
The Annals of Applied Statistics
2021, Vol. 15, No. 1, 148–173
https://doi.org/10.1214/20-AOAS1385
© Institute of Mathematical Statistics, 2021

SPIKE-AND-SLAB LASSO BICLUSTERING

BY GEMMA E. MORAN1, VERONIKA ROČKOVÁ2 AND EDWARD I. GEORGE3

1Columbia Data Science Institute, Columbia University, gm2918@columbia.edu
2Booth School of Business, University of Chicago, Veronika.Rockova@ChicagoBooth.edu

3Department of Statistics, University of Pennsylvania, edgeorge@wharton.upenn.edu

Biclustering methods simultaneously group samples and their associated
features. In this way, biclustering methods differ from traditional clustering
methods, which utilize the entire set of features to distinguish groups of sam-
ples. Motivating applications for biclustering include genomics data, where
the goal is to cluster patients or samples by their gene expression profiles; and
recommender systems, which seek to group customers based on their product
preferences. Biclusters of interest often manifest as rank-1 submatrices of the
data matrix. This submatrix detection problem can be viewed as a factor anal-
ysis problem in which both the factors and loadings are sparse. In this paper,
we propose a new biclustering method called Spike-and-Slab Lasso Bicluster-
ing (SSLB) which utilizes the Spike-and-Slab Lasso of Ročková and George
(J. Amer. Statist. Assoc. 113 (2018) 431–444) to find such a sparse factoriza-
tion of the data matrix. SSLB also incorporates an Indian Buffet Process prior
to automatically choose the number of biclusters. Many biclustering methods
make assumptions about the size of the latent biclusters; either assuming that
the biclusters are all of the same size, or that the biclusters are very large
or very small. In contrast, SSLB can adapt to find biclusters which have a
continuum of sizes. SSLB is implemented via a fast EM algorithm with a
variational step. In a variety of simulation settings, SSLB outperforms other
biclustering methods. We apply SSLB to both a microarray dataset and a
single-cell RNA-sequencing dataset and highlight that SSLB can recover bi-
ologically meaningful structures in the data. The SSLB software is available
as an R/C++ package at https://github.com/gemoran/SSLB.

1. Introduction. Standard clustering methods typically group samples based on their
entire set of observed features. In large datasets, however, only a few features may play a role
in distinguishing different clusters. As an example, consider the gene expression microarray
dataset of Van De Vijver et al. (2002), Van’t Veer et al. (2002), which we later revisit in
Section 4. This data consists of the expression levels of 24,158 genes from the breast cancer
tumors of 337 patients with stage I or II breast cancer. Like many cancers, breast cancer is a
heterogenous disease, comprising a number of sub-types which have contrasting prognoses
and require different treatment regimens (Howlader et al. (2014)). A patient’s sub-type is typ-
ically determined based on their expression of hormone receptors (estrogen and progesterone)
and human epidermal growth factor 2 (HER2) (Howlader et al. (2014)).

Specifically, the goal is to group the patients into different sub-types based on their gene
expression levels, where only a small fraction of their genes are expected to play a role in each
sub-type. This is the problem of biclustering; simultaneously grouping both the samples, and
the features associated with these samples. The benefits of such an approach to clustering
are two-fold. First, biclustering can identify clusters which otherwise may not be found by
using the entire feature set. Second, biclustering identifies which features are relevant for
each cluster and so provides more interpretable solutions.

Received August 2019; revised August 2020.
Key words and phrases. Bayes, biclustering, Spike-and-Slab Lasso, hierarchical modeling, variable selection,

factor analysis.

148

SSL BICLUSTERING 149

FIG. 1. Left: submatrix of gene expression values (patients by genes). Middle: submatrix of gene expression
values, rows and columns reordered to correspond to bicluster found by Spike-and-Slab Lasso Biclustering. Right:
Clinical Estrogen Receptor (ER) status (Blue = ER-negative, Red = ER-positive).

In this paper, we propose a new method for biclustering, which we call Spike-and-Slab
Lasso Biclustering (SSLB). Before introducing our method and discussing related work, we
preview the results of SSLB on the previously described dataset of Van De Vijver et al.
(2002), Van’t Veer et al. (2002). Figure 1 shows the gene expression microarray data before
any clustering. We applied SSLB and reordered this gene expression matrix to correspond
to one of the resulting SSLB biclusters (Figure 1, middle). This SSLB bicluster corresponds
very well to patients’ clinical estrogen receptor (ER) status, showing that SSLB can recover
meaningful biological signal in the data. Note that this clinical information was not given to
SSLB, which is an unsupervised method.

Later, we also apply SSLB to the single-cell RNA sequencing dataset of Zeisel et al.
(2015). Zeisel et al. (2015) used single-cell RNA-sequencing (scRNA-seq) to obtain counts
of RNA molecules in 3005 cells from the mouse somatosensory cortex and hippocampal
CA1 region. The goal of their study was to characterize the RNA-expression levels in dif-
ferent cell-types of the mouse brain. Previously, cell types in the brain had been defined by
alternative features such as location, morphology, and electrophysiological characteristics,
combined with molecular markers (Zeisel et al. (2015)). Defining cell-types instead by ex-
pression levels requires clustering both the cells and the genes; that is, biclustering.

Along with genomics data (Cheng and Church (2000)), biclustering methods have also
been applied to recommender systems, which seek to group consumers based on their ratings
of different products (De Castro et al. (2007), Zhu, Shen and Ye (2016)); neuroscience (Fan,
Boyko and Pardalos (2010)); and agriculture (Mucherino, Papajorgji and Pardalos (2009)).

1.1. Our approach: Spike-and-slab Lasso biclustering. We now describe our proposed
method, Spike-and-Slab Lasso Biclustering (SSLB). The observed data is the matrix of sam-
ples by features, denoted by

Y = [y1, . . . ,yN]T ∈ RN×G,

where Yij is the measurement of feature j in sample i for i = 1, . . . ,N , and j = 1, . . . ,G.
The goal is to find submatrices of the data matrix (up to permutation of rows and columns)
for which the elements Yij are “similar.” The row and column indices of such a submatrix
are then referred to as a “bicluster.” Our method assumes that biclusters manifest as rank-
1 submatrices of the data matrix, Y. Intuitively, we seek samples which exhibit the same
behavior, modulated by a scaling factor, on a subset of features.

150 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

FIG. 2. Mean of a data matrix with two biclusters: E[Y] = x1β1T + x2β2T .

This assumption corresponds to a factor analysis model where both the factors and the
loadings are sparse. That is, we assume that Y has the following structure:

(1.1) Y =
K∑

k=1

xkβkT + E,

where X = [x1, . . .xK] ∈ RN×K is the factor matrix, B = [β1, . . . ,βK] ∈ RG×K is the
loadings matrix and E = [ε1, . . . ,εN]T ∈ RN×G is a matrix of Gaussian noise with εi

ind∼
NG(0,#) where # = diag{σ 2

j }Gj=1 for i = 1, . . . ,N . We allow for the number of biclusters
K to be unknown. We use the convention that the superscript xk refers to the kth column of
X, and the subscript xi to refers to the ith row of X. The mean of a data matrix with two
rank-1 biclusters is shown in Figure 2. An example of a data matrix with K = 10 biclusters
is shown in Figure 3.

The benefits of utilizing a factor model for biclustering are threefold. First, it is inter-
pretable. Using gene expression data as an example: the genes (i.e., features) in a bicluster
may be expressed at different levels to drive a biological process. This expression pattern
in turn may be weaker or stronger in different samples, as determined by the sample-specific
multiplicative effect. Second, there are many applications in which features and samples have
been shown to be well approximated by such multiplicative effect models (Hochreiter et al.
(2010)). Third, the definition allows for the specification of the model (1.1), allowing for
systematic analysis of the noise variance and, in possible future work, coherent inclusion of
prior information regarding the features or the samples.

In (1.1), xik is nonzero if sample i belongs to bicluster k and βjk is nonzero if feature j
belongs to bicluster k. As such, the problem of finding the biclusters in this framework can be
viewed as a two-way variable selection problem: identifying biclusters corresponds to finding
the support of xk and βk . To address this problem, we adopt a Bayesian framework and place
sparsity-inducing Spike-and-Slab Lasso priors (Ročková and George (2018)) on each of the
columns of the factor matrix, X, and of the loadings matrix, B. The Spike-and-Slab Lasso

FIG. 3. Simulated data with K = 10 biclusters each manifesting as a rank-1 submatrix in a data matrix:
Y = XBT + E.

SSL BICLUSTERING 151

was introduced by Ročková and George (2018) for variable selection in linear regression and
has subsequently been used in grouped regression (Bai et al. (2020)), multivariate regression
(Deshpande, Ročková and George (2019)) and sparse factor analysis (Ročková and George
(2016)). A difference here from Ročková and George (2016) is that we induce sparsity in
both the factor matrix and the loadings matrix, instead of only the loadings matrix. A benefit
of the Spike-and-Slab Lasso is that it can adapt to the underlying levels of sparsity (or lack
thereof) in the data. As we will show, this allows the method to find biclusters of a range of
different sizes.

To determine the number of biclusters, K , we use a Bayesian nonparametric strategy.
Specifically, we use an Indian Buffet Process prior (IBP, Griffiths and Ghahramani (2011))
on the “size” of each bicluster, which ensures that each new bicluster is smaller than the
previous one. We also allow for the IBP prior to be extended to a Pitman–Yor IBP (Teh,
Grür and Ghahramani (2007)), which drives the size of consecutive biclusters to decrease as
a power law. This extension may be appropriate in applications where one expects a larger
number of biclusters of a smaller size.

For implementation, we develop a fast, deterministic EM algorithm with a variational step
to find the modal estimates of X and B. Biclustering is in general NP-hard (Peeters (2003)).
The Spike-and-Slab Lasso prior ameliorates such computational difficulties as it uses a con-
tinuous relaxation of bicluster membership.

We note that the factorization (1.1) is similar to the singular value decomposition (SVD)
of Y. However, the SVD assumption forces the columns of X and B to be orthogonal, a
requirement which is relaxed here, as is done in factor analysis more generally. A benefit of
not requiring orthogonality is that it allows for biclusters to overlap, enabling samples and
features to belong to more than one bicluster. Further, samples and features do not have to
belong to any biclusters.

A potential issue with not requiring orthogonality is that the model (1.1) is not identifiable
up to rotation. Specifically, for a given solution pair {X,B}, one may rotate the matrices to
obtain {X̃ = PX, B̃ = PB}, where P is any rotation matrix. Under the model (1.1), both {X,B}
and {X̃, B̃} have equal likelihood, and so we cannot distinguish between the two solutions.

In factor analysis, this identifiability issue is often solved by placing hard constraints on the
form of B, such as a lower triangular requirement (Frühwirth-Schnatter and Lopes (2010)).
We avoid placing hard constraints on the form of X or B and instead mitigate the identifiabil-
ity issue by anchoring our priors on a sparse factorization of Y. Such a sparse factorization is
encouraged by both the IBP prior on the number of biclusters, K , and the sparsity-inducing
priors on X and B, as we will outline in Section 2. These sparsity priors softly constrain the
posteriors of X and B away from rotational invariance; by Maxwell’s theorem, the multivari-
ate Gaussian is the only rotationally invariant distribution of independent variables (Maxwell
(1860) and III, 4 in Feller (1971)). Consequently, a sparse factorization of Y is more likely to
have a unique posterior probability and thus be identifiable (as there are few or zero rotation
matrices which allow for the same posterior probability).

Recently, Rohe and Zeng (2020) formalized these arguments regarding identifiability in
sparse factor models for a specific algorithm. Specifically, Rohe and Zeng (2020) prove that
applying a Varimax rotation (Kaiser (1958)) to the principal components of the data matrix
results in an identifiable solution, provided the true factors are sparse and independent. The
Varimax rotation is constructed to find a coordinate basis (if any) in which the factors are
generally axis-aligned, or sparse. In this work, we do not utilize such a Varimax rotation
to find sparse solutions, and instead encourage sparsity via Spike-and-Slab Lasso priors on
both X and B. This is because we seek a solution that is simultaneously sparse in X and
B, whereas a Varimax rotation often gives a sparse solution for B only. We conjecture that
sparsity priors may play a similar role to the Varimax rotation in terms of finding identifiable
sparse solutions, but formalizing this conjecture is beyond the scope of this work.

152 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

1.2. Related work. A number of biclustering methods have utilized the same factor anal-
ysis model (1.1) with alternate sparsity-inducing priors for the factor and loading matrices.
The first method to do so was Factor Analysis for Bicluster Acquisition (FABIA, Hochreiter
et al. (2010)) who placed single Laplace priors on both xk and βk . However, the posterior
resulting from Laplacian priors does not place enough mass on sparse solutions in variable
selection problems (Castillo, Schmidt-Hieber and van der Vaart (2015)). This is because such
a single Laplace prior has one variance parameter and so cannot both shrink negligible values
to zero and maintain the larger signal. As a result, the estimates of X and B from FABIA are
not sparse; the authors recommend a heuristic thresholding rule to then determine bicluster
membership. In contrast, the Spike-and-Slab Lasso performs selective shrinkage on the latent
variables; indeed the Spike-and-Slab Lasso concentrates at the optimal rate for sparse models
(Ročková (2018)). Further, our method gives an indicator of bicluster membership, preclud-
ing the need for an arbitrary thresholding strategy. Finally, FABIA does not automatically
select the number of biclusters, requiring this to be set in advance.

