and

(61) E = {fT ,β : T ∈ T}.

Using the definition of the event A from (44), one can write

Ef0
Π[fT ,β : ‖fT ,β − f0‖∞ > εn |X]≤ Pf0

[Ac] +Ef0
Π[Ec |X]

+Ef0
{Π[fT ,β ∈ E : ‖fT ,β − f0‖∞ > εn |X]IA} .(62)

By Markov’s inequality and the previous bound (60),

Π[fT ,β ∈ E : ‖fT ,β − f0‖∞ > εn |X]IA ≤ ε−1
n

∫
E
‖fT ,β − f0‖∞dΠ[fT ,β |X]IA

≤ ε−1
n

∑
l≤Lc

2l/2
{∫
E

max
0≤k<2l

|βlk − β0
lk|dΠ[fT ,β |X]IA

}
+ ε−1

n ‖f
\Lc
0 ‖∞.

With T as in (56), the integral in the last display can be written, for l≤Lc,∫
E

max
0≤k<2l

|βlk − β0
lk|dΠ[fT ,β |X] =

∑
T ∈T

π[T |X]

∫
max

0≤k<2l
|βlk − β0

lk|dΠ[βT |XT ]
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=
∑
T ∈T

π[T |X]

∫
max

(
max

0≤k<2l, (l,k)/∈T ′int
|β0
lk|, max

0≤k<2l, (l,k)∈T ′int
|βlk − β0

lk|
)
dΠ[βT |XT ]

≤min

(
max

0≤k<2l
|β0
lk|,A

logn√
n

)
+
∑
T ∈T

π[T |X]

∫
max

0≤k<2l, (l,k)∈T ′int
|βlk − β0

lk|dΠ[βT |XT ],

where we have used that on the set E , selected trees cannot miss any true signal larger than
A logn/

√
n. This means that any node (l, k) that is not in a selected tree must satisfy |β0

lk| ≤
A logn/

√
n.

Let L∗ = L∗(α) be the integer closest to the solution of the equation in L given by
M2−L(α+1/2) =A logn/

√
n. Then, using that f0 ∈H(α,M),∑

l≤Lc

2
l

2 min

(
max

0≤k<2l
|β0
lk|,A

logn√
n

)
≤
∑
l≤L∗

2
l

2A
logn√
n

+
∑

L∗<l≤Lc

2
l

2M2−l(
1

2
+α)

≤C2L
∗/2A

logn√
n

+C2−L
∗α ≤ C̃2−L

∗α ≤ c
(
n−1 log2 n

) α

2α+1 .(63)

Using Pf0
[Ac] +Ef0

Π[Ec |X] = o(1) and Lemma 3, one obtains

Ef0
Π[fT ,β : ‖fT ,β − f0‖∞ > εn |X]≤ o(1)+

ε−1
n

∑
l≤Lc

2l/2

[
min

(
max

0≤k<2l
|β0
lk|,A

logn√
n

)
+C ′

√
logn

n

]
+ ε−1

n ‖f
\Lc
0 ‖∞

≤ o(1) + ε−1
n

[
c

(
log2 n

n

) α

2α+1

+ 2C ′
√

2Lc logn

n

]
+ ε−1

n ‖f
\Lc
0 ‖∞

≤ o(1) + ε−1
n

[
c(logn)α/(2α+1) + 2C ′

]( logn

n

) α

2α+1

+ ε−1
n ‖f

\Lc
0 ‖∞

for some C ′ > 0. Choosing εn =Mn

(
(log2 n)/n

) α

2α+1 , the right hand side goes to zero for
any arbitrarily slowly increasing sequence Mn→∞.
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7. Additional results.

7.1. Nonparametric regression: ‖·‖∞–rate and bands. Assume outcomes Y = (Y1, . . . , Yn)′

arising from

(64) Yi = f0(ti) + εi, εi
iid∼ N (0,1), i= 1, . . . , n= 2Lmax+1

where f0 is an unknown regression function and {ti ∈ [0,1] : 1 ≤ i ≤ n} are fixed design
points. For simplicity we consider a regular grid, i.e. ti = i/n for 1≤ i≤ n and assume n is
a power of 2. Irregularly spaced design points could also be considered with more technical
proofs. Below we show that many results for Bayesian CART posteriors obtained in the white
noise model in the main paper carry over to the regression model (64). Although the white
noise and regression models can be shown to be ‘asymptotically equivalent’ in the Le Cam
sense under smoothness assumptions, this does not enable to transfer results for posterior
distributions from one model to the other.

To derive a supremum norm contraction rate in this setting, we follow an approach close in
spirit to the practically used Haar wavelet transform. Below, we put a prior on the empirical
wavelet coefficients of the regression function f . Indeed, those coefficients can be directly
related to the values f(ti).

Let X = (xij) denote the (n× p) regression matrix of p = 2Lmax = n/2 regressors con-
structed from Haar wavelets ψlk up to the maximal resolution Lmax, i.e., for 1≤ i≤ n,

xij =

{
ψ−10(ti) = 1 for j = 1

ψlk(ti) for j = 2l + k+ 1.

The columns have been ordered according to the index 2l + k (from smallest to largest).
Note that the matrix X is orthogonal and X ′X = nIn. In the sequel we denote F0 =



28

(f0(t1), . . . , f0(tn))′ the vector of realized values of the true regression function at the de-
sign points. Also, we set, for two functions f, g defined on [0,1],

‖f − g‖∞,n = max
1≤i≤n

|f(ti)− g(ti)|.

For given indexes l, k, the empirical wavelet coefficient b0lk of f0 is

(65) b0lk = n−1
n∑
i=1

f0(ti)ψlk(ti).

Let b0 = (b0lk) denote the vector of ordered empirical coefficients. Since X−1 = X ′/n, we
see that b0 =X−1F0 or F0 =Xb0, so model 64 can be rewritten, with ε= (ε1, . . . , εn)′,

(66) Y =Xb0 + ε.

Setting Z =X−1Y and η =
√
nX−1ε, we have

(67) Z = b0 + η/
√
n.

Since η/
√
n∼N (0,X ′X/n) is a vector of iidN (0,1) variables (asX ′X = nI), the vectorZ

follows a Gaussian sequence model truncated at the nth observation. On the other hand, note
that the likelihood in model (66) is proportional to exp(−‖Y −Xb0‖2/2) = exp(−n‖Z −
b0‖2/2). Therefore, the posterior distribution induced by putting a prior distribution on b0

in model (66) is the same as the one obtained by choosing the same prior on b0 in model
(67). Let us denote by Πb[· |Y ] this posterior distribution on vectors b. Theorem 7 below
states that its convergence rate in terms of the maximum norm ‖f − f0‖∞,n is the same as
the rate obtained in the main paper. If one rather wishes to control ‖f − f0‖∞, it is possible
to produce a procedure that yields a rate for the whole function f by interpolation as follows.

Let I be the map that takes a vector of values ϕ := (f(ti)) of size n and maps it to the
piecewise-linear function I(ϕ) on [0,1] that linearly interpolates between the values f(ti)
(for definiteness, assume I(ϕ) takes the constant value f(t1) on [0, t1]). Further define, for
χ the map χ(b) = I(Xb),

(68) Π̄Y = Πb[· |Y ] ◦ χ−1.

In words, Π̄ is simply the distribution on functions on [0,1] induced as follows: sampling
from the posterior Πb[· |Y ] induces a posterior on vectors (f(ti)), from which one obtains a
distribution on functions f ’s by the linear interpolation I .

THEOREM 7. Let Πb denote the prior distribution on empirical wavelet coefficients in
model (64)/ (66) defined in the same way as the prior in Theorem 1, with εn the rate as in
that statement. Then, for Πb[· |Y ] the corresponding posterior distribution, for any α ∈ (0,1],
M > 0 and any sequence Mn→∞,

sup
f0∈HαM

Ef0
Πb[f : ‖f − f0‖∞,n >Mnεn |Y ]→ 0.

and, for Π̄Y the distribution defined in (68),

sup
f0∈HαM

Ef0
Π̄Y [f : ‖f − f0‖∞ >Mnεn]→ 0.

The proposed approach uses the relationship between function values and empirical
wavelet coefficients given by the Haar transform. It is worth noticing that it naturally yields
a result on the canonical empirical max-loss ‖ · ‖∞,n and avoids regularity conditions on the
true f0 (such as a minimal smoothness level α > 1/2). This approach could be extended to
handle non-equally spaced designs and/or a smoother wavelet basis, under appropriate con-
ditions on the matrix X ′X . This is beyond the scope of this paper, but we refer to the work
[68] for results in this vein for spike-and-slab priors.
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REMARK 1. Instead of a continuous linear interpolation I as above, one may use in-
stead a piecewise constant interpolation: defining J ((f(ti)) to be the histogram that takes
the value f(ti) on [ti, ti+1), Theorem 7 holds for Π̃Y defined in a similar way as Π̄Y but with
J in place of I , as can easily been seen from the proof of Theorem 7.

REMARK 2. A seemingly different approach to estimating f consists in putting a prior
distribution directly on the function f via putting a prior distribution on its (Haar–) wavelet
coefficients. Note however that the induced prior on f(ti) is the same as the one above, since
f(ti) =

∑
l,k βlkψlk(ti) can be rewritten F =Xβ since by definition the prior does not put

mass on βlk for l > Lmax. One may also note that for a piecewise constant function over
intervals [ti, ti+1), empirical Haar–wavelet coefficients (the blk’s) and Haar–wavelet coeffi-
cients (the βlk’s) coincide. This implies that the posterior distributions induced on the vector
(f(ti)) through both approaches coincide. Since posterior samples are piecewise constant
on dyadic intervals, the posterior distribution on f ’s obtained from using the prior on βlk’s
as above coincides with the posterior Π̃Y from Remark 1.

We now turn to the problem of construction of confidence bands for f in the regression
model (64). We follow the approach above and model the empirical wavelet coefficients b0

in (66)–(67) via the tree prior Πb as in Theorem 7. Recall Definition 4 of the median tree
associated with a posterior over trees. Let T ∼Y denote the median tree associated with the
posterior distribution Πb[· |Y ]. Given the observed noisy empirical wavelet coefficients Zlk
as in (67), let us define an empirical median tree estimator f̃T over gridpoints (ti) as

(69) f̃T (ti) =
∑

(l,k)∈T ∼Y

Zlkψlk(ti).

Define, for some vn→∞ to be chosen,

(70) σ̃n = σ̃n(Y ) = max
1≤i≤n

Lmax∑
l=0

vn

√
logn

n

2l−1∑
k=0

I(l,k)∈T ∼Y |ψlk(ti)|.

A credible band with radius σ̃n(Y ) as in (70) and center f̃T as in (69) is

(71) Cen =
{
f : ‖f − f̃T ‖∞,n ≤ σ̃n(Y )

}
.

We obtain in the next statement the analogue of Theorem 3 for regression. The confidence
band is in terms of the natural empirical norm ‖ · ‖∞,n. We slightly update the definition of
self-similiar functions by restricting to f ’s inHαM in Definition 3, instead ofH(α,M) defined
from wavelet coefficients. This is for technical convenience because HαM is more natural for
controlling empirical wavelet coefficients. We denote by H′SS(α,M,ε) the corresponding
class (note that the classes are nearly the same; we could also have opted for taking HαM in
Definition 3, which would have avoided the distinction).

THEOREM 8. Let 0< α1 ≤ α2 ≤ 1, M ≥ 1 and ε > 0. Let Πb be a prior as in the state-
ment of Theorem 7. Let σ̃n be as in (70) with vn such that (logn)1/2 = o(vn) and let f̃T de-
note the median tree estimator (69). Then for Cen defined in (71), uniformly over α ∈ [α1, α2],
as n→∞,

inf
f0∈H′SS(α,M,ε)

Pf0
(f0 ∈ Cen)→ 1.

For every α ∈ [α1, α2] and uniformly over f0 ∈ HSS(α,M,ε), the diameter |Cen|∞,n =
supf,g∈Cen ‖f − g‖∞,n and the credibility of the band verify, as n→∞,

|Cen|∞,n =OPf0 ((n/ logn)−α/(2α+1)vn),(72)

Π[Cen |Y ] = 1 + oPf0 (1).(73)
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FIG 7. (Left) Pointwise 95% credible intervals and 95%-L∞ credible intervals (gray area). (Right)
Non-intersected multiscale 95% credible band (77) obtained with wl = l1/2+0.01 (gray area) and the
‘optimal’ band (32) obtained with vn = 1. (Upper) The true function is f0(x) = 2

√
10x. (Lower) The

true function is f0(x) = (4x− 1)I(x≤ 1/2) + (−2x+ 2)I(x > 1/2).

The confidence band Cen is slightly conservative in the sense that its coverage and credi-
bility go to 1 as n→∞. By intersecting this band with an appropriate ball, using a nonpara-
metric BvM theorem, one can build a band with desired prescribed coverage 1− γ, γ > 0, as
demonstrated in Section 7.3. The latter ‘intersection’-band is actually the one we implement
in simulations in the next section and illustrated in Figure 7.1.

7.2. Numerical examples. We highlight the practicality of the confidence bands pre-
sented in Section 3.2 (and the following Section 7.3.5) on numerical examples. We imple-
ment Dyadic Bayesian CART as in [22] using the standard Metropolis-Hastings algorithm
with a proposal distribution consisting of two steps: grow (splitting a randomly chosen bot-
tom node) and prune (collapsing two children bottom nodes into one). The implementation
is fairly straightforward due to immediate access to the posterior tree probabilities through
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a variant of (22) (these closed-form calculations can be easily updated for non-parametric
regression).

We illustrate uncertainty quantification for f0 using the intersection band (78) as well as
the “optimal” band (32). The intersection construction yields exact asymptotic coverage; it
uses up more posterior information and in this sense can be viewed as more Bayesian in
spirit. Kolyan Ray [53], Section 6, implemented the intersection-credible set in the case of
spike-and-slab priors and the white noise model. Here we provide an implementation in the
regression model for tree priors. For the computation of the empirical median tree estimator
in (69), one can easily identify nodes (l, k) that have occurred in at least 50% of posterior
samples. Regarding the computation of Rn in (77), the radius can be approximated using
the 95% quantile of the posterior samples of the multiscale norm ‖ · ‖M(w)–norm (acting on
coefficients up to level Lmax). Therefore, we see that while the confidence band in (78) may
at first look computationally cumbersome, it can be readily obtained from posterior samples.

We generate n = 211 observations from (64) with f0(x) = 2
√

10x (top row in Figure 7)
and f0(x) = (4x−1)I(x≤ 1/2)+(−2x+2)I(x > 1/2) (bottom row in Figure 7). We choose
j0(n) = 4 and wl = l1/2+ε (the multiscale weighting sequence) with ε= 0.01 and Γ = 1.01
(the splitting probability parameter of the GW process prior). We run 2 000 iterations of the
MH sampler with 500 burnin samples. One tempting approach to uncertainty quantification
is computing the pointwise 95% credible intervals for each given ti. These intervals are read-
ily available from the posterior samples of the bottom node coefficients (transformed from
the samples of the wavelet coefficients via the pinball formula (13)) and are portrayed in
Figure 7 on the left (red dotted lines). For both functions f0 these intervals are too narrow
to uniformly capture f0 (depicted in a green dashed line). For comparisons, we also plot
the 95%–L∞–credible bands (blue dashed lines), which have better coverage. The L∞–band
(gray area) is somewhat similar to the multiscale credible band but its coverage properties
are not theoretically understood.