Gao et al. (2016) also begin with the model (1.1) for their method, BicMix. They allow
for the components xk and βk to be either sparse, or dense to account for potential con-
founders. To achieve strong regularization on the sparse components, the authors utilize a
three parameter beta distribution (Armagan, Dunson and Clyde (2011)), a generalization of
the horseshoe prior (Carvalho, Polson and Scott (2010)). Whilst this dichotomous framework
may be appropriate in some applications, in other cases it may be more appropriate to allow
for a continuum of sparsity levels. Such a continuum is achieved in our model as the Spike-
and-Slab Lasso prior is indexed by a continuous parameter which controls the proportion of
nonzero values in each bicluster. Further, the Spike-and-Slab Lasso automatically thresholds
negligible values to zero; such thresholding does not occur automatically for the horseshoe
prior and generalizations thereof. Gao et al. (2016) also allow for the number of biclusters,
K , to be unknown by starting with an overestimate of K , imposing strong regularization on X
and B, and then removing zero columns. This strategy is similar to to our Bayesian nonpara-
metric strategy; the difference is that the IBP prior which we utilize increases the strength of
the regularization of X and B as a function of the column number k, as opposed to BicMix
which applies the same regularization to each column.

Recently, Denitto et al. (2017) proposed the similarly named method “Spike and Slab
Biclustering.” Despite this likeness, there are a number of differences between our methods.
First, Denitto et al. (2017) utilize Gaussians distributions for both their spike and slab priors,
whereas we use Laplacian priors. In Bayesian variable selection, the slab distribution requires
tails at least as heavy as the Laplace for optimal posterior concentration (Castillo and van
der Vaart (2012)). Furthermore, Denitto et al. (2017) do not use a nonparametric strategy to
estimate the number of biclusters, instead requiring this number to be set in advance. Finally,
Denitto et al. (2017) use an augmented Lagrangian method which they note is not guaranteed
to increase the EM objective function.

Up to this point, we have reviewed only biclustering methods which utilize the factor
model (1.1). In the literature, there have been a variety of methods which use different no-
tions of similarity to define biclusters. Generally speaking, these notions of similarity can be
grouped into four categories, as outlined by Madeira and Oliveira (2004).

The first category assumes that biclusters manifest as submatrices of constant values (e.g.,
Hartigan (1972), Shabalin et al. (2009), Prelić et al. (2006)). The second category extends
this constant submatrix assumption to accommodate additive row and column bicluster-
specific effects in a similar manner to two-way ANOVA (see, e.g., Cheng and Church (2000),
Lazzeroni and Owen (2002), Gu and Liu (2008)). A related method is COSA (Friedman and
Meulman (2004)), which finds biclusters which minimize the interquartile range between
samples on a subset of the features; this can be viewed as a robust version of the afore-
mentioned methods which minimize the variance on a subset of features. The third category

SSL BICLUSTERING 153

assumes multiplicative row and column effects, instead of additive. That is, biclusters are
assumed to manifest as rank-1 submatrices in the data matrix, up to permutations of rows
and columns. This category includes the factor analysis methods discussed above, and meth-
ods which rely on singular value decomposition (Kluger et al. (2003)). Further methods in
this category are those which utilize Pearson’s correlation as a criterion for bicluster mem-
bership (Bozdağ, Parvin and Catalyurek (2009), Bhattacharya and Cui (2017)) and Rangan
et al. (2018), which uses a loop-counting method to find rank-1 submatrices. Methods in the
fourth category do not assume a model for the data matrix but instead search for patterns in
the data matrix. Such patterns may be viewed as generalizations of the additive or multiplica-
tive assumptions. For example, the Iterative Signature Algorithm (ISA, Bergmann, Ihmels
and Barkai (2003)) finds submatrices in which all rows and all columns are above a certain
threshold. Ben-Dor et al. (2003) generalize the multiplicative effects assumption to find sub-
sets of features which have the same order on a subset of samples, which can be thought of
as a slightly more flexible correlation structure.

In addition to how they define biclusters, methods can also be classified according to other
criteria, including: the types of algorithms they utilize to find such biclusters; the assumptions
they make regarding the noise distribution; and whether features and samples are allowed
to belong to more than one bicluster, to name a few. For more detailed reviews of biclus-
tering methods, see Madeira and Oliveira (2004), Prelić et al. (2006), Bozdağ, Kumar and
Catalyurek (2010), Eren et al. (2012), Padilha and Campello (2017).

2. Hierarchical model for SSLB. In this section, we outline the Spike-and-Slab Lasso
Biclustering (SSLB) model in greater detail. We adopt the factor analysis model in (1.1).
To allow for uncertainty in the number of biclusters, K , we initialize the factor and load-
ing matrices with an overestimate, K∗. The IBP prior discourages biclusters with negligible
signal from entering consideration, and so the estimated factor and loading matrices will
contain columns of all zeroes, provided K∗ is a true overestimate. After removing these zero
columns, the number of remaining columns is the estimated number of biclusters.

We also restrict X and B to be matrices with at least two nonzero entries per column
(Frühwirth-Schnatter and Lopes (2010), Ročková and George (2016)). This avoids a singleton
column in either X or B which would be unidentifiable with regard to the noise matrix # in
the marginal covariance of Y (after marginalizing over either B or X, respectively).

2.1. Hierarchical structure for loadings B. For each column βk , we have a Spike-and-
Slab Lasso prior. That is, each βjk is drawn a priori from either a Laplacian “spike” parame-
terized by λ0 and is consequently negligible, or a Laplacian “slab” parameterized by λ1 and
thus can be large:

(2.1) π(βjk|γjk,λ0,λ1) = (1−γjk)ψ(βjk|λ0)+γjkψ(βjk|λ1), 1 ≤ j ≤ G,1 ≤ k ≤ K∗,

where the Laplace density is denoted by ψ(β|λ) = λ
2e−λ|β| and γjk is a binary indicator

variable. Here, γjk = 1 if feature j is active in bicluster k, and γjk = 0 if feature j has a
negligible contribution to bicluster k. We allow for uncertainty in bicluster membership by
using the common Beta-Bernoulli prior for the latent indicators:

(2.2)
γjk|θk ∼ Bernoulli(θk),

θk ∼ Beta(a, b).

It is important to emphasize here the “sparsity-indexing” parameter θk . Due to the Beta-
Bernoulli prior, it has a natural interpretation as the percentage of nonzero elements in the

154 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

column βk . By allowing θk to vary continuously, the method can adapt to differing levels of
sparsity in each of the different columns of B = [β1, . . . ,βK].

Here, we can use a finite approximation to the IBP by setting the hyperparameters of the
Beta prior in (2.2) to: a ∝ 1/K∗, b = 1 (Ghahramani and Griffiths (2006)). This ensures
that in the limit as K∗ → ∞, this prior is the IBP. While this is the default choice for these
hyperparameters, we note that they can be easily tailored to the problem at hand. For instance,
a choice of a = 1/G, b = 1/G will result in the prior mass concentrating around θ = 0 and
θ = 1, which may be preferred when both very dense and very sparse biclusters are expected.

2.2. Hierarchical structure for factors X. To find biclusters, we also want sparsity in the
columns of X. To this end, we place a Spike-and-Slab Lasso prior on each xik . However,
we require an alternate formulation of the Spike-and-Slab Lasso prior to Section 2.1 for the
xik in order to yield a tractable EM algorithm. This is accomplished by introducing auxiliary
variables {τik}N,K∗

i,k=1 for the variance of each xik :

(2.3) xik|τik ∼ N(0, τik), 1 ≤ i ≤ N,1 ≤ k ≤ K∗.

Then, the τik are each assigned a mixture of exponentials prior, where τik is drawn a priori
from either an exponential “spike” parameterized by λ̃2

0 and consequently is small, or from
an exponential “slab” parameterized by λ̃2

1 and hence can be large:

(2.4) π(τik|γ̃ik) = γ̃ik
λ̃2

1
2

e−λ̃2
1τik/2 + (1 − γ̃ik)

λ̃2
0

2
e−λ̃2

0τik/2,

where γ̃ik is a binary indicator variable. This augmentation strategy uses the fact that the
Laplace distribution can be represented as a scale mixture of a normal with an exponential
mixing density; marginalizing over the τik yields the usual Spike-and-Slab Lasso prior in
(2.1).

We place independent Bernoulli priors on each of the γ̃ik binary indicators. Similarly as
before, γ̃ik = 1 if sample i is active in bicluster k, and γ̃ik = 0 if sample i has a negligible
contribution to bicluster k. The Bernoulli priors are parameterized by the “sparsity indexing”
parameters θ̃k . Instead of placing a Beta prior on the θ̃k as for the hierarchical model for the
loadings B, we use an Indian Buffet Process prior with an optional Pitman–Yor extension.
This is achieved using the stick-breaking construction of Teh, Grür and Ghahramani (2007):

(2.5)

γ̃ik ∼ Bernoulli(θ̃(k)),

θ̃(k) =
k∏

l=1

ν(l),

ν(k) ∼ Beta(α̃ + kd,1 − d) where d ∈ [0,1), α̃ > −d.

When d = 0, the above formulation is the usual IBP prior. When 0 < d < 1, the ordered spar-
sity weights, θ̃(k), decrease in expectation as a O(k−1/d) power-law (Teh, Grür and Ghahra-
mani (2007)). This may be useful in applications where there are expected to be more, but
smaller, biclusters.

We note that we only utilize this stick-breaking formulation of the IBP prior for the sparsity
weights for the factors, X, and not the loadings, B. This is because this formulation requires
ordering the columns of X from most dense to least dense. There is no reason to assume
that the bicluster with the largest number of samples (i.e., nonzero xik) would also have the
largest number of features (i.e., nonzero βjk). That is, the most dense column of X should not
be forced to line up with the most dense column of B, which would be the case if we used a
similar stick-breaking construction for the priors of B.

SSL BICLUSTERING 155

In the simulation studies in Section 3, we will also consider the finite approximation to the
IBP for comparison. Similarly as for the loadings B, this formulation has a Beta prior on the
sparsity weights, θ̃k ∼ Beta(ã, b̃) with ã ∝ 1/K∗ and b̃ = 1.

To complete the model, we place an inverse gamma prior on the elements of the covariance
matrix, #:

(2.6) σ 2
j ∼ IG

(
η

2
,
ηξ

2

)
.

Finally, we use the notation T = {τik}N,K∗
i,k=1 ∈ RN×K∗

, $̃ = {γ̃ik}N,K∗
i,k=1 and Di = diag{τ−1

i1 ,

. . . , τ−1
iK∗}.

2.3. Implementation. We develop an EM algorithm with a variational step to quickly tar-
get modes of the posterior. In the E-Step, we compute the expectation of the factors X and
factor indicators $̃, conditional on the data and current values of the rest of the parameters.
This step is rendered tractable by the augmentation strategy outlined in Section 2.2. In the
M-Step, we marginalize over the loading indicators, $, and use a coordinate ascent strategy
to find the modes of B (Ročková and George (2018)). For this algorithm, we also use the vari-
ance updates detailed by Moran, Ročková and George (2019). To maximize the parameters
of the IBP prior, we implement a variational step with closed form updates inspired by Doshi
et al. (2009). Further details of the algorithm are given in Section 1 of the Supplementary
Material (Moran, Ročková and George (2021a)).

We adopt a dynamic posterior exploration strategy for finding estimates of B (Ročková
and George (2018)). Specifically, we hold the slab parameters λ1 fixed and then gradually
increase the spike parameter λ0 along a “ladder” of values, propagating the solutions forward
as “warm starts” for the next largest spike values in the ladder. As outlined by Ročková and
George (2018), holding the slab parameter fixed serves to stabilize the large coefficients; this
is in contrast to the Lasso, which shrinks the larger coefficients along with the small. Mean-
while, gradually increasing λ0 over a ladder of values progressively thresholds negligible
coefficients to zero.

For the factor matrix, X, we modify this dynamic posterior exploration strategy slightly.
As we are calculating the conditional mean of X, values of xik that were previously zero
may re-enter the bicluster for very large λ̃0. This phenomenon is illustrated in the following
simple example: suppose the true value is xik = 0.005. Then, the contribution of sample i is
essentially negligible and so xik should reasonably “belong” to the spike. However, if spike
parameter is λ̃0 = 200, it is actually unlikely that xik was drawn from the spike distribution;
this is because this λ̃0 corresponds to an extremely small spike variance of 5 × 10−5. While
this would also occur for the mean of B, we are instead estimating the mode of B. In modal
estimation, this problem does not occur as previously thresholded values do not seem to re-
enter the bicluster. Consequently, to estimate the mean of X, we recommend a stopping rule
for λ̃0. We have found that an effective data-driven strategy is to “freeze” λ̃0 at a value at
which X is the most sparse, whilst continuing to increase λ0 (the spike parameter for B).