In comparison, the (not-intersected) multiscale 95% credible band in (77) (Figure 7 on
the right; gray area marked with blue dotted lines) is successful at containing the true func-
tion uniformly. These sets resemble the L∞–sets. Figure 7 plots the intersection band which
has exact asymptotic coverage as well as the ‘optimal’ set (32) choosing vn = 1 (red dashed
lines). Note, however, that this intersecting band is smaller than the band analyzed in The-
orem 8 which yields even better coverage. The centering in Figure 7 (right) is the median
tree estimator. Similarly as in [60], we have chosen the blow-up factor vn = 1 which yields
a set (32) which contains the multiscale band. The intersection uses up substantial posterior
information and stabilizes the construction. Out of curiosity, we tried different values vn and
found that the choice vn = 0.5 roughly corresponds to the multiscale band.

7.3. Adaptive nonparametric BvM and applications.

7.3.1. From ‖ · ‖∞ to BvM. Let us now formalize the notion of a nonparametric BvM
theorem in multiscale spaces following [18] (we refer also to [17] for more background and
discussion of the, different, L2–type setting). Such spaces are defined through the speed of
decay of multiscale coefficients βlk = 〈f,ψlk〉. For a monotone increasing weighting se-
quence w = (wl)

∞
l=0, with wl ≥ 1 and wl/

√
l→∞ as l→∞ (such a w = (wl)

∞
l=0 is called

admissible) we define the following multiscale sequence space

M(w) =

{
x= (xlk) : ‖x‖M(w) := sup

l

maxk |xlk|
wl

<∞
}
.

We consider a separable closed subspace ofM(w) defined as

M0(w) =

{
x ∈M(w) : lim

l→∞
max
k

|xlk|
wl

= 0

}
.
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Defining random variables glk =
∫ 1

0 ψlk(t)dW (t) ∼ N (0,1), according to Proposition 2 in
[18], the Gaussian white noise W = (glk) defines a tight Gaussian Borel measure in the space
M0(w) for admissible sequences w. The convergence in distribution of random variables in
the multiscale space M0(w) is metrised via the bounded Lipschitz metric βM0(w) defined
below. For µ,η probability measures on a metric space (S,d) define

βS(µ,η) = sup
F :‖F‖BL≤1

∣∣∣∣∫
S
F (x)(dµ(x)− dη(x))

∣∣∣∣ ,
‖F‖BL = sup

x∈S
|F (x)|+ sup

x 6=y,x,y∈S

|F (x)− F (y)|
d(x, y)

.

Denote with X = X(n) = (Xlk : l ∈N0,0≤ k < 2l),whereXlk satisfy (2). Let Π̃n = Πn◦τ−1
X

be the image measure of Π(· |X) under τX : f →
√
n(f −X). Namely, for any Borel set B

we have

(74) Π̃n(B) = Π
(√
n(f −X) ∈B |X

)
.

The following Theorem characterizes the adaptive nonparametric Bernstein-von Mises be-
havior of posteriors under the Bayesian Dyadic CART. In the result below, one assumes that
trees sampled from ΠT contain all nodes (j, k) for all j ≤ j0(n)→∞ slowly. Note that this
constraint is easy to accommodate in the construction: for the GW process, one starts stop-
ping splits only after depth j0(n), while for priors (5), it suffices to constrain the indicator
IT ∈T to trees that fill all first j0(n) layers.

THEOREM 9. (Adaptive nonparametric BvM) Let M0 =M0(w) for some admissible
sequence w = (wl). Assume the Bayesian CART priors ΠT from Theorem 1 constrained to
trees that fit j0(n) layers, i.e. γlk = 1 for l ≤ j0(n), for some strictly increasing sequence
j0(n)→∞ that satisfies wj0(n) ≥ c logn for some c > 0. Consider tree-shaped priors as
in Theorem 1 (or using an S–regular wavelet basis, S ≥ 1). Then the posterior distribution
satisfies the weak Bernstein-von Mises phenomenon inM0 in the sense that

Ef0
βM0

(Π̃n,N )→ 0 as n→∞,

where N is the law of W inM0.

This result states an adaptive nonparametric BvM result, in the sense that the prior it con-
siders also leads to an adaptive nonparametric convergence rate in L∞ (optimal up to log
terms). It is only the second result of this kind after the one derived by Ray in [53]. This
statement, proved in Section 12.3, can be shown, for example, by verifying the conditions
in Proposition 6 of [18] (appropriate ‘tightness’ and convergence of finite dimensional dis-
tributions). The first tightness condition pertains to contraction in theM0–space, which can
be obtained from our ‖ · ‖∞–results. In order to attain BvM, we need to modify the prior to
always include a few coarsest dense layers in the tree (similarly as [53]). Such trees are semi-
dense, where sparsity kicks in only deeper in the tree after j0(n) dense layers have already
been fitted. This enables one to derive the convergence of finite dimensional distributions to
suitable Gaussian distributions. For the independent wavelet prior, the last point follows eas-
ily from results in [17]. For the g–prior on trees corresponding to actual Bayesian CART, it
requires a completely new argument based on the conditional posteriors given possible trees.
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7.3.2. Application 1: multiscale confidence sets. First, let us consider multiscale credible
balls for f0, which we will use in the next subsection for refining the band construction used
in the main paper. Such multiscale balls consist of functions f that simultaneously satisfy
multi-scale linear constraints (see e.g. (5) in [18]):

(75) Bn =
{
f : ‖f −X‖M(w) ≤Rn/

√
n
}
,

where Rn is chosen such that Π[Bn |X] = 1−γ (or the smallest radius such that Π[Bn |X]≥
1− γ), i.e. Bn is a credible set of level 1− γ.

PROPOSITION 1. Let f0 ∈HαM for some α ∈ (0,1],M > 0. Then for Bn as in (75),

Pf0
(f0 ∈ Bn)→ 1− γ, (as n→∞).

The proof of the Proposition 1 is a consequence of the fact that the nonparametric BvM in
the multiscale space holds: one combines Theorem 9 and Theorem 5 in [18].

7.3.3. Application 2: BvM for functionals. As a second application of Theorem 9, we
derive confidence bands for F (t) :=

∫ t
0 f(x)dx,0≤ t≤ 1: those result from taking quantile

credible bands in the following limiting distribution result. This application is described in
Theorem 4 and the (short) proof is in Section 10.5.

7.3.4. Application 3: multiscale confidence bands in the white noise model. Let us first
consider the case of the white noise model. For Rn as in (75), σn(X) as in (31) and f̂T as in
(30), let us set

(76) CMn =
{
f : ‖f −X‖M(w) ≤Rn/

√
n , ‖f − f̂T ‖∞ ≤ σn(X)

}
.

Let us recall the definition of the self-similarity class HSS(α,M,ε) from Definition 3.

COROLLARY 1. Let 0<α1 ≤ α2 ≤ 1, M ≥ 1, γ ∈ (0,1) and ε > 0. Let the prior Π and
the sequence (wl) be as in the statement of Theorem 9. Take Rn as in (75), σn as in (31) with
vn such that (logn)1/2 = o(vn) and let f̂T denote the median tree estimator (30). Then for
CMn defined in (76), uniformly over α ∈ [α1, α2],

sup
f0∈HSS(α,M,ε)

|Pf0
(f0 ∈ CMn )− (1− γ)| → 0,

as n→∞. In addition, for every α ∈ [α1, α2] and uniformly over f0 ∈ HSS(α,M,ε), the
diameter |CMn |∞ = supf,g∈CMn ‖f − g‖∞ and the credibility of the band verify, as n→∞,

|CMn |∞ =OPf0 ((n/ logn)−α/(2α+1)vn),

Π[CMn |X] = 1− γ + oPf0 (1).

This result states that by intersecting the confidence set Cn in (32) with the ball Bn from
(75), one obtains a set with confidence (and credibility) at the prescribed level 1 − γ. It
directly follows by applying Proposition 1 (which guarantees that Bn has confidence level
1−γ and hence also CMn , since Cn has confidence that goes to 1) and the fact that by definition
Bn has credibility 1− γ (and hence also CMn asymptotically).
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7.3.5. Application 4: multiscale confidence bands in regression. Now consider the re-
gression setting (64). Let us define a discrete analogue for the multiscale confidence ball
(75). Recall that in this setting the observations are the Y ’s and that X here denotes the ma-
trix of ψlk(ti)’s as introduced in Section 7.1. Denote F̃ = (f̃T (ti))1≤i≤n for f̃T the empirical
median tree estimator. Set

(77) Bbn = {b= (blk)l≤Lmax,k : ‖b−X−1F̃‖M(w) ≤Rn/
√
n},

where Rn is defined in such a way that Π[Bbn |Y ] = 1− γ (or possibly ≥ 1− γ) and where
in slight abuse of notation ‖ · ‖M(w) stands for the multiscale norm acting on coefficients up
to level Lmax only (i.e. the supremum over l in the definition of ‖ · ‖M(w) is replaced by the
maximum over l≤ Lmax). For Cen as in (71), recalling the notation F = (f(ti))

′
1≤i≤n, define

(78) C̃Mn = Cen ∩
{
f : X−1F ∈ Bbn

}
.

COROLLARY 2. Consider a prior as in Theorem 9, and let Cen be constructed as in The-
orem 8. For γ > 0, let C̃Mn be defined as in (78). The set C̃Mn verifies the properties stated
in Theorem 8 except that both confidence and credibility go to the nominal level 1 − γ as
n→∞.

This result is obtained in a similar way as for Corollary 1: first, one notes that a BvM result
similar to Theorem 9 in white noise holds (details are omitted, the proof being similar). This
implies that the ball Bbn in (77) has confidence going to nominal level 1− γ. One concludes
by using Theorem 8, that ensures that Cen, and then in turn C̃Mn , has the desired properties in
terms of coverage, confidence and credibility.

7.4. Multi-dimensional extensions. Our tree-shaped wavelet reconstruction generalizes
to the multivariable case, where a fixed number d≥ 1 of covariate directions are available for
split. We outline one such generalization using the tensor product of Haar basis functions ψlk
from (3) defined as

Ψlk(x) := ψlk1
(x1) · · ·ψlkd(xd)

for l ≥ 0 and k = (k1, . . . , kd)
′ with 0 ≤ ki ≤ 2l − 1 for i = 1, . . . , d, where Ψ−10(x) =

I(0,1]d(x). These wavelet tensor products can be associated with d-ary trees (as opposed to
binary trees), where each internal node has 2d children. The nodes in a d-ary tree satisfy a
hierarchical constraint: (l,k) ∈ T , l ≥ 1⇒ (l − 1,bk/2c) ∈ T , where the floor operation is
applied element-wise. This intuition can be gleaned from Figure 8 which organizes tensor
wavelets with l = 0,1 and d= 2 in a flat 4-ary tree. We assume that f0 belongs to α-Hölder
functions on [0,1]d for 0<α≤ 1 defined as

(79) Hα,dM :=

{
f ∈ C([0,1]d) : ‖f‖∞ + sup

x6=y

|f(x)− f(y)|
‖x− y‖α

≤M

}
.

The multiscale coefficients β−10 = 〈f0,Ψ−10〉 and

βlk = 〈f0,Ψlk〉=
∫

[0,1]d
f0(x)Ψlk(x)dx.

can be verified to satisfy, for some universal constant C > 0,

(80) |βlk| ≤C2−l(
1

2
+α)d.
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FIG 8. A plot of tensor Haar wavelets. The top figure plots Ψ0 (0,0)′ and the bottom figures are
Ψ1 (0,0)′ ,Ψ0 (1,0)′ ,Ψ0 (0,1)′ ,Ψ0 (1,1)′ (from left to right).

Similarly as in Section 2.2, denoting with T ′int the collection of internal nodes (l,k) in a
d-ary tree (including the node (−1,0)), one then obtains a wavelet reconstruction fT ,β(x) =∑

(l,k)∈T ′int βlkΨlk(x), where coefficients βlk can be assigned, for instance, a Gaussian in-
dependent product prior. There are several options for defining the d–dimensional version of
the prior ΠT. Restricting to Galton-Watson type priors, the most direct extension, for each
node (l,k) to be potentially split, either does not split it with probability 1− Γ−l, or splits it
into 2d children, leading to a full 2d–ary tree. Another, more flexible option, is to split (l,k)
into a random number of children inbetween 0 and 2d, where a split in each specific direction
occurs with probability Γ−l, for Γ a large enough constant.

Assuming that d is fixed as n→∞, the general proving strategy of Theorem 1 can still
be applied to conclude `∞–posterior convergence at the rate εn = (logn/n)α/(2α+d) logδ n
for some δ > 0. The proof requires the threshold Lc in (45) to be modified as satisfying
2Lc � (n/ logn)1/(2α+d).

The basis we consider here is a tensor product where, within each tree layer, splits occur
along each direction simultaneously. This is not necessarily what Bayesian CART does in
practice. Multivariate Bayesian CART can be more transparently translated using anisotropic
Haar wavelet basis functions which more closely resemble recursive partitioning (as ex-
plained in [28]). Our approach extends more naturally to the tensor product basis, but it
could be in principle applied to other basis functions such as this one.

8. Basic Lemmata.

8.1. Properties of the pinball matrix (14). WhileA′T AT is not proportional to an identity
matrix (for trees other than flat trees), it does have a nested sparse structure which will be
exploited in our analysis.

PROPOSITION 2. Denote with (l1, k1) the deepest rightmost internal node in the tree T ,
i.e. the node (l, k) ∈ Tint with the highest index 2l + k. Let T − be a tree obtained from T by
turning (l1, k1) into a terminal node. Then

(81) A′T AT =

(
A′T −AT − + vv′ 0

0′ 2l1+1

)
for a vector of zeros 0 ∈ R|Text|−1 and a vector v ∈ R|Text|−1 obtained from AT by first
deleting its last column and then transposing the last row of this reduced matrix.



36

PROOF. The index (l1, k1), by definition, corresponds to the last entry in the vector βT .
We note that T −int = Tint\{(l1, k1)} and T −ext = Text\{(l1 + 1,2k1), (l1 + 1,2k1 + 1)} ∪
{(l1, k1)}. The matrix AT − can be obtained from AT by deleting the last column of AT
and then deleting the last row, further denoted with v′. The desired statement (81) is obtained
by noting that the last column of AT (associated with βl1,k1

) is orthogonal to all the other
columns. This is true because (a) this column has only two nonzero entries that correspond to
the last two siblings {(l1 + 1,2k1), (l1 + 1,2k1 + 1)}, (b) the last two rows of AT differ only
in the sign of the last entry because {(l1 + 1,2k1), (l1 + 1,2k1 + 1)} are siblings and share
the same ancestry with the same weights up to the sign of their immediate parent. Finally, the
entry 2l1+1 follows from (13).

COROLLARY 3. Under the prior (17), the coefficient βlk of any internal node (l, k) which
has terminal descendants is independent of all the remaining internal coefficients.

PROOF. Follows directly from Prop. 2 after reordering the nodes.

The following proposition characterizes the eigenspectrum of A′T AT which will be ex-
ploited in our proofs.

PROPOSITION 3. The eigenspectrum of A′T AT consists of the diagonal entries of D =

diag(d̃lk,lk) =AT A
′
T in (15). Moreover, the diagonal entries diag(A′T AT ) = {dlk,lk}lk∈Tint

satisfy d−10,−10 = |Text| and dlk,lk =
∑d(T )

j=l+1 2j
∑2j−1

m=0 I[βlk ∈ [(0,0) ↔ (j,m)]T ] with
[(0,0)↔ (l, k)]T := {(0,0), (1, bk/2l−1c), . . . , (l− 1, bk/2c)}.

PROOF. The first statement follows from (15) and the fact that A′T AT and AT A′T have
the same spectrum, and the second statement from (13).

8.2. Other lemmata.

LEMMA 4. Assume that a square matrix A is diagonally dominant by rows (i.e., akk >∑
j 6=k |akj |). Then

‖A‖∞ <
1

mink(|akk| −
∑

j 6=k |akj |)
.

PROOF. Theorem 1 in Varah [62].

LEMMA 5. For an invertible matrix M ∈Rp×p and v ∈Rp we have

(M−1 + vv′/gn)−1 =M − Mvv′M

gn + v′Mv
for gn > 0.

PROOF. Follows immediately by direct computation.

LEMMA 6. Let CK denote the number of full binary trees with K + 1 leaves. Then

CK =
(2K)!

(K + 1)!K!
� 4K/K3/2.

PROOF. The number CK is the Catalan number (see e.g. [59]), which verifies the identity.
The second assertion follows from Stirling’s formula.
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LEMMA 7. Let Y ∼ NK(µ,Σ) be a Gaussian random vector. Denote with {σi}Ki=1 =
diag(Σ), with µ̄= max

1≤i≤K
µi and with σ̄2 = max

1≤i≤K
σ2
i the maximal mean and variance. Then

(82) E
[

max
1≤i≤K

|Yi|
]
≤ µ̄+

√
2 σ̄2 logK + 2

√
2πσ̄2.

PROOF. We start by noting that |Yi| ≤ µ̄+ |Yi − µi|. Next, one can use the formula, valid
for any real µi, c > 0 and real random variables Yi,

(83) E [ max
1≤i≤K

|Yi − µi|]≤ c+

K∑
i=1

∫ ∞
c

P(|Yi − µi|> x)dx.

Assuming the Gaussian distribution, the integral is of order
∫∞
c 2e−x

2/2σ2
i dx

≤
√

2πσ2
i e−c

2/2σ2
i . Then (82) follows from (83) by choosing c=

√
2σ̄2 logK .

LEMMA 8 (see, e.g., [26]). For a positive integer d, let µ,µ1, µ2 ∈Rd and let Σ,Σ1,Σ2

be positive definite d× d matrices. Then the exist universal constants C1,C2 > 0 such that,
for TV the total variation distance,

TV (N (µ,Σ1),N (µ,Σ2))≤C1‖Σ−1
1 Σ2 − Id‖F

TV (N (µ1,Σ),N (µ2,Σ))≤C2
‖µ1 − µ2‖2√

(µ1 − µ2)′Σ(µ1 − µ2)
,

where ‖ · ‖F denotes the Frobenius norm.

PROOF. The first inequality follows from Theorem 1.1 in [26] and the second by Theorem
1.2 in [26] (by setting Σ = Σ1 = Σ2 in their statement).

9. Non-dyadic Bayesian CART: properties and examples.

9.1. Basic properties and examples.

LEMMA 9. For a set A of admissible nodes (l, k) as above, let us define βBlk = 〈f,ψBlk〉,
where ψBlk is the unbalanced Haar wavelet in (39) and where f ∈ HαM was defined in (24).
Then

(84) |βBlk| ≤M2−1/2 max{|Llk|, |Rlk|}α+1/2.

PROOF. Let us denote by C̄ ≡ 1/
√
|Llk|−1 + |Rlk|−1. We have

|βBlk|=
∣∣∣∣C̄{∫

Llk

f(x)

|Llk|
dx−

∫
Rlk

f(x)

|Rlk|
dx

}∣∣∣∣
≤ C̄

|Llk|

∫ |Llk|
0

∣∣∣∣f(x+ llk)− f
(
blk + x

|Rlk|
|Llk|

)∣∣∣∣dx.
Next, from α-Hölder continuity (24), we have∣∣∣∣f(x+ llk)− f

(
blk + x

|Rlk|
|Llk|

)∣∣∣∣≤M ∣∣∣∣|Llk|+ x

(
|Rlk|
|Llk|

− 1

)∣∣∣∣α .
Since C̄ ≤ 2−1/2 max{|Llk|, |Rlk|}1/2 we have

|βBlk| ≤MC̄max{|Llk|, |Rlk|}α ≤M2−1/2 max{|Llk|, |Rlk|}α+1/2.
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FIG 9. Diagram of unbalanced (right) Haar wavelets for l≤ 2.

This follows from the fact that for x ∈ (0, |Llk|) we have

M

∣∣∣∣|Llk|+ x

(
|Rlk|
|Llk|

− 1

)∣∣∣∣α ≤max{|Llk|, |Rlk|}α.

For the classical Haar basis (3), one obtains (23) from (84) by noting max{|Llk|, |Rlk|}=
2−(l+1). [32] points out that the computational complexity of the discrete UH transform
could be unnecessarily large and imposes the balancing requirement max{|Llk|, |Rlk|} ≤
E(|Llk|+ |Rlk|) ∀(l, k) ∈ A, for some 1/2 ≤ E < 1. In order to control the combinatorial
complexity of the basis system, we also require that the UH wavelets are not too imbalanced.
To this end, we introduce the notion of weakly balanced wavelets in Section 4.1. A graphical
depiction of the unbalanced Haar wavelets for certain non-dyadic choices of split points blk
are in Figure 9.

EXAMPLE 3. To glean insights into the balancing condition (40), we first consider an
example of UH system which is not weakly balanced for some given n,D, say n = 24 and
D = 2. If we choose b00 = 1/2, b10 = 1/2− 1/n and b11 = 3/4, we have

L10 = (0,1/2− 1/n], R10 = (1/2− 1/n,1/2],

L11 = (1/2,3/4], R11 = (3/4,1].

While the node (1,1) is seen to satisfy (40) with E = 5, we note that max{|L10|, |R10|} =
(n− 2)/(2n) = 7/16. However, 7/16 cannot be written as M10/2

D+1 =M10/8 for any in-
teger M10. This is why the split points b00, b10 and b11 do not belong to any weakly balanced
UH wavelet system with balancing constant D = 2. Weakly balanced systems can be built by
choosing splits in such a way that the “granularity” does not increase too rapidly throughout
the branching process. With granularity R(l,ΨB

A) of the lth layer we mean the smallest inte-
ger R≥ 1 such that min0≤k<2l min{|Llk|, |Rlk|}= j/2R for some j ∈ {1,2, . . . ,2R−1}. For
instance, setting D = 2 and E = 3 one can build weakly balanced wavelets by first picking
b00 from values {1

4 ,
1
2 ,

3
4}. If, e.g. b00 = 3/4 (i.e. R(0,ΨB

A) = 2), the next split b10 can be
selected from {1

4 ,
3
8 ,

1
2}, while b11 has to be set as 7/8.
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Our theoretical development relies in part on combinatorial properties of weakly balanced
UH systems and on the speed of decay of the multiscale functionals βBlk = 〈f,ψBlk〉 as the
layer index l ∈ N increases. These two fundamental properties are encapsulated in Lemma
11 which is vital to the proof of Theorem 6.

9.2. Granularity lemma.

LEMMA 10. Denote with ΨB
A a weakly balanced UH system according to Definition 5.

Then for any (l, k)∈A,

min{|Llk|, |Rlk|}=
mlk

2l+D
for some mlk ∈ {1, . . . ,C + l}.

PROOF. We prove the statement by induction. First, from the definition of weak balanced-
ness, we have min{|L00|, |R00|}= 1−M00/2

D = j/2D (for j = 2D −M00) and by defini-
tion this is less than M00/2

D ≤ C/2D , so j ≤ C . Assume now that the statement holds for
l− 1≥ 0 and consider a node (l, k)∈A for some 0≤ k < 2l. The union Llk ∪Rlk is either
Ll−1 bk/2c or Rl−1 bk/2c; without loss of generality, suppose it is Rl−1 bk/2c. Then, from weak
balancedness, we find

(85) min{|Llk|, |Rlk|}= |Rl−1 bk/2c| −Mlk/2
l+D.

If |Rl−1 bk/2c| ≤ |Ll−1 bk/2c|, we use induction to find |Rl−1 bk/2c| = j1/2
l−1+D for some

j1 ∈ {1, . . . ,C + l − 1} and thereby (85) equals j/2l+D for j = 2j1 −Mlk. As this is at
most Mlk/2

l+D = max{|Llk|, |Rlk|}, one deduces Mlk ≥ j1 and then j/2l+D ≤ j1/2l+D
with j1 ≤ C + l − 1 ≤ C + l. If |Rl−1 bk/2c| > |Ll−1 bk/2c|, we again use weak balanced-
ness to write (85) as j/2l+D with j = 2Ml−1 bk/2c −Mlk ≤Mlk, using again Mlk/2

l+D =
max{|Llk|, |Rlk|}, so that j is again less than C + l. The result follows by induction.

9.3. Complexity lemma.

LEMMA 11. Consider a weakly balanced UH wavelet system ΨB
A = {ΨB

lk : (l, k) ∈ A}
according to (40) and let f ∈ HαM . Then the following conditions hold for δ = 3, with con-
stants independent of B: for any (l, k) ∈A

(B1) the basis function ψBlk can be expressed as a linear combination of at most C0l
δ Haar

functions ψjk for j ≤ l+D and some C0 > 0, and
(B2) there existsC1 > 0 (depending only onE,D from (40)) such that |βBlk| ≤C1Mlδ/22−l(α+1/2).

PROOF. First, the function ψBlk belongs to Vect{II(l+D)m
: 0≤m< 2l+D} and the support

of ψBlk spans at most 2(E + l) of the indicators II(l+D)m
. These indicators can be expressed

in terms of at most l+D of ψlk’s (one per level above l+D), which yields an upper bound
2(E+ l)(l+D)� l2 and thereby (B1) with δ = 2. Second, the balancing condition (40) gives
max{|Llk|, |Rlk|} ≤ (E + l)2−l−D which, combined with Lemma 9 implies

|βBlk| ≤M2α−1(E + l)α+1/22−(l+D)(α+1/2) ≤C1Ml3/22−l(α+1/2),

by taking the worst case α= 1, which proves (B2) with δ = 3.
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9.4. The quantile example.

LEMMA 12. The quantile system ΨB
A from Example 2 is weakly balanced in the sense of

Definition 5 for balancing constants satisfying E = 2 + 3Cq2
D−1, where ‖1/g‖∞ ≤Cq and

‖g‖∞ < 2D−1/(2E).

PROOF. Let us start by writing explicitly the intervals Llk,Rlk. Assuming without loss of
generality that k is odd, i.e. (l, k) is the right child node,

|Llk|= blk − b(l−1)bk/2c =G−1
Lmax+D[(2k+ 1)/2l+1]−G−1

Lmax+D[(2bk/2c+ 1)/2l],

|Rlk|= b(l−2)bk/4c − blk =G−1
Lmax+D[(2bk/4c+ 1)/2l−1]−G−1

Lmax+D[(2k+ 1)/2l+1].

We first show by contradiction that max{|Llk|, |Rlk|} ≥ E/2l+D for E ≥ 1. Let us denote
y1 = G−1[(2k + 1)/2l+1], y2 = G−1[(2bk/2c + 1)/2l] and y3 = G−1[(2bk/4c + 1)/2l−1].
Assuming |Llk|<E/2l+D , one obtains

b2Lmax+Dy1c − b2Lmax+Dy2c<E2Lmax−l,

and thereby y1 − y2 <E2−l−D+1. Next, using the fact that k is odd,

1

2l+1
= |(2k+ 1)/2l+1 − (2bk/2c+ 1)/2l|

= |G(y1)−G(y2)| ≤ ‖g‖∞|y1 − y2| ≤ ‖g‖∞2E2−l−D,

which yields a contradiction when ‖g‖∞ < 2D−1/(2E). Similarly, when |Rlk| < E/2l+D ,
one obtains

1/2l+1 < |(2k+ 1)/2l+1 − (2bk/4c+ 1)/2l−1|

= |G(y3)−G(y1)| ≤ ‖g‖∞|y3 − y1|< ‖g‖∞2E 3 2−l−D.

Next, we note that for ‖1/g‖∞ ≤Cq and E :=
(
2 + 3Cq2

D−1
)
,

|Rlk|=
1

2Lmax+D

[
b2Lmax+Dy1c − b2Lmax+Dy3c

]
≤ 2

2Lmax+D
+

∥∥∥∥1

g

∥∥∥∥
∞

3

2l+1
≤ E

2l+D
.

Similarly, one obtains |Llk|< E/2l+D , which concludes that the quantile system is weakly
balanced.

10. Remaining proofs for Section 3.

10.1. Proof of Theorem 1: remaining settings. In this section, we provide the proof of
Theorem 1 under more general prior settings. We consider different tree priors ΠT(T ) from
Section 2.1 (i.e. the conditionally uniform prior in (5) and the exponential-type prior men-
tioned in Extension 2). In addition, we consider the prior

(86) π(βT )∼N (0,ΣT )

with ΣT = gn(A′T AT )−1 (the g-prior) as well as more general covariance structures ΣT that
satisfy

(87) λmin(ΣT ) & 1/
√

logn and λmax(ΣT ) . na for some a > 0.

First, we show that Lemma 1 holds under this setting.
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10.1.1. Proof of Lemma 1 (general setting). Recall the ratio (48) from Section 6.1

WX(T )

WX(T −)
=

ΠT(T )

ΠT(T −)

√
|I + nΣT − |√
|I + nΣT |

en
2X′T (nI+Σ−1

T )−1XT /2

en
2X′T − (nI+Σ−1

T−
)−1XT−/2

.(88)

The g-prior. We first focus on bounding this ratio assuming ΣT = gn (A′T AT )−1. Propo-
sition 2 implies

(89) nIK + Σ−1
T =

(
nIK−1 + Σ−1

T − + 1
gn
vv′ 0

0′ n+ 2l1+1

gn

)
,

where the vector v ∈R|Text|−1 (defined in Proposition 2) is obtained fromAT by first deleting
its last column and then transposing the last row of this reduced matrix. Using the determinant
formula |A+uu′|= |A|(1 +u′A−1u) for A invertible (see Lemma 1.1 in [27]), and setting
M = (nIK−1 + Σ−1

T −)−1, one gets

(90)
|nIK−1 + Σ−1

T − |
|nIK + Σ−1

T |
=

1

(n+ 2l1+1/gn) [1 + v′Mv/gn]
<

1

(n+ 2l1+1/gn)
.