Alternatively, to obtain an idea of what the order of λ̃0 should be, one may use the fol-
lowing informal empirical Bayes strategy. First, predetermine a “negligible” value of xi1, a
value which one would expect to be too small to meaningfully contribute to a bicluster. Then,
set the maximum value of λ̃0 to that which gives xi1 a prior probability of belonging to the
“spike” equal to 0.5. Specifically, for a prior guess of θ1 and a prespecified value of λ̃1 = 1,
solve for λ̃0 in

(2.7) P(γ̃i1 = 0|xi1) = θ̃1 exp{−λ̃1|xi1|}
θ̃1 exp{−λ̃1|xi1|} + (1 − θ̃1) exp{−λ̃0|xi1|}

= 0.5.

156 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

We also implement a rescaling step for the columns of X and B. Whilst sparsity-inducing
priors mitigate to some extent the identifiability problems of the likelihood in regard to rota-
tion, the scale of the columns of the factor and loadings matrices remains unidentifiable. That
is, xkβkT is equivalent to (c−1

k xk)(ckβ
k)T for any constant ck ∈ R. The focus of biclustering,

however, is to find the nonzero elements of these matrices; it is the covarying subsets that are
of interest, and not their magnitude. As the scale is not of particular interest, we rescale X
and B at each step of the EM algorithm to ensure that the corresponding columns have the
same norm. That is, for each k = 1, . . . ,K , we set

(2.8) ck ←
√√√√ ∥xk∥1

∥βk∥1
, xk ← 1

ck
xk, βk ← ckβ

k.

The rescaling step is also important to ensure that the default choices of regularization pa-
rameters λ0, λ̃0 are appropriate; if X and B have vastly different scales, then one matrix may
be over-thresholded whilst the other is under-thresholded.

The complexity of the SSLB algorithm is O(NK∗3 + GK∗), assuming that the initial
number of biclusters, K∗, is less than both the number of samples, N , and the number of
features, G. The first term comes from the E-Step for X, where the K∗ × K∗ matrix Vi

needs to be inverted for i = 1, . . . ,N . The second term comes from the M-Step for B, where
the coordinate ascent algorithm has complexity K∗ and is applied to each of the G rows.
However, the E-Step and M-Step are trivially parallelizable across the samples and features,
respectively. Such a parallelization would yield an improved complexity of O(K∗3).

2.4. Automatic thresholding. A key benefit of SSLB is that it automatically thresholds
negligible elements of the loadings matrix, B, to zero. This allows for a direct interpretation
of bicluster membership: if the estimated β̂jk ≠ 0, then feature j is included in bicluster k. To
determine bicluster membership for the samples, SSLB calculates the posterior mean of the
indicator variables, $̃. The indicator γ̃ik may be interpreted as the posterior probability that
sample i belongs to bicluster k. If this posterior probability is greater than 0.5, we include
sample i in bicluster k. More precisely, we implement the following thresholding rule after
convergence of the SSLB algorithm:

(2.9) x̂ik =
{
x̂ik if E

[
γ̃ik|Y,T∗, θ̃∗]

> 0.5,1 ≤ i ≤ N,1 ≤ k ≤ K∗,
0 if E

[
γ̃ik|Y,T∗, θ̃∗] ≤ 0.5,

where T∗ and θ̃
∗ are the solutions obtained after convergence of the EM algorithm. That is, if

the posterior probability of xik belonging to the “spike” is greater than 0.5, it is thresholded
to zero.

The natural thresholding scheme that arises from the SSLB model is in contrast to both
FABIA and BicMix. FABIA utilizes an ad-hoc post-processing thresholding step, while the
three-parameter beta prior of BicMix does not exactly threshold small values of the factors
and loadings to zero.

2.5. Default settings. The default hyper-parameters settings are as follows. For both the
loadings and the factors, B and X, the slab parameters are set to λ1, λ̃1 = 1. The increas-
ing ladder of spike parameters for B are set to λ0 ∈ {1,5,10,50,100,500,103,104,105,
106,107}. We set the spike parameters for X to λ̃0 ∈ {1,5, . . . ,5} to match the length of the
λ0 sequence. Specifically, the λ̃0 sequence is frozen at λ̃0 = 5.

The above default values of λ1 and λ0 rely on a normalization of the data matrix, Y.
We implicitly normalize Y with a data-driven strategy to estimate the column variances,
{σ 2

j }Gj=1. Specifically, we use an informal empirical Bayes strategy, motivated by Chipman

SSL BICLUSTERING 157

et al. (2010), to determine the hyper-parameters of the inverse-Gamma prior on σ 2
j (2.6).

This calibrates the prior toward values of σ 2
j which are in accordance with the observed scale

of the data. The intuition for our strategy is as follows: if we assume that most biclusters
are sparse, then small values of the sample column variances, {s2

j }Gj=1, are essentially “pure
noise” and contain no signal. Hence, the prior for σ 2

j should be centered around a small value
of the {s2

j }Gj=1. In addition, we recommend using a small value of the degrees of freedom
parameter, η, to allow for prior uncertainty while avoiding too much probability near zero or
in the tail. As a default, we take η = 3. More specifically, we calculate the 5% quantile of the
s2
j and set the value of ξ such that this 5% quantile is the median of the prior distribution.

We initialize the parameters of SSLB as follows. Each entry of B is generated indepen-
dently from a standard normal distribution. The entries of T, the matrix of auxiliary variance
parameters, are set to 100, representing an initial relatively noninformative prior on X. The
sparsity weights, θk , are initialized at 0.5. The IBP parameters, ν, are generated independently
from a Beta(1,1) distribution and then ordered from largest to smallest.

For the initialization of K , we recommend K∗ = 50 as an initial overestimate. If SSLB
obtains a final estimate of K̂ = 50 biclusters, this is an indication that the initial choice K∗ =
50 underestimated the true number of biclusters; in this case, we recommend running SSLB
again with a larger initial K∗.

3. Simulation studies. In this section, we compare the performance of SSLB to a num-
ber of other biclustering methods in two simulation settings. The methods we compare
are: (i) FABIA (Hochreiter et al. (2010)); (ii) BicMix (Gao et al. (2016)); (iii) spike-and-
slab biclustering (SSBiEM, Denitto et al. (2017)); (iv) Iterative Signature Algorithm (ISA,
Bergmann, Ihmels and Barkai (2003)); (v) Spectral (Kluger et al. (2003)); and (vi) Plaid
(Lazzeroni and Owen (2002)). Plaid belongs to the second biclustering algorithm category
as outlined in Section 1.2, where biclusters are assumed to have additive row and column
effects. Methods (i), (ii), (iii) and (v) belong in the third biclustering category for which bi-
clusters are assumed to manifest as rank-1 submatrices in the data matrix, up to permutations
of rows and columns. Unlike the other methods, however, Spectral does not allow biclusters
to overlap. ISA belongs to the fourth category of biclustering methods, and finds submatrices
in which all rows and all columns are above a certain threshold.

Similarly to Gao et al. (2016), the simulation studies we present illustrate the performance
of our method on settings with different levels of sparsity in the biclusters. Specifically, Sim-
ulation 1 considers matrices with only sparse biclusters, while Simulation 2 considers both
sparse and dense biclusters. In Section 4 of the Supplementary Material (Moran, Ročková and
George (2021a)), we provide further simulation studies which investigate the performance of
SSLB on Poisson-distributed data.

We use the following metrics to ascertain the quality of recovered biclusters: (i) relevance
and recovery (Prelić et al. (2006)); and (ii) consensus (Hochreiter et al. (2010)) (see Sec-
tion 2 of the Supplementary Material (Moran, Ročková and George (2021a)) for precise defi-
nitions). Relevance measures how similar on average the biclusters found by a method are to
the true biclusters (where similarity is defined by the Jaccard index). Recovery instead mea-
sures how similar the true biclusters are to the found biclusters on average. However, if many
duplicated biclusters are found by a method, this will not be reflected in either the relevance
or recovery scores. To provide a meaningful metric in such circumstances, Hochreiter et al.
(2010) developed the consensus score. The consensus score is similar to the recovery score,
but penalizes overestimation of the true number of biclusters.

3.1. Simulation 1. We first consider a simulated example with N = 300, G = 1000 and
K = 15 biclusters. The data was simulated using settings very similar to the FABIA paper

158 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

(Hochreiter et al. (2010)). Specifically, the data matrix Y was generated as XBT + E, where
each entry of the noise matrix E is sampled from an independent standard normal distribu-
tion. For each column xk , we draw the number of samples in bicluster k uniformly from
{5, . . . ,20}. The indices of these elements were randomly selected and then assigned a value
from N(±2,1), with the sign of the mean chosen randomly. The elements of xk not in the bi-
cluster had values drawn from N(0,0.22). The columns βk were generated similarly, except
the number of elements in each bicluster was drawn from {10, . . . ,50}. We allow biclusters
to share at most five samples and at least fifteen features. For both SSLB and BicMix, we set
the initial overestimate of the number of biclusters to be K∗ = 30. For FABIA and SSBiEM,
which requires the number of biclusters to be set in advance, we set the number of biclusters
to the truth, K = 15. For Plaid, we set the maximum number of biclusters to be 15. Both ISA
and Spectral do not allow prespecification of the number of biclusters.

In this simulation study, we compared three implementations of Spike-and-Slab Lasso
Biclustering: (i) SSLB with the Pitman–Yor extension where α̃ = 1 and d = 0.5 (SSLB-
PY); (ii) SSLB with the stick-breaking IBP prior for the factors where α̃ = 1 (SSLB-IBP)
and (iii) SSLB with the finite approximation to the IBP prior (i.e., Beta-Binomial) for the
factors where ã = 1/K∗ and b̃ = 1 (SSLB-BB). For each implementation we used the default
settings as outlined in Section 2.5. For the loadings matrix, B, we set the Beta-Binomial
hyperparameters to be a = 1/K∗, b = 1.

For one realization from the above simulation setting, Figure 4 displays the support of
the estimated factor and loadings matrices, X and B, found by each of SSLB-IBP, BicMix
and SSBiEM (see Section 3.2 of the Supplementary Material (Moran, Ročková and George
(2021a)) for plots for the remaining methods). SSLB-IBP finds the true bicluster structure
with few false positives, while BicMix finds many more false positives due to small values

FIG. 4. Simulation 1: Factor matrices, X, and loading matrices, B, found by different methods. Only the support
of the matrix is displayed: a red value indicates a nonzero element.

SSL BICLUSTERING 159

FIG. 5. Simulation 1: (a) Boxplots of the consensus scores. (b) Relevance versus recovery scores.

not being exactly thresholded to zero by the three-parameter beta prior. SSBiEM also finds
the true bicluster structure with few false positives, similarly to SSLB. However, SSBiEM
requires the true number of biclusters to be known; when given a larger initial K∗, SSBiEM
does not threshold the additional biclusters to zero (see Figure 3(a) in Section 3.2 of the Sup-
plementary Material (Moran, Ročková and George (2021a))). Further, SSLB is much faster
than SSBiEM: on a single dataset from this simulation study, SSLB took four minutes to con-
verge, while SSBiEM took 80 minutes. SSLB also achieves significantly better performance
than SSBiEM on non-Gaussian distributed data (see Section 4 of the Supplementary Material
(Moran, Ročková and George (2021a))).

To further quantify the performance of each of the methods, we generated 50 realizations
of the simulated data and calculated the consensus (Figure 5(a)), relevance and recovery
scores (Figure 5(b)) for each method. SSBiEM has the highest consensus scores, followed by
all versions of SSLB.

Table 1 displays the estimated number of biclusters, K̂ , for the methods which estimate K .
All implementations of SSLB very slightly overestimate the true number of biclusters, while
BicMix slightly underestimates the true number of biclusters. ISA overestimates the true
number biclusters by a wide margin. Spectral also overestimates the true number of biclusters.
Finally, Plaid significantly underestimates the true number of biclusters; we hypothesize that
this is because Plaid is designed to find only additive bicluster effects.

3.2. Simulation 2. We now assess how well SSLB can find both sparse and dense biclus-
ters with a simulation study inspired by that of Gao et al. (2016). We again take N = 300,

TABLE 1
Mean estimated number of biclusters, K , over 50

replications. Standard errors are shown in parentheses

K̂

Method Simulation 1 Simulation 2

Truth 15 9
SSLB-IBP 15.3 (0.10) 9.6 (0.11)
SSLB-PY 15.2 (0.07) 9.8 (0.10)
SSLB-BB 15.3 (0.09) 9.4 (0.10)
Bicmix 14.5 (0.18) 8.7 (0.10)
ISA 68.0 (2.01) 313.0 (5.34)
Spectral 17.9 (2.04) 1.7 (0.16)
Plaid 1.7 (0.26) 13.2 (0.45)

160 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

G = 1000 and K = 15. For both the factor and loading matrices, five columns are dense and
ten columns are sparse. The sparse columns (corresponding to sparse biclusters) are gener-
ated as Simulation 1. The dense columns (corresponding to dense biclusters) are generated as
independent N(0,22). We allow for one dense column in X to correspond to a sparse column
in B and vice versa; this results in K = 9 biclusters which are sparse in both X and B.