Using again the determinant formula and Proposition 2, we can write

|ΣT − |
|ΣT |

=
|A′T AT |
|A′T −AT − |

=
2l1+1

gn

(
1 + v′(A′T −AT −)−1v

)
≤ 2l1+1

gn

(
1 + 2l1

)
.

The inequality above uses two facts. First, we have ‖v‖22 = 1 +
∑l1−1

l=0 2l = 2l1 which follows
from the definition of v which describes its entries as amplitudes of the Haar wavelets in the
ancestry of the deepest rightmost internal node (l1, k1) (using the notation from Lemma 1).
Second, from Proposition 3 we have λmax[(A′T −AT −)−1] = 1/λmin(A′T −AT −)≤ 1. Indeed,
Proposition 3 (combined with (15)) shows that the smallest eigenvalue of A′T AT equals 2d

where d is the depth of the most shallow leaf node in Text. Let us now set

(91) D :=X ′T (nI + Σ−1
T )−1XT −X ′T −(nI + Σ−1

T −)−1XT − .

Combining with (89), it follows from a variant of the Sherman–Morrison’s matrix inversion
formula (Lemma 5) that

(nIK + Σ−1
T )−1 =

(
M − Mvv′M

gn+v′Mv 0

0′ 1/(n+ 2l1+1/gn)

)
,

from which one deduces that

D =
X2
l1k1

n+ 2l1+1/gn
− X

′
T −Mvv

′MXT −

gn + v′Mv
<

X2
l1k1

n+ 2l1+1/gn
.(92)

Since for l1 > Lc we have 2X2
l1k1
≤ 5 logn/n, we can write

WX(T )

WX(T −)

ΠT(T −)

ΠT(T )
<

√
2l1+1 (1 + 2l1)

gn(n+ 2l1+1/gn)
e

X2
l1k1

n2

2(n+2l1+1/gn) <

√
22(l1+1)

ngn
n5/4.

For gn = n, and for T ∈ Td, so that 2l1 . 2d, the last display is bounded by a constant
times n−1/42dpd, and the argument can be completed in similar vein as before, with now
Π[d(T )> Lc |X] = oP (1) if Γ> 2e5.

General Covariance ΣT . We now show how the proof can be modified by assuming a
general covariance matrix ΣT on the internal wavelet coefficients. Recall again the ratio (48)
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from Section 6.1. We use the Cauchy’s interlace theorem for eigenvalues of Hermitian ma-
trices which states that the eigenvalues of a principal submatrix are interlaced within eigen-
values of the original matrix (Theorem 8.1.7 of [39]). Since ΣT − is a (K − 1) × (K − 1)
dimensional submatrix of a (K ×K) dimensional matrix ΣT , we have (denoting with λl(Σ)
the lth largest eigenvalue of Σ)

λ1(ΣT )≥ λ1(ΣT −)≥ λ2(ΣT )≥ · · · ≥ λK−1(ΣT )≥ λK−1(ΣT −)≥ λK(ΣT )

and thereby

|I + nΣT − |
|I + nΣT |

=

∏K−1
l=1 [1 + nλl(ΣT −)]∏K
l=1[1 + nλl(ΣT )]

≤ 1

1 + nλmin(ΣT )
.

Using the matrix inversion formula (I + B)−1 = I − (I + B−1)−1 (a variant of Sherman-
Morrison-Woodbury formula), we get

(nI + Σ−1
T )−1 =

1

n

[
I − (I + nΣT )−1

]
and thereby

X ′T (nI + Σ−1
T )−1XT =

1

n
‖XT ‖22 −

1

n
X ′T (I + nΣT )−1XT .

Writing XT = (XT − ,Xl1k1
)′, where (l1, k1) it the deepest rightmost internal node in T (as

in Section 6.1), and using the definition of D in (91), we have

D =
X2
l1k1

n
− 1

n

[
X ′T (I + nΣT )−1XT −X ′T −(I + nΣT −)−1XT −

]
<
X2
l1k1

n

(
1− 1

1 + nλmax(ΣT )

)
+
‖XT −‖22

n

(
1

1 + nλmin(ΣT −)
− 1

1 + nλmax(ΣT )

)
.

This inequality follows from the fact that

X ′T (I + nΣT )−1XT ≥ ‖XT ‖22λmin[(I + nΣT )−1] =
‖XT −‖22 +X2

l1k1

1 + nλmax(ΣT )
.

It follows from the proof of Lemma 1 thatX2
l1k1

. logn/n and ‖XT −‖22 ≤C1 (as was shown
in (94)). Moreover, from our assumption (86) we have λmin(ΣT −)≥ 1/

√
logn and thereby

WX(T )

WX(T −)
<

√
logn

n

ΠT(T )

ΠT(T −)
exp

{
nX2

l1k1

2
+

n‖XT −‖22
2(1 + nλmin(ΣT −))

}

<
ΠT(T )

ΠT(T −)
eC2 logn.

Proceeding as in the proof of Lemma 1, one can show (46) for a suitably large Γ> 0.
Other Tree Priors ΠT(T ). The only modification needed to carry over the proof to the other

two priors is the bound for the ratio ΠT(T )/ΠT(T −). Consider the conditionally uniform
prior from Section 2.1.1 defined in (5). Denoting K = |Text| and CK the number of full
binary trees with K + 1 leaves, we have

ΠT(T )

ΠT(T −)
=

π(K)

π(K − 1)

CK−1

CK−2
,
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and Lemma 6 now implies, for a universal constant C > 0,

ΠT(T )

ΠT(T −)
.
λ

K

4K−1(K − 2)3/2

4K−2({K − 1} ∨ 1)3/2
≤Cλ/K.

Choosing λ= 1/nc for some c > 7/4, it follows that

Π[d(T )> Lc |X]≤ 4λn3/4
L∑

d=Lc+1

2d/K ≤ 4λn3/42L→ 0.

Finally, for the exponential-type prior mentioned in Extension 2), one has ΠT(T )/ΠT(T −) =
1/nc, so one can argue similarly.

10.1.2. Proof of Lemma 2 (general setting). We recall the ratio

(93)
WX(T )

WX(T +)
=

ΠT(T )

ΠT(T +)

s∏
j=0

NX(T (j−1))

NX(T (j))
.

in (53) and find an upper bound assuming different priors.

The g-prior. We now modify the proof of Lemma 2 for the g-prior obtained with
ΣT = gn(A′T AT )−1. Denoting with Kj = |T (j)

ext | and because T (j−1) is obtained from T (j)

by removing two children nodes (or, equivalently, an internal node Xljkj ), we can apply
Proposition 2 to obtain the following upper bound for NX(T (j−1))/NX(T (j)). Namely,
going back to (91) and (92), we invoke again the matrix determinant lemma |A + uu′| =
|A|(1 +u′A−1u) and the matrix inversion lemma (Lemma 5) as in (90) to obtain

NX(T (j−1))

NX(T (j))
≤

√
(gnn+ 2lj+1)(gn + v′Mv)

g2
n

× exp

{
−

n2X2
ljkj

2(n+ 2lj+1/gn)
+ n2X

′
T (j−1)Mvv′MXT (j−1)

2(gn + v′Mv)

}
,

where M = (nIKj−1
+ Σ−1

T (j−1))
−1 for v ∈ R|T (j−1)| which depends on T (j−1) according to

Proposition 2. Next, for C > 0 a large enough constant and lj−1 the depth of the deepest
internal node in T (j−1),

‖XT (j−1)‖22 ≤X2
−10 +

lj−1∑
l=0

2l−1∑
k=0

X2
lk ≤C

1 +

lj−1∑
l=0

(
2−2 l α +

2l

n
logn

)≤C4.(94)

Moreover, using the fact that v′MMv = v′M1/2M1/2Mv ≤ λmax(M)v′Mv we obtain

X ′T (j−1)Mvv
′MXT (j−1) ≤ ‖X(j−1)

T ‖22λmax(Mvv′M)≤ ‖X(j−1)
T ‖22tr(Mvv′M)

≤ ‖X(j−1)
T ‖22v′MMv ≤ ‖X(j−1)

T ‖22λmax(M)v′Mv,

and

λmax(M) =
1

n+ λmin(AT (j−1)′AT (j−1))/gn
<

1

n
,
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one can write

n2X
′
T (j−1)Mvv′MXT (j−1)

2(gn + v′Mv)
<
n2‖XT (j−1)‖22λmax(M)

2gn/(v′Mv) + 2
≤ n2C4‖v‖22λ2

max(M)

2gn

≤C4
2lj

2gn
,

where we used the fact that ‖v‖22 = 2lj (as explained previously in Section 10.1.1). Finally,
because X2

lsks
≥C5A

2 log2 n/n for some C5 > 0 we use the above bounds in the expression
(93) to obtain

s∏
j=0

NX(T (j−1))

NX(T (j))
<

(
n(gn + 2)

gn

)s+1

exp

C4

s∑
j=0

2lj−1

gn
− nC5A

2 log2 n

2(n+ 2lj+1/gn)


< exp

{
(s+ 1) log(3n) +C4

(s+ 1)2ls−1

gn
−C5A

2 log2 n/2

}
.

With gn = n, the exponent is dominated by the last term. One then proceeds with (53) as
before in the proof of Lemma 2.

General Covariance ΣT . We again deploy the interlacing eigenvalue theorem in the ex-
pression (53) to obtain the following upper bound for NX(T (j−1)

NX(T (j)) (using matrix determinant
and inversion lemmata as before)√

1 + nλmax(ΣT (j)) exp

{
−
nX2

ljkj

2

nλmin(ΣT (j))

1 + nλmin(ΣT (j))
+

n‖XT (j−1)‖22
2(1 + nλmin(ΣT (j)))

}
.

Using the expression (53) and assumptions λmax(ΣT ) . na for some a≥ 1 and λmin(ΣT (j))≥
1/
√

logn, we obtain for C2,C3 > 0

WX(T )

WX(T +)
<

ΠT(T )

ΠT(T +)
exp

{
C2(s+ 1)

√
logn−C3A

2 log2 n
}
.

Using this bound, one can proceed as in the proof of Lemma 2 and show (118).

Other Tree Priors ΠT(T ). As before, the only modification needed is the bound for
ΠT(T )/ΠT(T +). Denote by K+ = |T +

ext| and K = |Text| and note that K+ −K = ls − l0.
For the conditionally uniform prior from Section 2.1.1 we then have

ΠT(T )

ΠT(T +)
= λ−(ls−l0)K

+!CK+−1

K!CK−1
.

(
λ

4

)−(ls−l0) (K+)!

K!

.

(
λ

4

)−(ls−l0)

e(ls−l0){1+log[K+(ls−l0)]}.

With λ = n−c and K ≤ 2Lc+1, this is bounded from above by CeC log2 n for some C >
0 and the proof is completed as before. For the exponential-type prior, one similarly uses
ΠT(T )/ΠT(T +) = ec(ls−l0) logn ≤ ec log2 n.

10.1.3. Proof of Lemma 3 (general setting). We now show the proof of Lemma 3 for
the g-prior with ΣT = gn(A′T AT )−1 and a general covariance matrix under the assumptions
(87). Recall expressions (58) and (59) in Section 6.3 and the fact that (I +B)−1 = I − (I +

B−1)−1 which yields nΣ̃T −IK =−(IK+nΣT )−1 for Σ̃T = (nIK+Σ−1
T )−1 (recalling that
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K = |Text| ≤ n). Focusing on the g-prior, we have λmax(Σ̃T )< 1/n and (using Proposition
3 which yields λmax(A′T AT )< 2d ≤ n where d is the depth of the deepest node)

λmax(IK + nΣT )−1 < λmax(A′T AT )/(ngn)< 1/gn.

Assuming gn = n we can thus write

(95) ‖(nΣ̃T − IK)β0
T ‖∞ ≤

‖β0
T ‖∞
√
K

1 + nλmin(ΣT )
≤
C
√
Kλmax(A′T AT )

ngn
≤C/

√
n.

Next, we note that Σ̃−1
T is strictly diagonally dominant. Indeed, with gn = n we have Σ̃−1

T =
nIK + 1

gn
A′T AT and

1

gn
‖A′T AT ‖∞ ≤

√
K

gn
λmax(A′T AT )<

√
n,

where ‖A‖∞ = max
1≤i≤m

∑n
j=1 |aij | is defined as the maximum absolute row sum of an (m×n)

matrixA. WritingA′T AT = (aij)
K,K
i,j , it then follows from Lemma 4 (Theorem 1 in [62]) that

(96) ‖Σ̃T ‖∞ ≤
1

n+ 1
gn

min
1≤k≤K

∆k

, where ∆k = |akk| −
∑
j 6=k
|akj |.

Since ∆k/gn > − 1
gn
‖A′T AT ‖∞ > −

√
n and using the fact that ‖εT ‖∞ .

√
logn on the

event A, we obtain

(97)
√
n‖Σ̃T εT ‖∞ ≤

√
n‖Σ̃T ‖∞‖εT ‖∞ .

√
logn

n
.

The sum of the remaining two terms in (58) can be bounded by a multiple of
√

logn/n by
noting that σ̄2 ≤ ‖Σ̃T ‖∞ . 1/n. The statement (57) then follows from (58).

For the general covariance matrix ΣT we find (similarly as in (95)) that when λmin(ΣT )≥
1/
√

logn we have ‖(nΣ̃T − IK)β0
T ‖∞ ≤C

√
logn/n. Next, because

‖Σ−1
T ‖∞ ≤

√
Kλmax(Σ−1

T )≤
√
K logn <

√
n logn

the matrix Σ̃T = (nIK + Σ−1
T )−1 is diagonally dominant and thereby (using Lemma 4)

‖Σ̃T ‖∞ ≤
1

n+ min
1≤k≤K

∆k
where ∆k = |σkk| −

∑
j 6=k
|σkj |

and where Σ−1
T = (σjk)

K,K
j,k=1. Since ∆k > −

√
n logn for all k = 1, . . . ,K , the inequalities

(97) and (57) hold.

10.1.4. End of proof of Theorem 1 (general setting). The rest of the proof can now be
completed using similar arguments as in Section 6.4.

10.2. Smooth wavelets. The strategy of the proof of Theorem 1 can be directly applied
for an S–regular wavelet basis. Similar to [18], Section 2, one updates the index set l ≥
0,0 ≤ k < 2l for the Haar basis in the definition of the ball (23) as follows: the index sets
becomes l ≥ J0 − 1, k = 0, . . . ,2l − 1, for J0 = J0(S) large enough, and one denotes the
usual “scaling function” ϕ as the first wavelet ψ(J0−1)0. The proof is then the same (up to a
multicative constant depending on the chosen basis) as in the Haar basis case, up to replacing
the ‘localisation’ identity ‖

∑
k |ψlk|‖∞ = 2l/2 in the Haar basis case by the ‘localisation’

inequality ‖
∑

k |ψlk|‖∞ ≤C2l/2, with C depending on the chosen basis only.
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10.3. Proof of Theorem 2: exact rate.