The goal for this simulation study is to recover the sparse biclusters while removing the
effect of the dense biclusters, which are acting as confounders. As such, we calculate the
recovery, relevance and consensus scores for the sparse biclusters found by each of the meth-
ods only. BicMix provides a binary indicator for whether xk and βk are sparse or dense; we
kept BicMix biclusters for which both xk and βk were sparse. For the remaining methods, we
determine a “sparse” bicluster to be one where both columns xk and βk have less than 50%
of values being nonzero.

For one realization from the above simulation setting, Figure 6 displays the support of the
estimated factor and loadings matrices, X and B, found by SSLB-IBP, BicMix and SSBiEM
(see Figure 2 in Section 3.2 of the Supplementary Material (Moran, Ročková and George
(2021a)) for plots of the remaining methods). SSLB finds nine of the ten true sparse biclusters
with few false positives, successfully adapting to the dense and sparse structure. BicMix also
finds nine out of ten true biclusters, albeit with more false positives. SSBiEM recovers the
true bicluster structure very well; however, SSBiEM relies on knowing the true number of
biclusters.

We again generated 50 realizations of the simulated data and calculated the consensus
(Figure 7(a)), relevance and recovery scores (Figure 7(b)) for each method. SSBiEM achieves
the highest consensus scores here, followed all versions of SSLB. The lower consensus scores
of BicMix are again due to small values not being exactly thresholded to zero by the three-

FIG. 6. Simulation 2: Factor matrices, X, and loading matrices, B, found by each of the methods. Only the
support of the matrix is displayed: a red value indicates a nonzero element.

SSL BICLUSTERING 161

FIG. 7. Simulation 2: (a) Boxplots of the consensus scores. (b) Relevance versus recovery scores.

parameter beta prior. Meanwhile, the other biclustering methods are not able to find the true
sparse bicluster structure.

In this setting, SSLB-IBP and SSLB-BB slightly overestimate the true number of biclus-
ters (Table 1). SSLB-PY further overestimates the true number of biclusters; this is a result of
SSLB-PY placing more prior weight on a larger number of small biclusters. BicMix approx-
imates the true number of biclusters well, while ISA, Spectral and Plaid again exhibit poor
performance.

3.3. Simulation summary. In Simulations 1 and 2, we highlighted the following benefits
of SSLB.

• In contrast to BicMix, SSLB automatically thresholds small values of X and B to zero.
• In contrast to FABIA, ISA, Spectral and Plaid, SSLB can adapt to differing sparsity levels

in the data.
• In contrast to SSBiEM, SSLB does not require the true number of biclusters to be known.

Instead, SSLB estimates the number of biclusters from the data. In the simulation studies,
SSLB approximates the true number of biclusters well.

• SSLB is computationally efficient, running 20 times as fast as SSBiEM.

Further, in Simulations 3 and 4 (Section 4 of the Supplementary Material (Moran, Ročková
and George (2021a))), SSLB exhibits the highest bicluster recovery performance out of all
the methods when the data matrix, Y, is distributed as a Poisson random variable (instead of
a Gaussian).

4. Breast cancer microarray dataset. We now return to the breast cancer microarray
dataset from Section 1 and show how we obtain the ordered matrix in Figure 1. The dataset1

consists of the expression levels of G = 24,158 genes from the breast cancer tumors of
N = 337 patients with stage I or II breast cancer (Van De Vijver et al. (2002), Van’t Veer
et al. (2002)). Gao et al. (2016) also used this dataset to illustrate the performance of their
biclustering method, BicMix. We followed a similar data processing pipeline to Gao et al.
(2016), without their preprocessing step (for more details, see Section 5 of the Supplementary
Material (Moran, Ročková and George (2021a))).

We ran SSLB-IBP with the initial number of biclusters set to K∗ = 50. For the loadings,
B, we set the Beta-Binomial hyperparameters to a = 1/(GK∗) and b = 1. This division by
G places an added emphasis on sparsity. For the factors, X, we set the IBP hyperparameter
to α̃ = 1/N with d = 0. For the remaining parameters, we use the default settings outlined in

1Data sourced from R package breastCancerNKI (Schroeder et al. (2011)).

162 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

FIG. 8. Left: SSLB factor matrix where each row corresponds to a patient and each column corresponds to
a bicluster. A patient belongs to a bicluster if they have a nonzero value in that column. Rows are ordered by
clinical ER status; within ER status, rows are ordered by factor values in biclusters 1 and 2. Only the first 10
biclusters (ordered by size) are shown for improved visualization; full factor matrix is displayed in Section 6.
Middle: submatrix of gene expression values where rows correspond to all samples (ordered by ER status) and
columns correspond to genes in Bicluster 1 (reordered according to their loadings in Bicluster 1). Expression
values with magnitude greater than 0.25 have had magnitude set to 0.25 for improved visualization. Right: Clinical
Estrogen Receptor (ER) status (Blue = ER−, Red = ER+).

Section 2.5. SSLB-IBP found K̂ = 30 biclusters (Figure 8). The proportion of nonzero ele-
ments in X ranges from 31.8% to 0.6%. The proportion of nonzero elements in B ranges from
28.4% to 2.8% (Figure 10(b), Section 6 of the Supplementary Material (Moran, Ročková and
George (2021a))). This suggests we are in a “sparse bicluster” regime, similar to Simulation 1,
and so we do not need to filter dense biclusters.

4.1. SSLB identifies subtypes of breast cancer. Breast cancers can be broadly grouped
into subtypes based on the expression levels of two genes: ESR1, which encodes an estro-
gen receptor (ER), and ERBB2, which encodes the human epidermal growth factor receptor 2
(HER2) (Howlader et al. (2014)). A patient is deemed ER-positive (-negative) if they have rel-
atively high (low) expression levels of ESR1. HER2 status is similarly defined by the expres-
sion of ERBB2. The expression levels of these genes determine four subtypes of breast can-
cer: (i) ER+/HER2+, (ii) ER+/HER2−, (iii) ER−/HER2+ and (iv) ER−/HER2−. These
subtypes have been shown to be valuable prognostic indicators and are used to determine the
treatment protocol for patients (Howlader et al. (2014)). The clinical ER status of patients (de-
termined by immunohistochemical staining, not gene expression levels) was provided with
the dataset and so can provide a measure of validation for the biclusters that SSLB found.
The HER2 status of patients was not recorded, however.

SSLB found four biclusters with significantly different means in the factors between the
clinically ER-negative and ER-positive patients.2 The patients with negative factors in SSLB
bicluster 1 are almost all patients whose clinical status was recorded as ER-negative (Fig-
ure 8). We then investigated the genes in this bicluster and found ESR1, the gene encoding
an estrogen receptor, was down-regulated for these patients. There are five patients with clin-
ical ER-positive status who were in the ER-negative bicluster found by SSLB. However, the
down-regulation of the ESR1 gene in this patients suggests that the original clinical charac-
terization was a misclassification. In the original paper analyzing this data, Van De Vijver
et al. (2002) also found five patients had a discrepancy between their clinical ER-status and
gene expression determined ER status, concluding that the latter classification was correct.

2Biclusters 1, 2, 5 and 22 had p-values, 6.1 × 10−50, 2.2 × 10−9, 1.0 × 10−5 and 7.2 × 10−6, respectively,
from a Wilcoxon rank-sum test with Bonferroni significance level 0.01/K̂ .

SSL BICLUSTERING 163

TABLE 2
Proportion of breast cancer patients in each of the subtypes determined by ER and HER2 status from (i) the

study of Onitilo et al. (2009); and (ii) SSLB

ER+/HER2+ ER+/HER2− ER−/HER2+ ER−/HER2−

Onitilo et al. (2009) 10.2% 68.9% 7.5% 13.4%
SSLB 7.7% 70.3% 8.9% 13.1%

The gene ERBB2 is present in SSLB biclusters 1 and 2. In both biclusters, ERBB2 is
up-regulated for patients with positive factors and down-regulated for patients with nega-
tive factors. For patients with negative bicluster 1 and zero bicluster 2 factors, ESR1 and
ERBB2 are both down-regulated, indicating ER−/HER2− status. Meanwhile, patients with
negative bicluster 1 and positive bicluster 2 factors are likely ER−/HER2+. Turning to the
ER-positive patients (with zero bicluster 1 values), those with positive bicluster 2 values are
potentially ER+/HER2+. Finally, ER-positive patients with negative bicluster 2 factors are
likely ER+/HER2−. We note that a number of patients are in neither bicluster 1 or 2; we hy-
pothesize that these patients are also ER+/HER2− as this is the most common breast cancer
subtype (Onitilo et al. (2009)). The proportions of patients in each subtype found by SSLB
matches fairly well with reported subtype proportions in the literature (Table 2).

After determining these groups, we then investigated whether genes known to play a role in
these subtypes were present in the biclusters. In particular, genes considered to be indicators
(or markers) of ER+ status are KRT8, GATA-3, XBP-1, FOXA1 and ADH1B (Zhang et al.
(2014)). Four of these five marker genes were down-regulated in bicluster 1, and consequently
were relatively over-expressed for the ER+ patients (p-value 0.002, Fisher’s exact test). The
gene GRB7 is located adjacent to the ERBB2 (HER2) gene and as such is often co-expressed
with ERBB2; we indeed found that GRB7 was up-regulated in bicluster 2 (as well as down-
regulated for the HER2− patients in bicluster 1).

4.2. Gene ontology enrichment analysis. We next conducted gene ontology enrichment
analysis on the genes found by SSLB using the R package clusterProfiler (Yu et al.
(2012)). This software conducts an overrepresentation test to determine whether genes which
coordinate the same biological process are significantly co-occuring. If a subset of genes is
found to be overrepresented in a set, the set is said to be “enriched” for the biological pro-
cess in which those genes are active. With a false discovery rate (FDR) threshold of 0.05,
we found that the genes which were up-regulated in SSLB bicluster 1 (corresponding to the
ER-negative patients) were enriched for 124 biological processes. Many of these were related
to cell proliferation, including the G1/S transition of mitotic cell cycle. As cancer is funda-
mentally the un-regulated growth of cells, such proliferation signatures are commonly found
in tumor samples (Whitfield et al. (2006)). Another biological process for which the ER-
negative bicluster is enriched is: response to leukemia inhibitory factor. Leukemia inhibitory
factor has actually been shown to stimulate cell proliferation in breast cancer (Kellokumpu-
Lehtinen et al. (1996)). An enrichment map summarizing the most statistically significant
processes is displayed in Figure 12(a) (Section 6 of the Supplementary Material (Moran,
Ročková and George (2021a))).

The genes up-regulated in the HER2+ patients in SSLB bicluster 2 were enriched for 495
biological processes (again with FDR threshold of 0.05). The enrichment map summariz-
ing these processes is displayed in Figure 12(b) (Section 6 of the Supplementary Material
(Moran, Ročková and George (2021a))). In particular, these genes were enriched for the Wnt
signaling pathway, the over-expression of which has been implicated in the development of

164 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

cancer (Zhan, Rindtorff and Boutros (2017)). Further, stem cell proliferation was enriched in
this bicluster; stem cells have been implicated as possible originators of tumors, and may in
some cases potentially drive tumorigenesis (Reya et al. (2001)).

Overall, 86.6% of the biclusters found by SSLB were enriched for biological processes.
Further investigation of the remaining biclusters and their potential clinical utility may be
interesting future work.

4.3. Comparison with other methods. We initially ran BicMix on this data using the
default settings; however, BicMix found zero biclusters. It may be that BicMix is over regu-
larizing on this data as it does not feature a mechanism to adapt to different noise levels. In
contrast, SSLB uses an empirical Bayes-like strategy to adapt to the noise level in different
datasets.

We then investigate how BicMix performed after projecting the quantiles of the data to the
quantiles of a standard normal distribution, as recommended by Gao et al. (2016). On this
normalized data, BicMix found K̂ = 13 biclusters, the first six of which had significantly dif-
ferent means for the ER-positive and ER-negative patients.3 The gene ESR1, which encodes
an estrogen receptor, was present only in BicMix bicluster 1. Unlike SSLB, many of the
ER-positive patients in BicMix bicluster 1 have a negative xi1 factor value; this is likely an
artifact of the quantile normalization. Marker genes for ER+ status (KRT8, GATA-3, XBP-1,
FOXA1 and ADH1B) were not significantly up-regulated in BicMix bicluster 1. This may be
due to the density of the bicluster; 36% of the 24,158 genes are present in bicluster 1. Mean-
while, the gene ERBB2, which encodes HER2, was not present in any BicMix bicluster.

We additionally conducted gene ontology enrichment analysis on the genes found by
BicMix, using the same settings as in Section 4.2. Only 53.8% of the biclusters found by
BicMix were enriched for biological processes, compared to 86.6% for SSLB. We hypothe-
size that BicMix is combining much of the biological signal in bicluster 1. As such, we argue
that SSLB finds more interpretable biclusters.