PROOF. Define a sequence

L∗ =
⌈
log2

[
M1/(α+1/2)

(
n/ log2 n

)1/(2α+1)
]⌉
,

so that 2L
∗ � (n/ log2 n)1/(2α+1). Define the sequence of functions fn0 (below we write sim-

ply f0 for simplicity) by its sequence of wavelet coefficients as follows: set all coefficients
β0
lk to 0 except for β0

L∗0 =M2−L
∗(1/2+α). By definition, f0 belongs toH(α,M). Let us also

note that if (L∗,0) does not belong to the tree T , one can bound from below

`∞(fT ,β, f0)≥ 2L
∗/2|βL∗0|=M2−L

∗α ≥C ′εn.

So, to prove the result, it is enough to show that Π[(L∗,0) /∈ Tint | X]→ 1, i.e. the node
(L∗,0) does not belong to a tree sampled from the posterior with probability going to 1,
or equivalently, if TL∗0 denotes the set of all full binary trees (of depth at most Lmax) that
contain (L∗,0) as an internal node, that Π[TL∗0 |X] = oP (1). To prove this, let us consider a
given tree T ∈ TL∗0. As it contains the node (L∗,0), it must also contain all nodes (λ,0) with
0 ≤ λ ≤ L∗, in particular (L1,0), where L1 = dL∗/2e, say. We note that L∗ � L∗ − L1 �
logn. Let τ∗ be the maximal subtree of T that has (L1,0) as its root. Next, let T ∗− denote the
remainder tree built from T by erasing all of τ∗ except for the node (L1,0) (so that T ∗− still
has a full-binary tree structure). So, T ∗− and τ∗ have only the node (L1,0) in common, and
the union of their nodes gives the original tree T . Let us now write

Π[TL∗0 |X] =

∑
T ∈TL∗0 WX(T )∑
T ∈TWX(T )

=

∑
T ∈TL∗0

WX(T )
WX(T ∗−)WX(T ∗−)∑
T ∈TWX(T )

.

Let q = q(τ∗) denote the number of internal nodes τ∗int of the subtree τ∗. From the Galton-
Watson prior, we obtain

ΠT[T ]

ΠT[T ∗− ]
=

∏
(l,k)∈τ∗int

pl
∏

(l,k)∈τ∗ext

(1− pl)
1

1− pL1

≤ 2
∏

(l,k)∈τ∗int

Γ−l.(98)

Then, by definition of T ∗− and τ∗,

WX(T )

WX(T ∗−)
=

ΠT(T )

ΠT(T ∗−)

∏
(l,k)∈τ∗int

exp{(n+ 1)X2
lk/2}√

n+ 1

≤ 2(n+ 1)−q/2 ·
∏

(l,k)∈τ∗int

Γ−l exp{(n+ 1)X2
lk/2}.(99)

We bound the data-dependent part in the previous line by using (a + b)2 ≤ 2a2 + 2b2.
Furthermore, noting that the noise variables |εlk| are uniformly bounded for l + 1 ≤
Lmax,0≤ k < 2l, by 2 logn on an event of overwhelming probability, we can upper-bound
(n+ 1)

∑
(l,k)∈τ∗intX

2
lk/2 by

(n+ 1)
∑

(l,k)∈τ∗int

[
(β0
L∗0)2I(l,k)=(L∗,0) +

1

n
max

l+1≤Lmax,k
ε2
lk

]

≤ (n+ 1)(β0
L∗0)2 + 2

n+ 1

n
(logn)q ≤ n+ 1

n
log2 n+ 2

n+ 1

n
(logn)q.
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Now, using that for (l, k) ∈ τ∗int, we have l ≥ L1 ≥ 1
2α+1 log2

(
M2n
logn

)
=: c(α,M,n), one

notes that∑
(l,k)∈τ∗int

l≥max
(
c(α,M,n)q,

L∗∑
l=L1

l
)
≥ c(α,M,n) max

(
q,

3

2
c(α,M,n)

)
,

which is bounded from below by c(α,M,n)q, where we have used that q ≥ L∗ − L1 + 1≥
L1 ≥ c(α,M,n) and L1 +L∗ > 3c(α,M,n). One then deduces that the product of terms Γ−l

dominates (99), as long as log(Γ) is large enough (noting also that 1/(2α+1)≥ 1/(2S+1)),
in the control of WX(T )/WX(T ∗−). That is, for some constant C > 0,

WX(T )

WX(T ∗−)
≤ exp{−C(logn)q}=: bq,

where the last bound only depends on the number of internal nodes q of τ∗. By coming back
to the above bound on the posterior Π[TL∗0 |X], let us split the sum on the numerator as
follows. Let TqL∗0 denote the set of trees T = T ∗− ∪ τ∗ in TL∗0 such that |τ∗int| = q. Then
Π[TL∗0 |X] is bounded by∑

q≥1

∑
T ∈TqL∗0

bqWX(T ∗−)∑
T ∈TWX(T )

≤
∑
q≥1

∑
T1∈T∗q− aqbqWX(T1)∑
T1∈T∗q− WX(T1)

,

where T∗q− denotes the set of all possible T ∗− that can be obtained from T ∈ TqL∗0 and where
aq denotes the number of different possible trees τ∗ such that |τ∗int| = q. To obtain the last
bound, we also used that each T ∈ TL∗0 is uniquely caracterised by a pair (T ∗− , τ∗), so that
the sum over T can be rewritten as a double sum over T ∗− and τ∗. One deduces that, as q
cannot be larger than 2L,

Π[TL∗0 |X]≤
2L∑
q=1

aqbq.

As aq is less (because of the restriction |T | ≤ L) or equal to the number of full binary
trees with q internal nodes, i.e. with 2q + 1 nodes in total, we have aq ≤ C2q , which is
bounded from above by 42q by Lemma 6. We conclude that Π[TL∗0 |X] is bounded above by
exp(−C log2 n) for some C > 0, on an event of overwhelming probability, which concludes
the proof for the Galton-Watson prior. Similarly, for the exponential prior, we replace (98)
directly with

ΠT[T ]

ΠT[T ∗− ]
∝ e−c(|Text|−|T

∗
−ext|) logn = e−c q logn,

where we used the fact that |Text| − |T ∗−ext| = |τ∗ext| − 1 = |τ∗int| = q. For the conditionally
uniform prior, we have for λ= 1/nc for some c > 0

ΠT[T ]

ΠT[T ∗− ]
=

π(|Text|)
π(|T ∗−ext|)

C|T ∗−int|
C|Tint|

. λqe−q log |Text| . e−c q logn,

and the end of the proof is then the same as for the GW prior.
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10.4. Proof of Theorem 3: confidence bands. In the proof, we repeatedly use the proper-
ties of the median tree T ∗X established in Lemma 14. We denote by E the event from Lemma
14. We first show the diameter statement (72). The depth of the median tree estimator f̂T
verifies condition (i) of Lemma 14 on the event E . For any f, g ∈ Cn, by definition of Cn, we
have, for C(ψ) a constant depending on the wavelet basis only, on the event E ,

‖f − g‖∞ ≤ ‖f − f̂T ‖∞ + ‖f̂T − g‖∞

≤ 2 sup
x∈[0,1]

Lmax∑
l=0

vn

√
logn

n

2l−1∑
k=0

I(l,k)∈T ∗X |ψlk(x)|

≤ 2vnC(ψ)

√
logn

n

∑
l:2l≤C12Lc

2l/2 ≤C ′vn

√
logn

n
2Lc .

We now turn to the confidence statement. First, one shows that the median estimator
(30) is (nearly) rate optimal. Denote with f̂T,lk = 〈f̂T ,ψlk〉 and let S = {(l, k) : |β0

lk| ≥
A logn/

√
n}. Let us consider the event

(100) Bn = {f̂T,lk 6= 0, ∀ (l, k) ∈ S} ∩ {f̂T,lk = 0, ∀ (l, k) : 2l ≥C1 2Lc} ∩A,
where the noise-eventA is defined in (44). Lemma 14 together with Pf0

(A) = 1+o(1) imply
that Pf0

(Bn) = 1 + o(1). On the event Bn, we have

‖f̂T − f0‖∞ ≤
∑

l: 2l≤C12Lc

2l/2max

(
max

0≤k<2l: (l,k)∈S
|Xlk − β0

lk|, max
0≤k<2l: (l,k)/∈S

{|β0
lk|}
)

+
∑

l: 2l>C12Lc

2l/2 max
0≤k<2l

|β0
lk|

. 2Lc/2
√

logn

n
+

∑
l: 2l≤C12Lc

2l/2 min

(
max

0≤k<2l
|β0
lk|,A

logn√
n

)
+ 2−αLc ,

where we have used the definition of S , that f̂T equals 0 or Xlk, that f0 belongs to H(α,M)
and max(a, b) ≤ a + b (note also that the term with the minimum in the last display is an
upper bound of the maximum over (l, k) /∈ S on the first line of the display). This shows that
the median tree estimator is rate-optimal up to a logarithmic factor, in probability under Pf0

.
In particular, on Bn, we have for some C > 0

(101) ‖f̂T − f0‖∞ ≤C(log2 n/n)α/(2α+1),

where we used the inequality in (63) in the case of smooth wavelets. Second, we now
show that σn is appropriately large. By the proof of Proposition 3 of [42], we have for
f0 ∈HSS(α,M,ε), for ln ≥ j0 suitable sequence chosen later

sup
(l,k): l≥ln

|β0
lk| ≥C(M,ψ,α, ε)2−ln(α+1/2),

for some constant C(M,ψ,α, ε) depending on α,M , the wavelet basis and ε (as in (2.12) of
[42]). Let Λn(α) be defined by, for η > 0 to be chosen below,

(102) η(n/ log2 n)1/(2α+1) ≤ 2Λn(α) ≤ 2η(n/ log2 n)1/(2α+1)

Combining the previous two displays leads to, for f0 ∈HSS(α,M,ε),

sup
(l,k): l≥Λn(α)

|β0
lk| ≥C(M,ψ,α, ε)η−α−1/2 logn√

n
.
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By taking η small enough, one obtains that there exists (λ,κ) with λ ≥ Λn(α) verifying
|β0
λκ| ≥ A logn/

√
n and thus, in turn, f̂T,λκ 6= 0, by the second part of Lemma 14. One

deduces that the term (l, k) = (λ,κ) in the sum defining σn is nonzero on the event Bn, so
that

σn ≥ vnc(ψ)

√
logn

n
‖ψλκ‖∞ ≥ vnc(ψ)

√
logn

n
2Λn(α)/2.

This leads, on the event Bn, to

(103) σn/

(
log2 n

n

)α/(2α+1)

≥ c′vn(logn)−1/2.

The ratio in the last display goes to infinity for vn of larger order than log1/2 n. Now, on the
event Bn, one can thus write ‖f̂T − f0‖∞ ≤ σn/2 for large enough n, uniformly over f0 ∈
HSS(α,M,ε), implying that Bn ⊂ {‖f̂T − f0‖∞ ≤ σn}. This implies the desired coverage
property, since Pf0

(f0 ∈ Cn)≥ Pf0
(Bn) = 1 + o(1).

For the credibility statement, we note that the posterior distribution (from Theorem 1) and
the median estimator f̂T (from (101)) converge at a rate strictly faster than σn on the event
Bn, using again the lower bound on σn in (103). In particular, because Bn ⊂ {‖f̂T −f0‖∞ ≤
σn/2}, one can write

Π[‖f − f̂T ‖∞ ≤ σn |X]≥Π[‖f − f0‖∞ ≤ σn/2 |X]IBn + oPf0 (1).

The right side converges to 1 in Pf0
-probability, which concludes the proof of the theorem.

LEMMA 13. The set of nodes T ∗X in (29) Pf0
-almost surely defines a binary tree.

PROOF. Let us recall that T is the set of all admissible trees that can be obtained by
sampling from the prior ΠT and with depth at most Lmax. For any given node (l1, k1) with
0≤ l1 ≤ Lmax, one can write

Π[(l1, k1) ∈ T |X] =
∑
T1∈T

ΠT[T1 |X]×Π[(l1, k1) ∈ T1 |X,T = T1]

=
∑

T1∈T: (l1,k1)∈T1

ΠT[T1 |X].

Let (l1 − 1, k−1 ) denote the parent node of (l1, k1) in T1, where k−1 = bk1/2c. Any (full-
)binary tree that contains (l1, k1) must also contain (l1− 1, k−1 ), so that, using the formula in
the last display, Π[(l1, k1) ∈ T |X]≤Π[(l1 − 1, k−1 ) ∈ T |X]. This implies, by definition of
T ∗X , that if a given node (l1, k1) belongs to T ∗X , so does the node (l1 − 1, k−1 ). Therefore T ∗X
is a tree.

LEMMA 14. Consider a prior distribution Π as in Theorem 1. There exists an event E
such that Pf0

[E ] = 1+o(1) on which the tree T ∗X defined in (29) has the following properties:
there exists a constant C1 > 0 such that

(i) the depth of the tree satisfies 2d(T ∗X) ≤ C12Lc � (n/ logn)α/(2α+1), where Lc is as in
(45),

(ii) the tree contains as interior nodes all nodes (l, k) that satisfy |β0
lk| ≥ A logn/

√
n, for

some A> 0.
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PROOF. We focus on the GW-prior, the proof for the other two priors ΠT being similar. Let
T(1), respectively T(2), denote the set of binary trees that satisfy condition (i), respectively
(ii), in the statement of the lemma. By the proof of Theorem 1, Π[T(1) |X] and Π[T(2) |X]
both tend to 1 in probability under Pf0

, hence also Π[T(1) ∩T(2) |X]. In fact, it also follows
from the proof of Theorem 1 that, for T(1), we also have the stronger estimate Π[d(T ) >
d |X] ≤ 2−c1d log Γ for some c1 > 0 under the GW process prior, uniformly over Lc < d ≤
Lmax, on an eventA of Pf0

-probability going to 1. The latter probability is o(2−d) provided Γ

is chosen large enough, which will be used below. Defining E = {Π[T(1) ∩T(2) |X]≥ 3/4},
we have Pf0

[E ]→ 1 as n→∞. For any node (l2, k2) such that |β0
l2k2
| ≥ C logn/

√
n, we

have

Π[(l2, k2) ∈ Tint |X] =
∑

T2∈T: (l2,k2)∈T2 int

Π[T2 |X]≥Π[T(2) |X],

where we used that any tree in T(2) must, by definition, contain (l2, k2). As Π[T(2) |X] ≥
3/4> 1/2, we deduce that (l2, k2) belongs to T ∗X on the event E . In other words, T ∗X verifies
the second property (ii) of the lemma on E . To conclude the proof of the lemma, one observes
that on E , for a given node (l3, k3) with 2l3 >C12Lc ,

Π[(l3, k3) ∈ Tint |X]≤Π[d(T )> l3 |X],

Recall that Π[d(T ) > l3 |X] ≤ C2−c1l3 log Γ on A (which holds uniformly over l3 ∈
[Lc,Lmax]). Then, on the event A, we can write

Pf0
[{T ∗X /∈ T(1)} ∩A]≤ Pf0

[{∃ (l3, k3) : 2l3 >C12Lc , (l3, k3) ∈ T ∗X} ∩A]

≤
Lmax∑

l3: 2l3>C12Lc

2l3−1∑
k3=0

Pf0
[{Π[(l3, k3) ∈ Tint |X]≥ 1/2} ∩A]

≤
Lmax∑

l3: 2l3>C12Lc

2l3+1Ef0
[Π[d(T )> l3 |X]IA] = o(1).