We ran FABIA on this dataset using the default settings for two different bicluster initial-
izations: (i) K = 10 and (ii) K = 30 (the number of biclusters found by SSLB), as FABIA
does not automatically select the number of biclusters (Figure 9(a)). In the K = 10 setting,
FABIA found five biclusters that had a significantly different mean between ER+ and ER−
patients.4 Unlike SSLB, however, FABIA does not find a bicluster with almost exclusively
ER-negative patients.

In the K = 30 setting, FABIA found four biclusters that had a significantly different mean
between ER+ and ER− patients.5 We can see that with a larger number of initial biclusters,
the ER signal is diluted across multiple biclusters. As a result, the conclusions of FABIA
seem to be highly dependent on the initial number of biclusters. Further, for this larger value
of K , FABIA also does not find a bicluster consisting of almost exclusively ER-negative
patients.

Next, we ran SSBiEM on this data with K = 30 biclusters. Surprisingly, SSBiEM found
only two nonzero biclusters; this is in contrast to simulation studies where it did not threshold
any biclusters exactly to zero. However, both biclusters found by SSBiEM were completely
dense in both the factor and loading matrices, limiting their interpretability. One of the biclus-
ters, however, did correspond to patient ER status (Figure 9(c)). We hypothesize that the poor

3p-values 9.9 × 10−32, 1.4 × 10−20, 1.3 × 10−19, 1.7 × 10−16, 3.4 × 10−8, and 1.1 × 10−4, respectively,
from a Wilcoxon rank-sum test with Bonferroni significance level 0.01/K̂ .

4p-values 3.9 × 10−24, 2.5 × 10−12, 9.2 × 10−10, 4.8 × 10−8, 1.7 × 10−7 from Wilcoxon rank-sum test with
Bonferroni significance level 0.01/10.

5p-values 2.5 × 10−9, 1.7 × 10−7, 6.5 × 10−6, 3.6 × 10−5 from Wilcoxon rank-sum test with Bonferroni
significance level 0.01/30.

SSL BICLUSTERING 165

FIG. 9. Breast Cancer Dataset: Results from FABIA, BicMix, SSBiEM and ISA. All matrices have rows ordered
by clinical ER status.

performance of SSBiEM here is due to the recommended initialization of SSBiEM to the
singular value decomposition of Y. This resulted in very good performance in the simulation
studies, but did not allow SSBiEM to find sparse, interpretable biclusters in this example.

ISA found K̂ = 540 biclusters on this data (Figure 9(d)). Given the propensity of ISA
to overestimate the number of biclusters in the simulation studies, we anticipate that this is a
significant overestimate of the actual number of biclusters. Of the 540 biclusters, 80 biclusters
had a significantly different mean between the ER-positive and ER-negative patients.

Finally, neither Spectral nor Plaid returned any biclusters on this data.

5. Mouse cortex and hippocampus scRNA-seq dataset. For a second application, we
assess the performance of SSLB on the data of Zeisel et al. (2015) (hereafter referred to as
Z15). Z15 used single-cell RNA-sequencing (scRNA-seq) to obtain counts of RNA molecules

166 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

in 3005 cells from the mouse somatosensory cortex and hippocampal CA1 region. The goal of
the study was to characterize the RNA-expression levels in different cell-types of the mouse
brain. Previously, cell types in the brain have been defined by alternative features such as loca-
tion, morphology, and electrophysiological characteristics, combined with molecular markers
Zeisel et al. (2015). Defining cell-types instead by expression levels requires clustering both
the cells and the genes particularly associated with that cell cluster and as such is a bicluster-
ing problem.

Z15 developed a biclustering algorithm called BackSPIN which identified nine major types
of cells in the mouse brain based on their transcription profiles: (i) interneurons; (ii) S1
pyramidal neurons; (iii) CA1 pyramidal neurons; (iv) oligodendrocytes; (v) microglia cells;
(vi) endothelial cells; (vii) astrocytes; (viii) ependymal cells; and (ix) mural cells. By re-
peatedly applying BackSPIN on these biclusters, Z15 found a further 47 subclasses of cells.
Here, we apply SSLB to the same dataset. A benefit of SSLB is that it can find classes and
subclasses simultaneously without having to iteratively re-apply the method.

The scRNA-seq dataset made available by Z15 consists of RNA molecule counts for
19,972 genes in 3005 individual cells.6 Following these authors, we (i) removed genes with
less than 25 molecules in total over all cells; (ii) removed genes that were not correlated with
more than 5 other genes; and (iii) retained the top 5000 most biologically variable genes. Fur-
ther details of these processing steps are given in Section 7 of the Supplementary Material
(Moran, Ročková and George (2021a)). Although more sophisticated methods for removing
technical variability in scRNA-seq data have been developed in recent years (e.g., Huang
et al. (2018)), we follow the steps of Z15 to enable a direct comparison of our biclustering
results.

After processing the data, the subset we used for biclustering is a matrix containing the
RNA counts of G = 5000 genes in N = 3005 individual cells. We note that as a matrix
of counts, this data is perhaps best modeled by a Poisson distribution, instead of assuming
normally distributed residuals as in SSLB. However, Poisson-distributed data with a large
rate parameter is approximately normal. As we are considering the most variable genes (with
high RNA molecule counts), such a normal approximation is not too unreasonable. Despite
this, there are still a high proportion of zero entries in the matrix and so this application may
be seen as a test of the robustness of SSLB to model misspecification. We ran SSLB-IBP with
the initial number of biclusters set to K∗ = 100. as in Section 4, we set the Beta-Binomial
hyperparameters to a = 1/(GK∗) and b = 1, and the IBP hyperparameter to α̃ = 1/N with
d = 0. For the remaining parameters, we use the default settings outlined in Section 2.5.
SSLB returned K̂ = 95 biclusters. The proportion of nonzero elements in X ranges from 30%
to 0.1%, and in B from 37% to 0.3% (Figure 14, Section 8 of the Supplementary Material
(Moran, Ročková and George (2021a))). This suggests we are in a “sparse bicluster” regime,
similar to Simulation 1, and so we do not filter for dense biclusters.

5.1. SSLB recovers major cells types. SSLB recovered the nine major cell classes iden-
tified by Z15, finding a specific bicluster for each class except for the microglia class, which
SSLB split into two biclusters (Figure 10(a)). For each class, Z15 also identified one or two
potential marker genes; that is, a gene that is almost exclusively expressed in that cell class.
Encouragingly, the SSLB biclusters corresponding to the major cell classes all contained the
associated marker gene for that cell class. More specifically:

• The interneuron gene marker Pnoc was found in three SSLB biclusters, one corresponding
to the major interneuron cell class and the others to subclasses of interneurons.

6http://linnarssonlab.org/cortex

SSL BICLUSTERING 167

FIG. 10. Zeisel dataset: SSLB results.

• The S1 pyramidal neuron marker genes Gm11549 and Tbr1 were present in two biclusters,
one corresponding to the major S1 pyramidal neuron cell class and the other to a subclass
of S1 pyramidal neurons. Tbr1 was also found in a bicluster containing cells from four
different cell types, a potential false positive.

• The CA1 pyramidal neuron marker Spink8 was found in three biclusters. Two of these bi-
clusters corresponded to the major CA1 pyramidal neuron cell class and a subclass of CA1
pyramidal neurons, respectively. The third bicluster contained CA1 pyramidal, S1 pyra-
midal and interneuron cells, suggesting that Spink8 may not necessarily be an exclusive
marker for CA1 pyramidal neurons.

• The oligodendrocyte marker Hapln2 was active in three SSLB biclusters, all corresponding
to either the major oligodendrocyte cell class or a subclass of oligodendrocytes. Interest-
ingly, one of these biclusters contained 17 cells, all oligodendrocytes, but did not corre-
spond to one of the Z15 identified subclasses; as such, this bicluster may correspond to a
yet-to-be classified subtype of oligodendrocytes. Figure 17 (in Section 8 of the Supplemen-
tary Material (Moran, Ročková and George (2021a))) shows the biological processes that
are enriched in this bicluster, which can be broadly grouped into two categories: (i) pro-

168 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

cesses related to oligodendrocyte-specific functions, including myelination, and (ii) cell
metabolic processes.

• The endothelial cell marker Ly6c1 was found in four SSLB biclusters, two corresponding
to the major endothelial group or a subclass. The other two biclusters were mostly all
endothelial cells, but contained some astrocytes and microglia cells also.

• The mural cell marker Acta2 was active in three SSLB biclusters. One bicluster corre-
sponded to the main mural bicluster and another to a bicluster with almost all mural cells.
The third bicluster contained mostly endothelial cells, with a few oligodendrocyte, mi-
croglia, astrocyte and mural cells, indicating that either Acta2 is not exclusively expressed
in mural cells, or a potential false positive of SSLB.

In addition to the nine main cell types, SSLB found two biclusters (biclusters 1 and 2)
which contained many interneurons, S1 pyramidal neurons and CA1 pyramidal neurons. This
is unsurprising as these cell types are all subsets of neurons, and so we would expect them to
have more similar expression profiles than the other (nonneuronal) brain cells. We conducted
gene ontology enrichment analysis on the genes SSLB found in these biclusters. With an
FDR threshold of 0.05, bicluster 1 was enriched for 154 biological processes, the majority
of which were related to cell metabolic processes and synaptic activity, as may be expected
for neurons (Figure 16(a) in Section 8 of the Supplementary Material (Moran, Ročková and
George (2021a))). Bicluster 2 was similarly enriched for processes relating to synaptic ac-
tivity, including axonal transport and synaptic signaling (Figure 16(b) in Section 8 of the
Supplementary Material (Moran, Ročková and George (2021a))).

The results of SSLB yield a number of observations that may warrant further scientific
investigation. First, while SSLB recovered the major cell types, it grouped together a number
of the 47 sub-categories found by Z15. This was particularly the case for the interneuron cells,
where SSLB found 5 subtypes (Z15 found 16), and the S1 pyramidal cells, where SSLB found
3 subtypes (Z15 found 12). It may be the case that SSLB has trouble finding more granular
clusters, or potentially there really are fewer cell subtypes than identified by Z15.

Although SSLB collapsed many of the interneuron and S1 pyramidal subtypes, it found
many more subtypes of microglia and ependymal cells than Z15. This suggests that there
could be a great deal of heterogeneity in expression levels in these classes of cells, a phe-
nomenon which may prove to be of scientific interest.

There are a number of cells which Z15 did not assign to a subtype (colored in black in Fig-
ure 10(a)). Interestingly, SSLB grouped a number of the previously unclassified S1 pyramidal
cells into the “S1PyrL23” subtype (Figure 10(b)).

Finally, we conducted gene ontology enrichment analysis7 for all of the biclusters found
by SSLB. In this analysis, 83% of the biclusters identified by SSLB were enriched for at least
one biological process.

5.2. Comparison with other methods. We also applied the other biclustering methods to
the Zeisel dataset. Where an initial number of bicluster was required, we used K∗ = 100.
BicMix found K̂ = 94 biclusters (Figure 11(a)). BicMix found many of the smaller subtypes
defined by Z15 but assigns the major cell type signals to dense biclusters. This is a result of
the dichotomous nature of BicMix; it finds either completely dense or very sparse biclusters.
Consequently, BicMix may find “spuriously dense” biclusters. In contrast, SSLB can adapt
to the underlying sparsity, allowing it to also estimate such “medium”-sized biclusters. We
argue that this allows SSLB to find more interpretable solutions.

7Using clusterProfilerwith FDR threshold of 0.05. We took the 5000 genes obtained after processing as
the “background” genes for the overrepresentation test instead of the original number of 19,972 to avoid selection
bias.

SSL BICLUSTERING 169

FIG. 11. Factor matrices of BicMix and ISA. On the side of the factor matrix are the cell types and subtypes
found by Z15, respectively. The rows of the factor matrices have been ordered to correspond to the Zeisel cell
types.

ISA found K̂ = 107 biclusters, a result reasonably consistent with both SSLB and BicMix
(Figure 11(b)). We anticipate that this concordance is due to the better performance of ISA
on Poisson data in simulation studies (see Section 4 of the Supplementary Material (Moran,
Ročková and George (2021a))) compared to Gaussian data (see Section 3). However, ISA

170 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

finds multiple biclusters which correspond to the same cell type, unlike SSLB which gen-
erally finds a single cell type per major cell cluster. Further, ISA does not recover the cell
subgroups as clearly as SSLB.

FABIA found K̂ = 99 biclusters (Figure 13 in Section 8 of the Supplementary Material
(Moran, Ročková and George (2021a))). FABIA found many of the larger cell type biclusters
but did not do well at recovering the more granular cell subtypes. This is due to FABIA having
the same thresholding parameter for each bicluster; it is unable to adapt to the differing levels
of sparsity.

The SSBiEM algorithm returned an error due to the size of the dataset, even with a smaller
initial number of biclusters K∗ = 50. Finally, neither Spectral nor Plaid found any biclusters
on the Zeisel data.

6. Conclusion. In this paper, we introduced a new method for biclustering called Spike-
and-Slab Lasso Biclustering (SSLB). SSLB finds subsets of samples which co-vary on subset
of features. These paired subsets manifest as rank-1 submatrices in the data, referred to as
“biclusters” in this setting. To find these biclusters, SSLB performs two-way subset selection
to conduct doubly-sparse factor analysis in which both the loadings and the factors are sparse.
To induce this sparsity in the loadings and factors, SSLB uses the Spike-and-Slab Lasso prior
of Ročková and George (2018). This prior is combined with an Indian Buffet Process prior
to automatically choose the number of biclusters. SSLB utilizes a fast EM algorithm with a
variational step to find the modes of the posterior. This EM algorithm is rendered tractable
by a novel augmentation of the Spike-and-Slab Lasso prior.

SSLB features a number of benefits over similar biclustering methods. First, the adaptivity
inherent in the Spike-and-Slab Lasso prior allows for SSLB to find a continuum of biclus-
ters of different sizes. This is in contrast to other biclustering methods which have more
restrictive assumptions on the sizes of the biclusters. Second, the Spike-and-Slab Lasso prior
automatically thresholds negligible bicluster values to zero; this is unlike other biclustering
methods which require post-processing thresholding steps. Finally, SSLB also demonstrates
robustness to non-Gaussian distributed data, achieving higher bicluster consensus scores than
alternative methods on simulated Poisson data.

SSLB out-performs a number of alternative biclustering methods on a variety of simulated
data. On the breast cancer microarray dataset of Van De Vijver et al. (2002), Van’t Veer et al.
(2002), SSLB finds biclusters corresponding to different subtypes of breast cancer. These
biclusters also contained genes which were enriched for a variety of biological processes
related to breast cancer. Finally, we applied SSLB to the mouse cortex and hippocampus
single-cell RNA-sequencing dataset of Zeisel et al. (2015). SSLB recovered all the major cell
classes found by Zeisel et al. (2015) as well as many of the cell subclasses. This performance
was achieved despite the non-Gaussianity of the residual noise in the data, highlighting the
potential robustness of SSLB to model misspecification. However, it would be interesting
to explicitly extend SSLB to non-Gaussian residual noise models in future work. The SSLB
software is available as an R/C++ package in the Supplementary Materials (Moran, Ročková
and George (2021b)) and online at https://github.com/gemoran/SSLB. Source code to repro-
duce the results in this paper is avaible in the Supplementary Materials (Moran, Ročková and
George (2021c)) and online at https://github.com/gemoran/SSLB-examples.

Acknowledgments. This research was supported by NSF Grants DMS-1916245, DMS-
1944740 and the James S. Kemper Research Fund at the Booth School of Business. We would
like to thank the Editor, Associate Editor and anonymous referees for helpful suggestions
which improved this paper.

SSL BICLUSTERING 171

SUPPLEMENTARY MATERIAL

Supplement to “Spike-and-slab Lasso biclustering” (DOI: 10.1214/20-AOAS1385
SUPPA; .pdf). The supplementary file contains (i) details of the SSLB algorithm; (ii) de-
tails of bicluster quality metrics; (iii) additional figures for Simulations 1 and 2; (iv) results
of Simulations 3 and 4 (with Poisson distributed data); (v) details regarding processing of
breast cancer data; (vi) additional figures for breast cancer analysis; (vii) details regarding
processing of Zeisel et al. (2015) data; (viii) additional figures for Zeisel et al. (2015) analy-
sis.

“Spike-and-slab Lasso biclustering” R package (DOI: 10.1214/20-AOAS1385SUPPB;
.zip). R package which implements the method “Spike-and-Slab Lasso Biclustering.”

Source code for “Spike-and-slab Lasso biclustering” (DOI: 10.1214/20-AOAS1385
SUPPC; .zip). R source code for the analyses described in this paper.

REFERENCES

ARMAGAN, A., DUNSON, D. B. and CLYDE, M. (2011). Generalized beta mixtures of Gaussians. Adv. Neural
Inf. Process. Syst. 24 523–531.

BAI, R., MORAN, G. E., ANTONELLI, J. L., CHEN, Y. and BOLAND, M. R. (2020). Spike-and-slab
group Lassos for grouped regression and sparse generalized additive models. J. Amer. Statist. Assoc. 1–14.
https://doi.org/10.1080/01621459.2020.1765784

BEN-DOR, A., CHOR, B., KARP, R. and YAKHINI, Z. (2003). Discovering local structure in gene expression
data: The order-preserving submatrix problem. J. Comput. Biol. 10 373–384.

BERGMANN, S., IHMELS, J. and BARKAI, N. (2003). Iterative signature algorithm for the analysis of large-scale
gene expression data. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67 031902. https://doi.org/10.1103/
PhysRevE.67.031902

BHATTACHARYA, A. and CUI, Y. (2017). A GPU-accelerated algorithm for biclustering analysis and de-
tection of condition-dependent coexpression network modules. Sci. Rep. 7 4162. https://doi.org/10.1038/
s41598-017-04070-4

BOZDAĞ, D., KUMAR, A. S. and CATALYUREK, U. V. (2010). Comparative analysis of biclustering algorithms.
In Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology
265–274. ACM, New York.

BOZDAĞ, D., PARVIN, J. D. and CATALYUREK, U. V. (2009). A biclustering method to discover co-regulated
genes using diverse gene expression datasets. In Bioinformatics and Computational Biology 151–163.
Springer, Berlin.

CARVALHO, C. M., POLSON, N. G. and SCOTT, J. G. (2010). The horseshoe estimator for sparse signals.
Biometrika 97 465–480. MR2650751 https://doi.org/10.1093/biomet/asq017

CASTILLO, I., SCHMIDT-HIEBER, J. and VAN DER VAART, A. (2015). Bayesian linear regression with sparse
priors. Ann. Statist. 43 1986–2018. MR3375874 https://doi.org/10.1214/15-AOS1334

CASTILLO, I. and VAN DER VAART, A. (2012). Needles and straw in a haystack: Posterior concentration for
possibly sparse sequences. Ann. Statist. 40 2069–2101. MR3059077 https://doi.org/10.1214/12-AOS1029

CHENG, Y. and CHURCH, G. M. (2000). Biclustering of expression data. In Proceedings of the International
Conference on Intelligent Systems for Molecular Biology 8 93–103.

DENITTO, M., BICEGO, M., FARINELLI, A. and FIGUEIREDO, M. A. (2017). Spike and slab biclustering.
Pattern Recognit. 72 186–195.

DESHPANDE, S. K., ROČKOVÁ, V. and GEORGE, E. I. (2019). Simultaneous variable and covariance se-
lection with the multivariate spike-and-slab LASSO. J. Comput. Graph. Statist. 28 921–931. MR4045858
https://doi.org/10.1080/10618600.2019.1593179

DE CASTRO, P. A., DE FRANÇA, F. O., FERREIRA, H. M. and VON ZUBEN, F. J. (2007). Evaluating the
performance of a biclustering algorithm applied to collaborative filtering—A comparative analysis. In 7th
International Conference on Hybrid Intelligent Systems, 2007. HIS 2007 65–70. IEEE, New York.

DOSHI, F., MILLER, K., VAN GAEL, J. and TEH, Y. W. (2009). Variational inference for the Indian buffet
process. In Artificial Intelligence and Statistics 137–144.

EREN, K., DEVECI, M., KÜÇÜKTUNÇ, O. and ÇATALYÜREK, Ü. V. (2012). A comparative analysis of biclus-
tering algorithms for gene expression data. Brief. Bioinform. 14 279–292.

172 G. E. MORAN, V. ROČKOVÁ AND E. I. GEORGE

FAN, N., BOYKO, N. and PARDALOS, P. M. (2010). Recent advances of data biclustering with application in
computational neuroscience. In Computational Neuroscience. Springer Optim. Appl. 38 85–112. Springer,
New York. MR2656809 https://doi.org/10.1007/978-0-387-88630-5_6

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York.
MR0270403

FRIEDMAN, J. H. and MEULMAN, J. J. (2004). Clustering objects on subsets of attributes. J. R. Stat. Soc. Ser. B.
Stat. Methodol. 66 815–849. MR2102467 https://doi.org/10.1111/j.1467-9868.2004.02059.x

FRÜHWIRTH-SCHNATTER, S. and LOPES, H. F. (2010). Parsimonious Bayesian factor analysis when the number
of factors is unknown. Technical report, Univ. Chicago Booth School of Business.

GAO, C., MCDOWELL, I. C., ZHAO, S., BROWN, C. D. and ENGELHARDT, B. E. (2016). Context specific and
differential gene co-expression networks via Bayesian biclustering. PLoS Comput. Biol. 12 e1004791.

GHAHRAMANI, Z. and GRIFFITHS, T. L. (2006). Infinite latent feature models and the Indian buffet process. In
Advances in Neural Information Processing Systems 475–482.

GRIFFITHS, T. L. and GHAHRAMANI, Z. (2011). The Indian buffet process: An introduction and review. J. Mach.
Learn. Res. 12 1185–1224. MR2804598

GU, J. and LIU, J. S. (2008). Bayesian biclustering of gene expression data. BMC Genomics 9 S4.
HARTIGAN, J. A. (1972). Direct clustering of a data matrix. J. Amer. Statist. Assoc. 67 123–129.
HOCHREITER, S., BODENHOFER, U., HEUSEL, M., MAYR, A., MITTERECKER, A., KASIM, A., KHAMI-

AKOVA, T., VAN SANDEN, S., LIN, D. et al. (2010). FABIA: Factor analysis for bicluster acquisition. Bioin-
formatics 26 1520–1527.

HOWLADER, N., ALTEKRUSE, S. F., LI, C. I., CHEN, V. W., CLARKE, C. A., RIES, L. A. and CRONIN, K. A.
(2014). US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl.
Cancer Inst. 106 dju055.

HUANG, M., WANG, J., TORRE, E., DUECK, H., SHAFFER, S., BONASIO, R., MURRAY, J. I., RAJ, A., LI, M.
et al. (2018). SAVER: Gene expression recovery for single-cell RNA sequencing. Nat. Methods 15 539.

KAISER, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika 23 187–200.
KELLOKUMPU-LEHTINEN, P., TALPAZ, M., HARRIS, D., VAN, Q., KURZROCK, R. and ESTROV, Z. (1996).

Leukemia-inhibitory factor stimulates breast, kidney and prostate cancer cell proliferation by paracrine and
autocrine pathways. Int. J. Cancer 66 515–519.

KLUGER, Y., BASRI, R., CHANG, J. T. and GERSTEIN, M. (2003). Spectral biclustering of microarray data:
Coclustering genes and conditions. Genome Res. 13 703–716.

LAZZERONI, L. and OWEN, A. (2002). Plaid models for gene expression data. Statist. Sinica 12 61–86.
MR1894189

MADEIRA, S. C. and OLIVEIRA, A. L. (2004). Biclustering algorithms for biological data analysis: A survey.
IEEE/ACM Trans. Comput. Biol. Bioinform. 1 24–45.

MAXWELL, J. C. (1860). V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions
of perfectly elastic spheres. Lond. Edinb. Dublin Philos. Mag. J. Sci. 19 19–32.

MORAN, G. E., ROČKOVÁ, V. and GEORGE, E. I. (2019). Variance prior forms for high-dimensional Bayesian
variable selection. Bayesian Anal. 14 1091–1119. MR4044847 https://doi.org/10.1214/19-BA1149

MORAN, G. E., ROČKOVÁ, V. and GEORGE, E. I. (2021a). Supplement to “Spike-and-slab Lasso biclustering.”
https://doi.org/10.1214/20-AOAS1385SUPPA

MORAN, G. E., ROČKOVÁ, V. and GEORGE, E. I. (2021b). “Spike-and-slab Lasso biclustering” R package.
https://doi.org/10.1214/20-AOAS1385SUPPB

MORAN, G. E., ROČKOVÁ, V. and GEORGE, E. I. (2021c). Source code for “Spike-and-slab Lasso biclustering.”
https://doi.org/10.1214/20-AOAS1385SUPPC

MUCHERINO, A., PAPAJORGJI, P. J. and PARDALOS, P. M. (2009). Data Mining in Agriculture.
Springer Optimization and Its Applications 34. Springer, New York. MR2542502 https://doi.org/10.1007/
978-0-387-88615-2

ONITILO, A. A., ENGEL, J. M., GREENLEE, R. T. and MUKESH, B. N. (2009). Breast cancer subtypes based
on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin. Sedic. Res. 7
4–13.

PADILHA, V. A. and CAMPELLO, R. J. G. B. (2017). A systematic comparative evaluation of biclustering tech-
niques. BMC Bioinform. 18 55. https://doi.org/10.1186/s12859-017-1487-1

PEETERS, R. (2003). The maximum edge biclique problem is NP-complete. Discrete Appl. Math. 131 651–654.
MR2011374 https://doi.org/10.1016/S0166-218X(03)00333-0

PRELIĆ, A., BLEULER, S., ZIMMERMANN, P., WILLE, A., BÜHLMANN, P., GRUISSEM, W., HENNIG, L.,
THIELE, L. and ZITZLER, E. (2006). A systematic comparison and evaluation of biclustering methods for
gene expression data. Bioinformatics 22 1122–1129.

SSL BICLUSTERING 173

RANGAN, A. V., MCGROUTHER, C. C., KELSOE, J., SCHORK, N., STAHL, E., ZHU, Q., KRISHNAN, A.,
YAO, V., TROYANSKAYA, O. et al. (2018). A loop-counting method for covariate-corrected low-rank biclus-
tering of gene-expression and genome-wide association study data. PLoS Comput. Biol. 14 e1006105.