Using that Pf0
[A] goes to 1, one obtains Pf0

[T ∗X /∈ T(1)}] = o(1), which concludes the proof.

10.5. Proof of Theorem 4: smooth functionals. For the second point, it suffices to com-
bine Theorem 9 with the choice wl = l2 (which satisfies the condition wj0(n) & logn given
the assumption j0(n) �

√
logn) and Theorem 4 in [18] (the condition

∑
lwl2

−l/2 holds),
from which one indeed obtains

βC([0,1])

(
L(
√
n(F (·)−

∫ ·
0
dX(n) |X),L(G)

)
→ 0

in Pf0
-probability, where (G(t) : t ∈ [0,1]) is a Brownian motion.

For the first point, we argue as in the paragraph preceding the statement of Theorem 4
in [18]: proceeding as in the proof of that Theorem, one notes that for a BvM to hold for
the functional ψb(f) =

∫ 1
0 f(u)b(u)du, it suffices that, for some sequence (cl) of positive

numbers, both
∑
clwl <∞ and

∑
k |〈b,ψlk〉| ≤ cl hold. With the choice wl = l2, this gives

the condition of the present theorem and concludes the proof.
We note that other choices of j0(n) are possible, providing wl is chosen appropriately:

indeed wj0(n) & logn is enough for Theorem 9 to hold. Then the BvM result for the linear
functional ψb holds whenever

∑
clwl <∞ and

∑
k |〈b,ψlk〉| ≤ cl hold, and for the functional

BvM for F (·), it suffices that
∑

2−l/2wl <∞.
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10.6. Proof of Theorem 5: lower bound for flat trees.

PROOF. Denote with T FD the flat tree of depth D + 1 (i.e. all βlk’s for l ≤D are active).
The formula (22) gives

Π[T FD |X]∝WX(T FD ) = ΠT(T FD )
∏

(l,k)∈T F ′Dint

e
n2

2(n+1)
X2
lk

√
n+ 1

∝ exp

{
− log ΠT(T FD )− 2D log(n+ 1) +

n2

2(n+ 1)
‖X(D)‖22

}
,

where ‖X(D)‖22 =
∑

l≤D,kX
2
lk is the squared L2–norm of the signal, truncated at the level

D. Next, we have

‖X(D)‖22 =
∑
l≤D,k

(β0
lk)

2 +
∑
l≤D,k

2√
n
εlkβ

0
lk +

∑
l≤D,k

1

n
ε2
lk,

=Cn −
∑

D<l≤Lmax,k
(β0
lk)

2 −
∑

D<l≤Lmax,k

2√
n
εlkβ

0
lk +

∑
l≤D,k

1

n
ε2
lk,

where Cn =C(n,{εlk}, f0) does not depend on D. We can also write

(104) ‖X(D)‖2 =Cn −
∑

D<l≤Lmax,k
(β0
lk)

2 +
2D+1

n
− 2√

n
Z(D) +

1

n
Q(D),

where we have used
∑

l≤D,k 1 = 2D+1 and have set

Z(D) =
∑

D<l≤Lmax,k
β0
lkεlk, Q(D) =

∑
l≤D,k

(ε2
lk − 1).

Let D∗ be an integer defined as, for f0 to be chosen below,

D∗ = argmin
0≤D≤n

[
2D log(n+ 1) +

n

2

Lmax∑
l=D+1

∑
k

(β0
lk)

2

]
.

Consider the following true signal f0 = f∗0 which belongs toH(α,M) withM = 1 (which we
can assume without loss of generality) and which is characterized by the following wavelet
coefficients

(105) β0∗
lk =

{
2−l(

1

2
+α) if k = 0,

0 otherwise.

For such a signal, D∗ above has the following behavior

(106) 2D
∗ �

(
n

logn

) 1

2α+2

.

With the maximum-type norm `∞ defined in (60), we use the decomposition `∞(f, f0) =
`∞(f, fD0 ) + `∞(fD0 , f0), where fD0 is the L2–projection of f0 onto the first D levels of
wavelet coefficients. Moreover, using `∞(fD0 , f0) = c2−Dα for some c > 0, we can write,
for ρn = (logn/n)α/(2α+2)

Π[`∞(f, f0)< µρn |X]≤Π[`∞(f0, f
D
0 )< µρn |X]

=Π[c2−Dα < µρn |X] = Π[2D > (cµ−1ρ−1
n )1/α |X]

≤Π[2D > (cµ−1)1/α2D
∗ |X].
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To conclude, it is enough to show that for B = {2D > (cµ−1)1/α2D
∗}, where µ > 0 is a

small enough constant, we have Π[B |X] = o(1) or, equivalently, Π[B |X] = o(Π[Bc |X])
(possibly on an event of vanishing probability). Rewriting B = {D : D > cD∗} for c =
c(µ) ≥ 1 (up to taking µ small enough), and using the above expression of Π[T FD |X], one
obtains

Π[B |X]

Π[Bc |X]
=

∑
D>cD∗ exp

{
− log Π(T FD )− 2D log(n+ 1) + n2

2(n+1)‖X
(D)‖22

}
∑

D≤cD∗ exp
{
− log Π(T FD )− 2D log(n+ 1) + n2

2(n+1)‖X
(D)‖22

}
≤

∑
D>cD∗ exp

{
− log Π(T FD )− 2D log(n+ 1) + n2

2(n+1)‖X
(D)‖22

}
exp

{
− log Π(T FD∗)− 2D∗ log(n+ 1) + n2

2(n+1)‖X
(D∗)‖22

} .

Since c≥ 1 we have D ≥D∗ + 1 for any D > cD∗ and from the monotonicity assumption
on the prior we obtain log Π(T FD∗)− log Π(TD)≤ 0 on B. In addition, note that 2D

∗ − 2D ≤
−2D/2 on B, which implies

(2D
∗ − 2D) log(n+ 1)≤−1

2
2D log(n+ 1).

Going further, using the decomposition of ‖X(D)‖22 in (104) we have for Z = ‖X(D)‖22 −
‖X(D∗)‖22 the following

Z =
∑

D∗<l≤D,k
(β0
lk)

2 +
1

n
(2D+1 − 2D

∗+1)− 2√
n

(Z(D)−Z(D∗)) +
1

n
(Q(D)−Q(D∗))

≤
∑

D∗<l≤Lmax,k
(β0
lk)

2 +
2D+1

n
+

2√
n

(|Z(D)|+ |Z(D∗)|) +
1

n
(|Q(D)|+ |Q(D∗)|).

We now provide bounds for the stochastic terms Z and Q. First, for any D >D∗, denoting
σ2
D :=

∑
D<l≤Lmax,k(β

0
lk)

2, we have

|Z(D)| ≤ σD max
D∗≤D≤Lmax

σ−1
D |Z(D)|.

The variables Z(D)/σD are standard normal, which implies that, on some eventA1 such that
Pf0

(Ac1) = o(1), we have, uniformly in D ∈B,

|Z(D)| ≤ σD
√

2 logLmax.

To bound the term Q(D), one can use the following standard concentration bound for chi-
square distributions. Namely, for ξq standard normal variables and any t > 0, we can write

P

 Q∑
q=1

(ξ2
q − 1)≥ t

≤ exp

{
− t2

4(Q+ t)

}
.

Applying this bound for the noise variables εlk and choosing t= tD := (D2D)1/2 leads to

P

 ∑
l≤D,k

(ε2
lk − 1)> tD

≤ exp

{
− D2D

4(2D+1 + tD)

}
.

For D ≥D∗, one has tD ≤ 2D+1 so the last display is bounded from above by exp{−C1D}.
Let us consider the event, with tD as above,

A2 =

Lmax⋂
D=D∗

∑
l≤D

2l−1∑
k=0

(ε2
lk − 1)≤ tD

 .
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A union bound gives Pf0
[Ac2] ≤ C exp(−c1D

∗), which is a o(1) using the previous bound.
Now let us choose µ small enough in such a way that C22D

∗ ≤ 2D/2 for any D in the set B
defined above (this is possible by definition of B) and thereby

n

2

∑
D∗<l≤Lmax,k

(β0
lk)

2 ≤ 2D

4
log(n+ 1)

for anyD inB. This in particular implies that σD ≤ (2D log(n+1)/n)1/2. Now, on the event
A1 ∩A2, we have

Π[B |X]

Π[Bc |X]
≤
∑

D>cD∗

exp
{
− 1

2
2D log(n+ 1) +

2D

4
log(n+ 1) + 2D

+ 2
√
nσD

√
2 logLmax + (D2D)1/2

}
≤
∑

D>cD∗

exp
{
− 1

8
2D log(n+ 1)

+

[
2D + 2

√
2D log(n+ 1)2 logLmax + (D2D)1/2 − 1

8
2D log(n+ 1)

]}
≤
∑

D>cD∗

exp
{
− 1

8
2D log(n+ 1)

}
≤ exp

{
−C2D

∗
log(n+ 1)

}
,

where we have used that the term under brackets in the second inequality is negative for large
enough n, as 2D & 2D

∗
goes to infinity. This shows that the last display goes to 0, which

concludes the proof.

11. Proof of Theorem 6: non-dyadic Bayesian CART. As the breakpoints verify the
balancing condition (40), they verify the properties (B1)–(B2) in the complexity Lemma 11
for δ = 3. The Gaussian white noise model projects onto the Haar system ΨB

A = {ψB−10,ψ
B
lk :

(l, k) ∈A)} as follows:

(107) XB
lk = β0B

lk +
1√
n
εBlk,

where XB
lk = 〈X,ψBlk〉, β0B

lk = 〈f0,ψ
B
lk〉 and εBlk = 〈W,ψBlk〉. As the functions ψBlk form an or-

thonormal system, the variables εBlk are iid standard Gaussian given B. The observations here
are viewed as the collection of XB

lk variables which depend on B. We regard the breakpoints
B as one extra “variable” in the model. Given the breakpoints B, we use the same notation
XB
T and εBT for the ordered responses and noise variables (as in the proof of Theorem 1).

Similarly, βT = βBT are the ordered internal wavelet coefficients.
As the priors on breakpoints B and trees T are independent, the tree posterior remains

relatively tractable where the amount of signal at each location (l, k) now depends on B,
which requires a separate “uniform in B” treatment.

The Multiscale Posterior Distribution. To determine the posterior distribution on f , it is
enough to consider the posterior on wavelet coefficients (βlk), which then induces a posterior
on f via

(108) fBT ,β̃(x) =
∑

(l,k)∈Text

β̃BlkI
B
lk(x) =

∑
(l,k)∈T ′int

βBlkψ
B
lk(x).
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Again, the internal unbalanced Haar wavelet coefficients βT = (βBlk : (l, k) ∈ T ′int) are linked
to the external histogram coefficients β̃T = (β̃Blk : (l, k) ∈ Text) through β̃T = AT βT for
some sparse matrix AT ∈ R|Text|×|Text| (a generalization of (14)). This section describes the
posterior distribution over coefficients (βlk) driven by the prior distribution

(B,T ) ∼ ΠB ⊗ΠT

(βlk)l≤L,k |B,T ∼ π(βT ) ⊗
⊗

(l,k)/∈T ′int

δ0(βlk),
(109)

where L= Lmax = blog2 nc. From the white noise model, we have, given B,

XB
T = βT +

1√
n
εBT , with εBT ∼N (0, I|Text|).

The joint density of (B,T , (βlk)l≤L,k,X) arising from the above distributions equals

ΠT(T )ΠB(B)π(βT )

 ∏
(l,k)∈T ′int

φ 1√
n

(XB
lk − βlk)

 ∏
(l,k)/∈T ′int

φ 1√
n

(XB
lk − βlk)I0(βlk)


= ΠT(T )ΠB(B)

 ∏
l≤L,k

φ 1√
n

(XB
lk)

 ∏
(l,k)/∈T ′int

I0(βlk)

 e−
n

2
‖βT ‖22+nXB′

T βT π(βT ).

Integrating out (βlk), one obtains the marginal density of (B,T ,X) as

(110)

ΠB(B)
∏
l≤L,k

φ 1√
n

(XB
lk)

ΠT(T )NB
X (T ),

where

NB
X (T ) =

∫ ∏
(l,k)∈T ′int

enX
B
lkβlk−nβ2

lk/2dπ(βT ).

The first bracket in (110) only depends on B and X , from which one deduces that the poste-
rior distribution of T , given B and X , satisfies

Π[T |B,X] =
WB
X (T )∑

T ∈TLW
B
X (T )

, with WB
X (T ) = ΠT(T )NB

X (T ).

Next, the posterior distribution on B, given X , is given by

Π[B |X]∝ΠB(B)
∏
l≤L,k

φ 1√
n

(XB
lk)

{∑
T∈T

WB
X (T )

}
.

Also, we have

(βlk)l≤L,k | (Xlk)l≤L,k,T ,B ∼ π(βT |XB
T )⊗

⊗
(l,k)/∈T ′int

δ0(βlk),(111)

where the posterior density on the selected coefficients on T is (in slight abuse of notation
writing in the same way the distribution and its density)

π(βT |XB
T ) =

e−
n

2
‖βT ‖22+nXB′

T βT π(βT )

NB
X (T )

.(112)
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Controlling the Noise. Similarly as in the proof of Theorem 1, we will condition on a set
of large probability, where the noise level is relatively small. Denote with B the set of all
breakpoints B that can be obtained by performing steps (a) and (b) in Section 4.1 and that
yield a system ΨA

B satisfying conditions (B1)–(B2) from Lemma 11. Recall L = Lmax =

blog2 nc and εBlk =
∫ 1

0 ψ
B
lk(u)dW (u), and let δ be as in (B2). We define

(113) AB =

{
max
B∈B

max
l∈[0,L],k∈[0,2l−1]

(εBlk)
2 ≤D1 log1+δ n

}
for some D1 > 0. Using assumption (B1), one can express every single ψBlk for l ≤ L in
terms of a number C0l

δ of ψjm’s for j ≤ l + D, where ψjm are the regular Haar wavelet
functions from (3). That is, with XBlk the set of such pairs (j,m) and Card(XBlk )≤ C0l

δ , we
have

ψBlk =
∑

(j,m)∈XBlk

pBjmψjm,

for some real numbers pBjm that satisfy
∑

(j,m)∈XBlk (pBjm)2 = 1 (since ψBlk has a unit L2–norm
and ψlk’s are orthonormal in L2[0,1]). Next, we have

εBlk =
∑

(j,m)∈XBlk

pBjmεjm.

This itself implies the following, by the Cauchy-Schwarz inequality,

|εBlk| ≤ max
l≤L,k

{
Card(XBlk ) max

l≤L+D,k
ε2
lk

}1/2

≤C1/2
0 Lδ/2 max

l≤L+D,k
|εlk|.

Using L≤ log2 n and denoting

A :=

{
max

l∈[0,L+D],k∈[0,2l−1]
ε2
lk ≤ 2 log(2L+D+1)

}
,

one obtains the inclusion A ⊂ AB, provided that D1 is chosen larger than a univer-
sal constant (in particular it is independent of B). This implies Pf0

(AcB) ≤ Pf0
(Ac) ≤

c0/
√

log(2L+D+1). Next, we follow the structure of the proof of Theorem 1.

Posterior Probability of Too Deep Trees. For a given tree T , we again denote with T −
the pruned subtree obtained by turning the deepest rightmost internal node (l1, k1) ∈ Tint
into a leaf. Given B ∈ B, we proceed as in the proof of Lemma 1 and evaluate the ratio
WB
X (T )/WB

X (T −). When l1 > Lc, with Lc as in (45), Lemma 11 leads to (B2), that is
|βBl1k1

|. (logn)δ/2
√

logn/n for large enough n. Similarly as in (49), we can write for l1 >
Lc and some C2 > 0 (depending on E,D only), on the set AB from (113),

(XB
l1k1

)2 ≤ C2

n
(logn)1+δ.

Under the Galton-Watson process prior from Section 2.1.1 with pl ≤ 1/2 and the independent
prior with ΣT = I|Text| this gives for all B ∈ B and d≥Lc,

WB
X (T )

WB
X (T −)

≤ 2pd−1e(C2/2)(logn)1+δ

,
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from which one deduces that

(114) Π[d(T )> Lc |B,X]≤ 4 e(C2/2)(logn)1+δ

Lmax∑
d=Lc+1

2d−1pd−1.

The right side goes to 0 at rate e−C(logn)1+δ

if, e.g., pd is of the order (1/Γ)d
1+δ

for some large
enough Γ> 0. This also holds for a variant of the tree prior π(T )∝ e−c|Text| log1+δ n and the
conditionally uniform prior from Remark 2 using π(K) ∝ e−cK log1+δ n where K = |Text|.
A statement similar to (114) can also be obtained for the general prior π(βT ) ∼N (0,ΣT )

where λmin(ΣT )>
√

1/(logn)1+δ .

Posterior Probability of Missing a Significant Node. We show a variant of Lemma 3 as-
suming instead that a signal node (lS , kS) satisfies

(115) lS ≤Lc, |β0B
lSkS | ≥

A(logn)1+ δ

2

√
n

,

for some A> 0 to be chosen below. As before, for a tree T ∈ T\(lS ,kS) that does not have a
cut at (lS , kS), we denote with T + the smallest full binary tree (in terms of number of nodes)
that contains T and cuts at (lS , kS). Using similar arguments as in the proof of Lemma 3, we
use the fact (XB

lSkS
)2 ≥ (β0B

lSkS
)2/2− (εBlSkS)2/n to find that on the event AB and for A> 0

large enough,

(116)
WB
X (T )

WB
X (T +)

≤ Γl
1+δ
S (lS+1)e

3

2
D1(lS+1) log1+δ n−A2

8
log2+δ n ≤ e−

A2

16
log2+δ n

under the independent Gaussian prior on βT and the Galton-Watson process prior from Sec-
tion 2.1.1 with pl � (1/Γ)l

1+δ

. Following the steps in the proof of Lemma 2, one can show
similarly that Π [(lS , kS) /∈ Tint |X,B]→ 0 for each B ∈ B sufficiently quickly. More pre-
cisely, if

(117) SB(f0;A) =

{
(l, k) : |β0B

lk | ≥A
(logn)1+ δ

2

√
n

}
,

where Lc is defined in (45), we have, on the event AB and for A large enough,

(118) Π
[{
T : SB(f0;A) * T

}
|X
]
≤ e−C(logn)1+δ

.

uniformly in B ∈ B. This statement can be obtained also for the general prior π(βT ) ∼
N (0,ΣT ) with λmax(ΣT ) . na for some a≥ 1 and for other tree priors from Section 10.1.

Putting Pieces Together. Let us also set

(119) TB = {T : d(T )≤Lc, SB(f0;A)⊂ T }, EB = {fT ,β : T ∈ TB}.

From the two previous subsections one obtains that for some constant C > 0

Π[T /∈ TB |X,B]≤ e−C(logn)1+δ

,

for any possible set of breakpoints B ∈ B (that satisfy the balancing conditions). The unifor-
mity in B is essential in the next bounds.

Using the definition of the event AB from (113), one can bound

Ef0
Π[‖fT ,β − f0‖∞ > εn |X]≤ Pf0

[AcB] +Ef0
{Π[‖fT ,β − f0‖∞ > εn |X]IAB} .
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By decomposing the posterior along B and T and using Markov’s inequality one obtains, on
the event AB,

Π[‖fT ,β − f0‖∞ > εn |X] =
∑
B

Π[B |X]
∑
T

Π[T |X,B] Π[‖fT ,β − f0‖∞ > εn |X,T ,B]

≤
∑
B

Π[B |X]Π[T /∈ TB |X,B] +
∑
B

Π[B |X]
∑
T ∈TB

Π[T |B,X]Π[‖fT ,β − f0‖∞ > εn |X,T ,B]

≤ e−C(logn)1+δ

+
∑
B

Π[B |X]
∑
T ∈TB

Π[T |B,X]ε−1
n

∫
‖fT ,β − f0‖∞dΠ[fT ,β |X,T ,B].

Let us now turn to bounding ‖fT ,β − f0‖∞. First, note that unlike the traditional Haar basis,
the UH basis system is never built up until L=∞ because, by construction, we stop splitting
when there are no xi are available (i.e. we do not split nodes that are not admissible). In
result, the very high frequencies are not covered by the system, which might induce some
unwanted bias. This is, however, not an issue with our weakly balanced UH wavelets. The
following Lemma shows that in weakly balanced UH systems, all nodes at levels l ≤ Λ :=
blog2(n/ logc n)c for any c > 0 are admissible.

LEMMA 15. Consider a weakly balanced UH wavelet system ΨB
A , where A is the set of

admissible nodes (l, k) in the sense that X ∩ (llk, rlk] 6= ∅ with X = {xi : xi = 1/n,1≤ i≤
n}. Let c > 0, then for Λ = Λ(c) = blog2(n/ logc n)c, we have

A⊃ {(l, k) : l≤ Λ}.

PROOF. The proof follows from the fact that the granularity of weakly balanced UH
systems is very close to l. In Example 3 we defined the granularity R(l,ΨB

A) of the lth

layer as the smallest integer R ≥ 1 such that min0≤k<2l min{|Llk|, |Rlk|}= j/2R for some
j ∈ {1,2, . . . ,2R−1}. From Lemma 10, the granularity of weakly balanced systems ΨB

A is no
larger than l+D. This means that for l <Λ, 0≤ k < 2l, any c > 0 and n large enough

min{|Llk|, |Rlk|} ≥ 1/2l+D >
logc n

2Dn
> 1/n.

This implies that X ∩ (llk, rlk] 6= ∅ for any (l, k) with l ≤ Λ, where we used the fact that
(llk, rlk] is either Rl−1 bk/2c (for when (l, k) is the right child) or Ll−1 bk/2c (for when (l, k)
is the left child).

Next, we show that the weakly balanced UH systems are indeed rich enough to approxi-
mate f0 well.

LEMMA 16. Consider the weakly balanced UH system ΨB
A . Let fΛ

0 denote the L2–
projection of f0 ∈ HαM onto Vect{ψBlk : l ≤ Λ} for Λ = blog2(n/ logc n)c with some c > 0.
Then

‖f0 − fΛ
0 ‖∞ . |Λ2−Λ|α . (logc+1 n/n)α.

PROOF. The L2–projection is a step function fΛ
0 =

∑
m IΩm β̃m supported on the pieces

Ωm ∈ {LΛk,RΛk : 0 ≤ k < 2Λ} where the jump sizes equal β̃m = |Ωm|−1
∫

Ωm
f0(x)dx.

From the Hölder continuity in (24) we have |f0(x)− fΛ
0 (x)| ≤M |Ωm|α for x ∈ Ωm. From

the definition of weakly balanced UH systems, we have maxm |Ωm| ≤ C+Λ
2Λ+D . The rest follows

from the definition of Λ.
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We can now write the following decomposition. For fT ,β in EB , we have

‖fT ,β − f0‖∞ .
∑
l≤Lc

2l/2 max
0≤k<2l

|βBlk − β0B
lk |

+
∑
Lc≤l≤Λ

2l/2 max
0≤k<2l

|β0B
lk |+ ‖f0 − fΛ

0 ‖∞.(120)

In the last display, we have used the fact that for weakly balanced UH systems one has

max
0≤k<2l

‖ψBlk‖∞ < max
0≤k<2l

[(
1

|Llk|
∨ 1

|Rlk|

)
1√

|Llk|−1 + |Rlk|−1

]
< 2(l+D)/2.

The second term in (120) can be upper-bounded by (logn)1+δ/2(logn/n)α/(2α+1) by using
(B2) and the definition of Lc. Using Lemma 16, the term ‖f0 − fΛ

0 ‖∞ is always of smaller
order than the previous one (as the bound decreases as n−α up to a logarithmic factor).

Regarding the first term, one obtains for T ∈ TB∫
max

0≤k<2l
|βBlk − β0B

lk |dΠ[fT ,β |X,T ,B]

=

∫
max

(
max

0≤k<2l, (l,k)/∈Tint
|β0B
lk |, max

0≤k<2l, (l,k)∈Tint
|βBlk − β0B

lk |
)
dΠ[fT ,β |X,T ,B]

≤A(logn)1+ δ

2

√
n

+

∫
max

0≤k<2l, (l,k)∈Tint
|βBlk − β0B

lk |dΠ[fT ,β |X,T ,B],

where we have used that on the set EB , selected trees cannot miss any true signal larger than
A(logn)1+δ/2/

√
n. This means that any node (l, k) that is not in a selected tree must satisfy

|β0B
lk | ≤A(logn)1+δ/2/

√
n.

We now focus on the independent prior βT ∼ N (0, I|Text|). We have seen above that,
given X , B (so for fixed εBlk) and T , if (l, k) belongs to Tint, the difference βBlk − β0B

lk has a
Gaussian distribution Qlk given by

Qlk
L
=Xlk − β0B

lk +N
(

0,
1

n+ 1

)
=−

β0B
lk

n+ 1
+

√
nεBlk

n+ 1
+N

(
0,

1

n+ 1

)
.

If Zlk are arbitrary random variables distributed according to Qlk, and Zlk arbitrary N (0,1)
random variables,

E
[

max
0≤k<2l

|Zlk|
]
≤ max

0≤k<2l

|β0B
lk |
n

+ max
0≤k<2l

|εBlk|√
n

+
1√
n
E
[

max
0≤k<2l

|Zlk|
]
.

On the event AB from (113), the sum of the first two terms on the last display is bounded by
M/n+ C

√
(logn)1+δ/n while the last expectation is at most C

√
l/(n+ 1) by Lemma 7.

This implies∫
max

0≤k<2l, (l,k)∈Tint
|βBlk − β0B

lk |dΠ[fT ,β |X,T ,B]≤C ′
√

(logn)1+δ

n

uniformly over B and TB , where we have used l ≤ C logn. Putting the various pieces to-
gether and using the fact that Pf0

[AcB] = o(1), we obtain

Ef0
Π[‖fT ,β − f0‖∞ > εn |X]

≤ o(1) + ε−1
n

∑
l≤Lc

2l/2

A(logn)1+δ/2

√
n

+C ′

√
log1+δ n

n

+ 2(logn)1+ δ

2

(
logn

n

) α

2α+1
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≤ o(1) + ε−1
n

{[
A(logn)

1+δ

2 +C ′(logn)
δ

2

]
2

√
2Lc logn

n
+ 2(logn)1+ δ

2

(
logn

n

) α

2α+1

}

≤ o(1) + ε−1
n 2C ′

[
A(logn)

1+δ

2 + 4(logn)1+ δ

2

]( logn

n

) α

2α+1

.

This means that one can set

εn = (logn)1+δ/2

(
logn

n

) α

2α+1

and this is the obtained posterior rate in terms of the supremum norm. A similar conclusion
can be obtained for the general prior π(βT )∼N (0,ΣT ) using Lemma 3 under the assump-

tion λmin(ΣT ) &
√

1/ log1+δ n.

12. Proofs for additional results.

12.1. Proof of Theorem 7: rate in non-parametric regression .

PROOF. For the first statement of Theorem 7, it suffices to note that the same exact proof
of Theorem 1 can be used. Indeed, first, by Lemma 17, the maximum norm ‖f − f0‖∞,n
is bounded in a similar way as ‖f − f0‖∞ in terms of empirical coefficients b − b0 (in-
stead of original wavelet coefficients). Second, the Hölder regularity of f0 induces a de-
crease of the order 2−l(1/2+α) in terms of empirical wavelet coefficients b0 (Lemma 18).
Third, under Pf0

, the distribution of the observed Zlk in (67) is N (b0lk,1/n), identical to
that of Xlk ∼ N (β0

lk,1/n), up to replacing β0
lk by b0lk. It is then enough to prove that∑

l≤Lmax 2l/2 maxk |blk − b0lk| . εn under the posterior distribution, which follows by the
same proof as Theorem 1.

For the second statement of Theorem 7, for a given t ∈ [0,1], let it/n denote the clos-
est (leftmost) design point ti = i/n. For a given function f on [0,1], let us denote f̄ =
I((f(ti))1≤i≤n) as a shorthand. Then for any t ∈ [0,1) (assuming it 6= n; if it = n one adapts
the argument) and f0 ∈HMα ,

|f̄(t)− f0(t)| ≤ |f0(t)− f0(it/n)|+ |f0(it/n)− f̄(it/n)|+ |f̄(it/n)− f̄(t)|

≤Mn−α + ‖f̄ − f0‖∞,n + |f̄(it/n)− f̄((it + 1)/n)|,

where the first line uses the triangle inequality and the second that f0 ∈HMα as well as the fact
that when linearly interpolating, the difference of two function values inbetween breakpoints
is always the largest when taken at the two different breakpoints. Using the triangle inequality
again,

|f̄(it/n)− f̄((it + 1)/n)| ≤ 2‖f̄ − f0‖∞,n + |f0((it + 1)/n)− f0(it/n)|.

Using again the Hölder property of f0, and combining with the previous bounds one gets,
noting that ‖f̄ − f0‖∞,n = ‖f − f0‖∞,n,

‖f̄ − f0‖∞ ≤ 2Mn−α + 3‖f − f0‖∞,n.

This shows that if ‖f − f0‖∞,n ≤ ζn and if n−α = o(ζn), then ‖f̄ − f0‖∞ . ζn. As n−α =
o(εn), this shows that a posterior rate on f in the ‖ · ‖∞,n norm translates into the same rate
for the distribution Π̄Y in terms of the supremum norm.
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LEMMA 17. Given two functions f, f0 defined on [0,1] with empirical wavelet coeffi-
cients b= (blk),b

0 = (b0lk) given as in (65),

‖f − f0‖∞,n ≤
∑

l≤Lmax

2l/2 max
k

∣∣blk − b0lk∣∣ .
PROOF. Using that F =Xb and next that

∑
k |ψlk(ti)|= 2l/2,

max
i
|f(ti)− f0(ti)|= max

i

∣∣∣∣∣∣
∑

l≤Lmax, k
(blk − b0lk)ψlk(ti)

∣∣∣∣∣∣
≤

∑
l≤Lmax

max
k

∣∣blk − b0lk∣∣max
i

∑
k

|ψlk(ti)|

≤
∑

l≤Lmax

2l/2 max
k

∣∣blk − b0lk∣∣ .
LEMMA 18. Suppose f0 is in HαM [0,1] as in (24) with α ∈ (0,1],M > 0, with empirical

Haar wavelet coefficients b0 = (b0lk) as in (65). Then for any l≤ Lmax and k,

|b0lk| ≤C2−l(1/2+α).