REYA, T., MORRISON, S. J., CLARKE, M. F. and WEISSMAN, I. L. (2001). Stem cells, cancer, and cancer stem
cells. Nature 414 105–111. https://doi.org/10.1038/35102167

ROČKOVÁ, V. (2018). Bayesian estimation of sparse signals with a continuous spike-and-slab prior. Ann. Statist.
46 401–437. MR3766957 https://doi.org/10.1214/17-AOS1554

ROČKOVÁ, V. and GEORGE, E. I. (2016). Fast Bayesian factor analysis via automatic rotations to sparsity.
J. Amer. Statist. Assoc. 111 1608–1622. MR3601721 https://doi.org/10.1080/01621459.2015.1100620

ROČKOVÁ, V. and GEORGE, E. I. (2018). The spike-and-slab LASSO. J. Amer. Statist. Assoc. 113 431–444.
MR3803476 https://doi.org/10.1080/01621459.2016.1260469

ROHE, K. and ZENG, M. (2020). Vintage factor analysis with varimax performs statistical inference. Preprint.
Available at arXiv:2004.05387.

SCHROEDER, M., HAIBE-KAINS, B., CULHANE, A., SOTIRIOU, C., BONTEMPI, G. and QUACKENBUSH, J.
(2011). breastCancerNKI: Genexpression dataset published by van’t Veer et al. [2002] and van de Vijver et al.
[2002] (NKI). R package version 1.12.0.

SHABALIN, A. A., WEIGMAN, V. J., PEROU, C. M. and NOBEL, A. B. (2009). Finding large average submatri-
ces in high dimensional data. Ann. Appl. Stat. 3 985–1012. MR2750383 https://doi.org/10.1214/09-AOAS239

TEH, Y. W., GRÜR, D. and GHAHRAMANI, Z. (2007). Stick-breaking construction for the Indian buffet process.
In Artificial Intelligence and Statistics 556–563.

VAN DE VIJVER, M. J., HE, Y. D., VAN’T VEER, L. J., DAI, H., HART, A. A., VOSKUIL, D. W.,
SCHREIBER, G. J., PETERSE, J. L., ROBERTS, C. et al. (2002). A gene-expression signature as a predic-
tor of survival in breast cancer. N. Engl. J. Med. 347 1999–2009.

VAN’T VEER, L. J., DAI, H., VAN DE VIJVER, M. J., HE, Y. D., HART, A. A., MAO, M., PETERSE, H. L.,
VAN DER KOOY, K., MARTON, M. J. et al. (2002). Gene expression profiling predicts clinical outcome of
breast cancer. Nature 415 530.

WHITFIELD, M. L., GEORGE, L. K., GRANT, G. D. and PEROU, C. M. (2006). Common markers of prolifera-
tion. Nat. Rev. Cancer 6 99.

YU, G., WANG, L.-G., HAN, Y. and HE, Q.-Y. (2012). clusterProfiler: An R package for comparing biological
themes among gene clusters. Omics. J. Integr. Biol. 16 284–287. https://doi.org/10.1089/omi.2011.0118

ZEISEL, A., MUÑOZ-MANCHADO, A. B., CODELUPPI, S., LÖNNERBERG, P., LA MANNO, G., JURÉUS, A.,
MARQUES, S., MUNGUBA, H., HE, L. et al. (2015). Cell types in the mouse cortex and hippocampus revealed
by single-cell RNA-seq. Science 347 1138–1142.

ZHAN, T., RINDTORFF, N. and BOUTROS, M. (2017). Wnt signaling in cancer. Oncogene 36 1461–1473.
https://doi.org/10.1038/onc.2016.304

ZHANG, M. H., MAN, H. T., ZHAO, X. D., DONG, N. and MA, S. L. (2014). Estrogen receptor-positive breast
cancer molecular signatures and therapeutic potentials. Biomed. Rep. 2 41–52.

ZHU, Y., SHEN, X. and YE, C. (2016). Personalized prediction and sparsity pursuit in latent factor models.
J. Amer. Statist. Assoc. 111 241–252. MR3494656 https://doi.org/10.1080/01621459.2014.999158

Submitted to the Annals of Applied Statistics

SUPPLEMENT TO “SPIKE-AND-SLAB LASSO
BICLUSTERING”

By Gemma E. Moran⇤, Veronika Ročková† and Edward I.
George‡

Columbia University

⇤
, University of Chicago

†
and University of

Pennsylvania

‡

1. SSLB Algorithm. In this section, we provide details for the EM al-
gorithm we use to find the modes of the posterior. Before outlining the EM
algorithm, we first marginalize over the binary indicator variables � (asso-
ciated with the loadings B) to yield the non-separable Spike-and-Slab Lasso
prior (Ročková and George, 2018). For each column �k, the log of this prior
(up to an additive constant) is:

log ⇡(�k) =
GX

j=1

��
1

|�jk|+ log[p⇤(0; ✓jk)/p
⇤(�jk; ✓jk)],(1.1)

where p⇤(�; ✓) = ✓ (�|�
1

)/[✓ (�|�
1

) + (1� ✓) (�|�
0

)](1.2)

and ✓jk = E[✓k|�k\j] where �k\j denotes the vector �k with the jth element
removed. When G is large, �k\j is very similar to �k, so this expectation
may be approximated by E[✓k|�k].

We are now in a position to describe the EM algorithm. We find the expecta-
tion of X and factor indicators e� with respect to the complete log posterior
and then maximize the resultant objective function:

Q(�) = EX,e�|�(t),Y

h
log ⇡(�,X, e�|Y)

i
,(1.3)

where we have used the notation� = {B,⌃,T,⌫} to denote the parameters
over which we will maximize. For convenience, we will use the notation
EX,e�|�(t),Y(Z) = hZi.

Now, due to the separability of the parameters in the posterior, we may
write

Q(�) = Q
1

(B,⌃) +Q
2

(T,⌫) +Q
3

(⌫) + C,(1.4)

1
imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

2 G. E. MORAN ET AL.

whereQ
1

(B,⌃) = h⇡(B,⌃,�,X|Y)i,Q
2

(⌧ ,⌫) = h⇡(X,T, e�,⌫|Y)i,Q
3

(⌫) =
h⇡(⌫, e�|Y)i and C 2 R is a constant.

The first term of the above objective function is:

Q
1

(B,⌃) = C � 1

2

NX

i=1

�
(yi �Bhxii)T⌃�1(yi �Bhxii) + tr[B0⌃�1B(hxix

0
ii � hxiihxii0)]

�
K⇤X

k=1

log ⇡(�k)�
N + ⌘ + 2

2

GX

j=1

log �2

j �
GX

j=1

⌘⇠

2�2

j

,

where ⇡(�k) is defined in (1.1). Next,

Q
2

(T) = �1

2

NX

i=1

�
hxiiTDihxii+ tr[Di(hxix

0
ii � hxiihxii0)

� 1

2

NX

i=1

K⇤X

k=1

log ⌧ik

� 1

2

NX

i=1

K⇤X

k=1

h
he�ikie�2

1

+ (1� he�iki)e�2

0

i
⌧ik.

(1.5)

and finally,

Q
3

(⌫) =
K⇤X

k=1

"
he�ki log

kY

l=1

⌫l + (N � he�ki) log

1�

KY

l=1

⌫l

!#

+
K⇤X

k=1

[(e↵+ kd� 1) log ⌫k � d log(1� ⌫k)] .(1.6)

where he�ki =
PN

i=1

he�iki.

1.0.1. E-Step. The conditional posterior distribution of xi is given by:

⇡(xi|B(t),⌃(t),T(t),yi) ⇠ N(ViB0(t)[⌃(t)]�1yi,V
i),(1.7)

where Vi = [B0(t)[⌃(t)]�1B(t) +D
(t)
i]�1. Further, let V =

PN
i=1

Vi.

We now determine the update for the indicators of the factors, e�. Note that

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 3

conditional on ⌧ik, e�ik is independent of xik. We have:

he�iki = P
⇣
e�ik = 1|T, e✓

⌘

=
⇡(⌧ik|e�ik = 1)⇡(e�ik = 1|e✓k)

⇡(⌧ik|e�ik = 1)⇡(e�ik = 1|e✓k) + ⇡(⌧ik|e�ik = 0)⇡(e�ik = 0|e✓k)

=
e✓ke�2

1

e�
e�2
1⌧ik/2

e✓ke�2

1

e�
e�2
1⌧ik/2 + (1� e✓k)e�2

0

e�
e�2
0⌧ik/2

.(1.8)

1.0.2. M-Step. Let y1, . . . ,yG be the columns ofY. Denote hXi = [hx
1

i, . . . , hxN i]
and let �

1

, . . . ,�G be the rows of B. Then

(1.9) Q
1

(B,⌃) =
GX

j=1

Qj(�j ,�j)

where
(1.10)

Qj(�j ,�j) = � 1

2�2

j

kyj�X�jk2�
1

2�2

j

�T
j V�j�

K⇤X

k=1

log ⇡(�k)�
N + ⌘ + 2

2
log �2

j�
⌘⇠

2�2

j

To find a maximum of (1.10) with regard to �j , we use the refined thresh-
olding scheme of Ročková and George (2018) with the extension to the
unknown variance case given in Moran, Ročková and George (2018). Eval-
uation of log ⇡(�k) requires the expectation of ✓k given the previous values

of the loadings, �(t�1)

k ; this yields the following update for ✓k (Ročková and
George, 2018):

✓
(t)
k =

a+ k�(t�1)

k k
0

a+ b+G
.(1.11)

The update for �2

j is:

(1.12) �
2(t)
j =

kyj �X�(t)
j k2 + �(t)T

j V�(t)
j + ⌘⇠

N + ⌘ + 2
.

The update for ⌧ik is given by:

(1.13) ⌧
(t)
ik =

�1 +
q
1 + 4e�ik(hxiki2 + V i

kk)

2e�ik

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

4 G. E. MORAN ET AL.

where e�ik = he�ikie�2

1

+ (1� he�iki)e�2

0

.

We now consider the update for the IBP stick-breaking parameters ⌫. This
involves finding the ⌫ that maximize the objective in equation Q

3

(⌫). The

di�culty in maximizing this objective is the non-linear term log
⇣
1�

Qk
l=1

⌫l

⌘
.

We find a lower bound for this term using a variational approximation in-
spired by Doshi et al. (2009).

This approximation begins with writing the non-linear term as a telescoping
sum. Then, we introduce a parameter qk = (qk1, . . . , qkk) where

Pk
m=1

qkm =
1, which allows the use of Jensen’s inequality:

log

1�

kY

l=1

⌫l

!
= log

kX

m=1

(1� ⌫m)
m�1Y

l=1

⌫l

!

= log

kX

m=1

qkm
(1� ⌫m)

Qm�1

l=1

⌫l
qkm

!

�
kX

m=1

qkm

"
log(1� ⌫m) +

m�1X

l=1

log ⌫l

#
�

kX

m=1

qkm log qkm.(1.14)

To make the bound (1.14) as tight as possible, we maximize over the pa-
rameter qk to obtain updates bqk:

bq(t)km =

⇣
1� ⌫

(t�1)

m

⌘Qm�1

l=1

⌫
(t�1)

l

1�
Qk

l=1

⌫
(t�1)

l

.(1.15)

The lower bound for the objective function for ⌫ at iteration t is now:

Q
3

(⌫) �
K⇤X

k=1

"
he�ki

kX

l=1

log ⌫l + (N � he�ki)
"

kX

m=1

q
(t)
km

log(1� ⌫m) +

m�1X

l=1

log ⌫l

!##

+
K⇤X

k=1

[(e↵+ kd� 1) log ⌫k � d log(1� ⌫k)].

(1.16)

Maximizing the lower bound (1.16) over ⌫ then yields closed form updates:

⌫
(t)
k =

r
(t)
k

r
(t)
k + s

(t)
k

(1.17)

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 5

where

r
(t)
k =

K⇤X

m=k

he�ki+
K⇤X

m=k+1

(N � he�ki)

mX

i=k+1

q
(t)
mi

!
+ e↵+ kd� 1(1.18)

s
(t)
k =

K⇤X

m=k

(N � he�ki)q
(t)
mk � d.(1.19)

2. Bicluster Quality Metrics. Here we provide the formulas for the (i)
relevance; (ii) recovery; and (iii) consensus scores used to evaluate biclusters
in the simulation studies. Each of these scores use the Jaccard index, a
measure of similarity between two sets A and B, defined as:

J(A,B) =
|A \B|
|A [B| .(2.1)

The Jaccard index naturally penalizes methods which find spurious bicluster
elements. The relevance and recovery scores were proposed by Prelić et al.
(2006) and are defined below. Denote bicluster Ck as the set non-zero entries
of the vectorized matrix xk�kT . Let Mt be the set of true biclusters and let
Mf be the set of biclusters found by a particular method. Then the relevance
and recovery scores are given by:

Relevance =
1

|Mf |
X

C12Mf

max
C22Mt

J(C
1

, C
2

),

Recovery =
1

|Mt|
X

C22Mt

max
C12Mf

J(C
1

, C
2

).