PROOF. By splitting the support Ilk of ψlk in two halves I+
lk, I

−
lk ,

n−1|
n∑
i=1

f0(ti)ψlk(ti)|=
2l/2

n

∣∣∣∣∣∣
∑

i: ti∈I+
lk

f0(ti)−
∑

i: t′i∈I
−
lk

f0(t′i)

∣∣∣∣∣∣
≤ 2l/2

n
Card(I+

lk) max
i
C|ti − t′i|α ≤

2l/2

n

1

2

n

2l
C2−lα.

LEMMA 19. In the setting of Lemma 18, let (β0
lk = 〈f0,ψlk〉) denote the Haar wavelet

coefficients of f0. Then for any l≤ Lmax and k,

|b0lk − β0
lk| ≤C2−l/2n−α.

Further assume that f0 ∈H′SS(α,M,ε), i.e. belongs to HαM and is self-similar as in Defini-
tion 3. Then for any diverging sequence ln→∞ with 2ln ≤ n,

sup
(l,k): l≥ln

|b0lk| ≥C2−ln(1/2+α).

PROOF. For the first part, let fD0 be the piecewise constant function that equals f0(ti) on
[ti, ti+1). Then observing that

b0lk = 2l/2(

∫
I+
lk

fD0 −
∫
I−lk

fD0 ),

it is enough to show that |
∫
I+
lk

(fD0 − f0)|. 2−ln−α, since then a symmetric bound similarly
holds on I−lk . This follows from ‖fD0 − f0‖∞ . n−α, using the Hölder property of f0.

To prove the second part of the lemma, the proof of Proposition 3 in [42] gives, for f0 ∈
HSS(α,M,ε), for any diverging sequence ln,

sup
(l,k): l≥ln

|β0
lk| ≥C2−ln(1/2+α).

The result now follow by combining the triangle inequality, the first part of the lemma, and
n−α ≤ 2−lnα (using 2ln ≤ n by assumption).
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12.2. Proof of Theorem 8: band in non-parametric regression. The proof follows the
lines of that of Theorem 3, here we only highlight the few differences. First, one shows that
the empirical median tree T ∼X verifies the properties stated in Lemma 14 for the median tree
TX in white noise: the depth of the tree satisfies 2d(T ∼X ) . 2Lc , and T ∼X contains all nodes
(l, k) such that |b0lk| ≥A logn/

√
n, for some A> 0. The proof is the same as that of Lemma

14. From this one deduces that the diameter of the credible set Cen is as announced, by the
same argument as in the proof of Theorem 3.

Second, one shows that the empirical median tree estimator f̃T converges at rate
(log2 /n)α/(2α+1) in terms of the ‖ · ‖∞,n–norm: one adapts the proof in white noise. The
event Bn and set S are defined similarly, with f̂T replaced by f̃T , β0 by b0 and the noise
sequence εlk in the event A by the noise sequence ζlk from (67). On the corresponding Bn,
we have

‖f̃T − f0‖∞,n ≤max
i

∣∣∣ ∑
l≤Lmax, k

(ZlkI(l,k)∈T ∼X − b
0
lk)ψlk(ti)

∣∣∣
≤

∑
l: 2l≤C12Lc

2l/2max

(
max

0≤k<2l: (l,k)∈S
|Zlk − b0lk|, max

0≤k<2l: (l,k)/∈S
{|b0lk|}

)
+

∑
l:n≥2l>C12Lc

2l/2 max
0≤k<2l

|b0lk|

. 2Lc/2
√

logn

n
+

∑
l: 2l≤C12Lc

2l/2 min

(
max

0≤k<2l
|b0lk|,A

logn√
n

)
+ 2−αLc ,

. (log2 n/n)α/(2α+1),

where we proceed as in the proof of Theorem 3 but this time using the bound on empirical
coefficients from Lemma 18.

Third, one shows that σ̃n as in (31) is appropriately large. To do so, using that f0 ∈
HSS(α,M,ε)′ and arguing as in the proof of Theorem 3, for Λn(α) as in (102),

sup
(l,k): l≥Λn(α)

|β0
lk| ≥C(M,ψ,α, ε)η−α−1/2 logn√

n
.

Now the same lower bound up to a different constant is obtained for b0lk, using Lemma 19.
From there on the proof is the same as for Theorem 3, which concludes the proof.

12.3. Proof of Theorem 9: BvM. This BvM statement can be shown, for example, by ver-
ifying the conditions in Proposition 6 of [18] or by proceeding as in the proof of Theorem 3.5
of [53]. The first requirement is the “tightness condition” (Proposition 6 of [18]) summarized
by the following lemma.

LEMMA 20. Under the assumptions of Theorem 9, we have

Ef0
Π(‖fT ,β − f0‖M(w) ≥Mnn

−1/2 |X)→ 0.

PROOF. Similarly as in Section 6.4, for j ∈N and f ∈ L2[0,1] we denote with f j the L2

projection onto the first j layers of wavelet coefficients and write f = f j + f\j . Similarly as
in the proof of Theorem 1, we denote with A the event (44) and with S(f0;A) the set (50).
Recall also the notation

T = {T : d(T )≤Lc, S(f0;A)⊂ T } and E = {fT ,β : T ∈ T}
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from (61), where E is the subset of tree-based functions fT ,β with up to Lc leaves that do not
miss any signal. Similarly as in the proof of Theorem 1, we will condition on the eventA and
focus on the set E (as in (62)). For simplicity, we will write j0 = j0(n). Following [53], one
can write for some suitably chosen D =D(η)> 0, where η > 0 is a fixed small constant.

Ef0

{
Π(fT ,β : ‖fT ,β − f0‖M(w)

≥Mnn
−1/2 |X)

}
≤ o(1)

+Ef0

{
Π(fT ,β ∈ E : ‖f j0T ,β − f

j0
0 ‖M(w)

≥Dn−1/2 |X)IA
}

(121)

+Ef0

{
Π(fT ,β ∈ E : ‖f\j0T ,β − f

\j0
0 ‖M(w)

≥ M̃n n
−1/2 |X)IA

}
,(122)

where M̃n =Mn −D→∞ as n→∞. We have for fT ,β ∈ E

(123) ‖f\j0T ,β − f
\j0
0 ‖M(w)

≤ sup
j0<l≤Lc

maxk |βlk − β0
lk|

wl
+ ‖f\Lc0 ‖M(w).

From the Hölder property (23) and the definition of Lc in (45) we have

(124) ‖f\Lc0 ‖M(w) = max
l>Lc

maxk |β0
lk|

wl
.

2−Lc(α+0.5)

√
Lc

≤C/
√
n,

where we used the fact that {wl} is admissible in the sense that wl/
√
l→∞ as l→∞. Using

Markov’s inequality and bounds (123) and (124), the term (122) can be bounded with

(125) Ef0

{ √
n

M̃nwj0

∫
E

max
j0<l≤Lc

max
0≤k≤2l

|βlk − β0
lk|dΠ[fT ,β |X]IA

}
+C/M̃n.

Using similar arguments as in Section 6.4 and using Lemma 3, we can upper bound the
integral above on the event A by∑

T ∈T
π[T |X]

∫
max

j0<l≤Lc
max

0≤k≤2l
|βlk − β0

lk|dΠ[βT |X]

≤

(
A

logn√
n

+C ′
√

logn

n

)
.

logn√
n
.

For wj0 ≥ c logn for some c > 0, the term (125) goes to zero. Now we focus on the first term
(121). By Markov’s inequality and using the notation W = (glk) for the white noise from
Section 1 and X = (Xlk) for the observation sequence, we find the following upper bound

√
n

D

{
Ef0

∫
E
‖f j0T ,β − f

j0
0 ‖M(w)dΠ[fT ,β |X]IA

}
≤
Ef0

{
‖Wj0‖M(w)IA

}
D

(126)

+

√
n

D
Ef0

{∫
E
‖Xj0 − f j0T ,β‖M(w)dΠ[fT ,β |X]IA

}
.(127)

We can write the second term as

(128)
∑
T ∈T

π[T |X]Ef0

∫
E

(
sup
l≤j0

l−1/2 max
0≤k<2l

√
n

D
|Xlk − βlk|

)
dΠ[βT |XT ].

Note that all trees T ∈ T fit j0 layers and under both the g-prior and the independent prior, the
coefficients βlk for 0≤ l ≤ j0 are a-priori (and a-posteriori) independent given T . Similarly
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as in the proof of Theorem 2 in [18], we can show that the term (128) is bounded by a constant
by first showing that for each l≤ j0 and 0≤ k < 2l

(129) Ef0

{∫
et
√
n(βlk−Xlk)dΠ[βT |XT ]IA

}
≤Cet

2/2.

This follows from [18]. The second term Ef0

{
‖Wj0‖M(w)IA

}
is also bounded by C?/D for

some C? > 0. Choosing D =D(η)> 0 large enough, the term on the left side of (126) can
be made smaller than η/2.

The second step in the proof of Theorem 9 is showing convergence of finite-dimensional
distributions (as in Proposition 6 of [18]). Similarly as in the proof of Theorem 2 of [18], con-
vergence of the finite-dimensional distributions can be established by showing BvM for the
projected posterior distribution onto Vj = Vect{ψlk, l≤ j} for any fixed j ∈N. Denote with
βj = (β−10, β00, . . . , βj 2j−1)′ the Haar wavelet coefficients up to the level j. The prior on βj
consists of βj ∼N (0,Σj), where Σj is the submatrix of Σ that corresponds to coefficients
up to level j.

Let us first consider the case of the independent prior ΣT = IK . Because j0(n)→∞, for
large enough nwe have an independent product prior on βj when Σj = I . Then one is exactly
in the setting of Theorem 7 of [17] which derives finite-dimensional BvM for product priors
(see the paragraph below the statement of Theorem 7 in [17] for two different arguments).

The case of the g–prior ΣT = gn(A′T AT )−1 is more involved, as the induced prior dis-
tribution on the first coordinates is not of product form. Nevertheless, one can express the
posterior distribution on coefficients as a mixture over trees (all containing the first j0(n)
layers) of certain T –dependent Gaussian distributions (complemented by zeroes for the co-
efficients outside the tree T ), and study each individual mixture component separately. Let
PVj be the n×n projection matrix onto Vj and P TVj the |Text| × |Text| projection matrix onto
Vj , projecting the coordinates corresponding to nodes in T only (recalling that by definition
of the prior, all nodes of Vj are in trees T sampled from the prior). We also denote by IVj
the identity matrix on Vj . It is enough for our needs to show, if TV(P,Q) denotes the total
variation distance between the probability distributions P and Q, that

(130) TV
(

Π[· |X] ◦ P−1
Vj

,RXj

)
= oP (1),

where RXj :=N (PVjX,IVj/n). From the expression of the posterior (21),

(131) βT | T ,X ∼ N (µT (X), Σ̃T ) =:QXT ,

where µT (X) := nΣ̃TXT and Σ̃T = (nIK + ΣT )−1. Further, the coefficients βlk for
(l, k) /∈ T ′int are zero, which together gives a prior on βL−1 ∈ R2L = Rn. By definition of
the prior distribution, all trees T sampled from the prior contain the nodes (l, k), l ≤ j0(n),
in particular all nodes corresponding to Vj , so (identifying in slight abuse of notation a matrix
with its corresponding linear map) the projected posterior Π[· |X,T ] ◦ P−1

Vj
coincides with

N (µT (X), Σ̃T ) ◦ P TVj
−1

=:QXT ,j . Then

TV
(

Π[· |X] ◦ P−1
Vj

,RXj

)
= TV

(∑
T

Π[T |X]QXT ,j , R
X
j

)

= TV

(∑
T

Π[T |X]QXT ,j ,
∑
T

Π[T |X]RXj

)
≤
∑
T

Π[T |X]TV
(
QXT ,j , R

X
j

)
≤max

T
TV
(
N (µT (X), Σ̃T ) ◦ P TVj

−1
,N (XT , IK/n) ◦ P TVj

−1
)
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≤max
T

TV
(
N (µT (X), Σ̃T ),N (XT , IK/n)

)
,

where sums and maxima in the last display span over trees that fill in the first j0(n) layers
of nodes, and where the last line uses that the total variation distance can only decrease after
projecting onto Vj (one restricts to marginal probabilities in the definition of the t.v. distance).
In order to obtain (130), one now needs to bound individual distances given the tree T , in a
uniform way with respect to T . By the triangle inequality, for any T as above,

TV
(
N (µT (X), Σ̃T ),N (XT , IK/n)

)
≤ TV

(
N (µT (X), Σ̃T ),N (µT (X),

IK
n

)

)
+ TV

(
N (µT (X),

IK
n

),N (XT ,
IK
n

)

)
.

Both terms on the right hand side of the last display can be bounded using Lemma 8, where
one sets d=K = |Text|, µ= µT (X) = µ1, µ2 =XT , and Σ = IK/n= Σ1, Σ2 = Σ̃T . Then
Σ−1

1 Σ2− IK = n(nIK + Σ−1
T )−1− IK =−(IK + nΣT )−1, using the formula (I +B)−1 =

I − (I + B−1)−1 for B invertible. Setting MT := (IK + nΣT )−1, the first and second in-
equalities of Lemma 8 lead to

TV
(
N (µT (X), Σ̃T ),N (µT (X),

IK
n

)

)
. ‖MT ‖F

TV
(
N (µT (X),

IK
n

),N (XT ,
IK
n

)

)
.
‖MTXT ‖2√
1
n‖MTXT ‖2

=
√
n‖MTXT ‖.

One now notes ‖MT ‖F ≤
√
Kλmax(MT ) =

√
K/λmin(IK + nΣT ). By Proposition 3, we

have λmin((A′T AT )−1) is at least 2−L ≥ 1/n, and one deduces that λmin(IK + nΣT ) &
1 + ngn/n≥ 1 + gn, so that ‖MT ‖F .

√
K/gn . 2L/2/gn . 1/

√
n= o(1), uniformly over

T . On the other hand, we have, as λmax(MT )≤ 1/(1 + gn) as seen above and XT = β0
T +

εT /
√
n, so that, working on the event A from (44),

‖MTXT ‖2 ≤ λmax(MT )2‖XT ‖2 . g−2
n (‖β0

T ‖2 + ‖εT ‖2/n)

. g−2
n (1 + n(logn)/n) . (logn)/g2

n,

where we have used that ‖β0‖2 = ‖f0‖2 is bounded and ‖εT ‖2 . n logn on the eventA. The
previous bounds together imply that the total variation distance betweenN (µT (X), Σ̃T ) and
N (XT , IK/n) goes to 0 uniformly in T on the event A. As P [Ac] vanishes, this proves
(130).
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