The consensus score of Hochreiter et al. (2010) is computed as follows.

1. Compute the Jaccard similarity matrix, where the (i, j)th entry is the
Jaccard similarity score (2.1) between the ith bicluster in Mt and the
jth bicluster in Mf ;

2. Find the optimal assignment (based on the highest Jaccard scores)
of the true set of biclusters to the found set of biclusters using the
Hungarian algorithm (Munkres, 1957);

3. Sum the similarity scores of the assigned biclusters and divide by
max{|Mt|, |Mf |}.

3. Supplement for Simulations 1 and 2.

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

6 G. E. MORAN ET AL.

3.1. Implementation details. The code source and implementation details
of the methods we compared to are:

• BicMix: the code was obtained from beehive.cs.princetone.edu/

software and implemented using the default parameters. Following
Gao et al. (2016), we thresholded values less than 10�10.

• FABIA: we implemented FABIA using the fabia R package (Hochre-
iter et al., 2010), using the default parameters and recommended post-
processing thresholding step.

• ISA: we implemented ISA using the isa2 R package (Csardi, Kutalik
and Bergmann, 2010), using the default parameters.

• Spectral: we implemented Spectral using the biclust R package
(Kaiser et al., 2020). For data matrix Y, we used the function call
biclust(exp(Y), method = BCSpectral()). The data matrix was
exponentiated as the default normalization for Spectral uses a log
transform.

• Plaid: we implemented Plaid using the biclust R package. The func-
tion call was: biclust(Y, method = BCPlaid(), max.layer = K),
where K was the true number of biclusters (for simulation studies where
K was known).

3.2. Additional figures. Here, we provide additional figures for Simulations
1 and 2. Figure 1 shows the biclusters found by each of FABIA, ISA, Spectral
and Plaid for the dataset in Simulation 1 (Section 3.1 of the main text).
Figure 2 shows the biclusters found by each of FABIA, ISA, Spectral and
Plaid for the dataset in Simulation 2 (Section 3.2 of the main text).

Figure 3 shows the results of SSBiEM on Simulation 1 and 2 with an initial
K⇤ = 30 instead of being set to the true number of biclusters. SSBiEM can
still find the true bicluster signal; however, there is no thresholding of noisy
biclusters. In practice, it may be hard to distinguish between true and noisy
biclusters when the actual number of biclusters is unknown.

Finally, Figure 4 shows the proportion of variance in Y explained by each
of the methods which provide a factorization of the data. This is given by:

R2 = 1�
PN

i=1

kyi � bBbxik2PN
i=1

kyi � ȳk2
.(3.1)

In Simulation 1, SSLB and SSBiEM have a similar R2, with BicMix attain-
ing higher R2 values. The higher R2 values of BicMix are perhaps due to
BicMix not thresholding smaller values of X and B to zero. Similarly to

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 7

Fig 1: Simulation 1: Factor matrices,X, and loading matrices,B, found by di↵erent
methods. Only the support of the matrix is displayed: a red value indicates a non-
zero element.

K

N

True X (K = 15)

(a) Truth

K

N

X (FABIA, K = 15)

(b) FABIA

K

N

X (ISA, K = 51)

(c) ISA

K

N

X (Spectral, K = 12)

(d) Spectral

K

N

X (Plaid, K = 2)

(e) Plaid

K

N

True B (K = 15)

(f) Truth

K

G

B (FABIA, K = 15)

(g) FABIA

K

G

B (ISA, K = 51)

(h) ISA

K

G

B (Spectral, K = 12)

(i) Spectral

K

G

B (Plaid, K = 2)

(j) Plaid

8 G. E. MORAN ET AL.

Fig 2: Simulation 2: Factor matrices,X, and loading matrices,B, found by di↵erent
methods. Only the support of the matrix is displayed: a red value indicates a non-
zero element.

K

N

True X (K = 15)

(a) Truth

K

N

X (FABIA, K = 15)

(b) FABIA

K

N

X (ISA, K = 362)

(c) ISA

K

N

X (Spectral, K = 2)

(d) Spectral

K

N

X (Plaid, K = 15)

(e) Plaid

K

N

True B (K = 15)

(f) Truth

K

G

B (FABIA, K = 15)

(g) FABIA

K

G

B (ISA, K = 362)

(h) ISA

K

G

B (Spectral, K = 2)

(i) Spectral

K

G

B (Plaid, K = 15)

(j) Plaid

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 9

Fig 3: SSBiEM with initial K⇤ = 30

(a) Simulation 1

K

N

True X (K = 15)

K

N

X (SSBiEM, K = 30)

K

N

True B (K = 15)

K

G

B (SSBiEM, K = 30)

(b) Simulation 2

K

N

True X (K = 15)

K

N

X (SSBiEM, K = 30)

K

N

True B (K = 15)

K

G

B (SSBiEM, K = 30)

10 G. E. MORAN ET AL.

Fig 4: R2 over 50 replications of the data.

0.00

0.25

0.50

0.75

1.00

SS
LB
−I
BP

SS
LB
−P
Y

SS
LB
−B
B

Bi
cM

ix

SS
Bi
EM

R
2

(a) Simulation 1

●

0.9750

0.9775

0.9800

0.9825

SS
LB
−I
BP

SS
LB
−P
Y

SS
LB
−B
B

Bi
cM

ix

SS
Bi
EM

R
2

(b) Simulation 2

regression, retaining such small values leads to a better in-sample fit of Y
and consequently higher R2 values. An interesting direction for future work
is to consider an adjusted R2 for matrix factorization which accounts for the
estimated degrees of freedom.

In Simulation 2, BicMix again has the highest R2 values, followed by SSLB-
IBP and SSLB-BB. SSLB-PY obtains similar R2 values to SSBiEM, albeit
with a slightly higher variance, which may be attributed to SSLB having to
estimate the number of biclusters.

4. Additional Simulation Studies. In this section, we conduct two ad-
ditional simulation studies with a Poisson noise model, instead of a Gaussian
noise model.

4.1. Simulation 3. We take N = 300, G = 1000 and K = 15. The simulated
data was generated as follows. For biclusters k = 1, . . . ,K:

• For each column xk, we draw the number of samples in bicluster k uni-
formly from {5, . . . , 20}. The indices of these elements were randomly
selected and then assigned a value from a folded normal distribution
with mean µ = 2 and variance �2 = 1. The elements of xk not in
the bicluster were drawn from a folded normal with mean zero and
variance �2 = 0.22.

• For each column �k, we draw the number of samples in bicluster k uni-
formly from {10, . . . , 50}. The indices of these elements were randomly
selected and then assigned a value from a folded normal distribution
with mean µ = 1 and variance �2 = 1. The elements of xk not in

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 11

the bicluster were drawn from a folded normal with mean zero and
standard deviation � = 0.2.

The matrix Y was then generated as:

Y = Poisson(XBT).(4.1)

Figure 6 shows the consensus, relevance and recovery scores for each of
the methods. All implementations of SSLB have higher consensus scores
than the other methods. Interestingly, ISA has the next highest consensus
scores in this setting. This improved performance is possibly attributed to
ISA not requiring modeling assumptions; ISA finds submatrices in which all
rows and columns are above a certain threshold. However, ISA still tends
to overestimate the true number of biclusters, albeit by a smaller margin
than in Simulation 1 (Table 1). SSLB also overestimates the true number of
biclusters, while BicMix underestimates the true number of biclusters. For
one of the 50 replicated datasets, the results from each of the methods are
plotted in Figure 5.

b
K

Method Simulation 3 Simulation 4

Truth 15 9

SSLB-IBP 17.0 (0.21) 9.8 (0.19)

SSLB-PY 17.1 (0.20) 10.0 (0.18)

SSLB-BB 16.9 (0.21) 9.5 (0.15)

Bicmix 11.4 (0.23) 0.9 (0.13)

ISA 21.7 (0.52) 106.9 (3.21)

Spectral 30.6 (1.92) 1.0 (0.04)

Plaid 1.8 (0.17) 1.0 (0.00)

Table 1
Mean estimated number of biclusters, K, over 50 replications. Standard errors are shown

in parentheses.

4.2. Simulation 4. For simulation 4, we again take N = 300, G = 1000 and
K = 15. For both the factor and loading matrices, five columns are dense
and ten columns are sparse. The sparse columns (corresponding to sparse
biclusters) are generated as Simulation 1. The dense columns (corresponding
to dense biclusters) are generated as independent folded normal distributions
with µ = 0 and � = 2. We allow for one dense column in X to correspond to
a sparse column in B and vice versa; this results in K = 9 biclusters which
are sparse in both X and B.

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

12 G. E. MORAN ET AL.

Fig 5: Simulation 3: Factor matrices,X, and loading matrices,B, found by di↵erent
methods. Only the support of the matrix is displayed: a red value indicates a non-
zero element.

K

N

True X (K = 15)

(a) Truth

K

N

X (SSLB, K = 16)

(b) SSLB-BB

K

N

X (BicMix, K = 9)

(c) BicMix

K

N

X (ISA, K = 26)

(d) ISA

K

N

X (FABIA, K = 15)

(e) FABIA

K

N

True B (K = 15)

(f) Truth

K

N

B (SSLB, K = 16)

(g) SSLB-BB

K

G

B (BicMix, K = 9)

(h) BicMix

K

G

B (ISA, K = 26)

(i) ISA

K

G

B (FABIA, K = 15)

(j) FABIA

Fig 6: Simulation 3: (a) Boxplots of the consensus scores. (b) Relevance versus
recovery scores.

●

●

●●●
●●●●
●●●0.00

0.25

0.50

0.75

1.00

SS
LB
−I
BP

SS
LB
−P
Y

SS
LB
−B
B

Bi
cM

ix

FA
BI
A

SS
Bi
EM IS
A

Sp
ec
tra
l

Pl
ai
d

C
on
se
ns
us

(a)

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recovery

R
el
ev
an
ce

● SSLB−IBP
BicMix
FABIA
SSBiEM
ISA
Plaid

(b)

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 13

Fig 7: Simulation 4: Factor matrices,X, and loading matrices,B, found by di↵erent
methods. Only the support of the matrix is displayed: a red value indicates a non-
zero element.

K

N

True X (K = 15)

(a) Truth

K

N

X (SSLB, K = 15)

(b) SSLB-BB

K
N

X (BicMix, K = 5)

(c) BicMix

K

N

X (ISA, K = 131)

(d) ISA

K

N

X (FABIA, K = 15)

(e) FABIA

K

N

True B (K = 15)

(f) Truth

K

N

B (SSLB, K = 15)

(g) SSLB-BB

K

G

B (BicMix, K = 5)

(h) BicMix

K

G

B (ISA, K = 131)

(i) ISA

K

G

B (FABIA, K = 15)

(j) FABIA

In this simulation setting, the consensus of all methods are much lower than
in Simulation 3 (Figure 8). For SSLB, the reduced consensus scores are
due to increased false negative rates, particularly in the B matrix (Figure
7). Encouragingly, however, SSLB does not seem to be finding spurious
biclusters. This is unlike BicMix and FABIA, which find many more false
positives. ISA also has lower consensus scores in this setting; we hypothesize
ISA is better suited to detecting sparse biclusters, instead of a mix of both
sparse and dense. ISA also overestimates the true number of biclusters again
(Table 1). Meanwhile, SSLB slightly overestimates the number of biclusters
in this setting.

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

14 G. E. MORAN ET AL.

Fig 8: Simulation 4: (a) Boxplots of the consensus scores. (b) Relevance versus
recovery scores.

●

●
●

●●●
●0.00

0.25

0.50

0.75

1.00
SS

LB
−I
BP

SS
LB
−P
Y

SS
LB
−B
B

Bi
cM

ix

FA
BI
A

SS
Bi
EM IS
A

Sp
ec
tra
l

Pl
ai
d

C
on
se
ns
us

(a)

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●● ●

●

●

●●

●

●
●

●

●

●

●●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recovery

R
el
ev
an
ce

● SSLB−BB
BicMix
FABIA
SSBiEM
ISA
Plaid

(b)

5. Processing Breast Cancer Data. Here, we provide more details on
the processing of the breast cancer dataset in Section 4 of the main text. We
first removed genes with more than 10% of values missing and imputed the
remaining missing values with k nearest neighbors (k = 10), implemented
using the R package impute (Hastie et al., 2018). We chose not to project the
quantiles of the gene expression levels to the standard normal distribution,
as done by Gao et al. (2016).

This is because the unnormalized gene expression values were mostly clus-
tered around zero with heavy tails (Figure 9a). Although SSLB assumes
that the errors are normally distributed, the gene loadings {�jk}G,K

j,k=1

are
assumed to be drawn a priori from either a Laplacian spike concentrated
around zero or a Laplacian slab. We assume that such a mixture model is
flexible enough to model the gene expression levels exemplified in Figure 9a.

0

1

2

3

−4 −2 0 2 4
expression

de
ns

ity

Unnormalized SUHW2 expression

(a)

0.0

0.2

0.4

−4 −2 0 2 4
expression

de
ns

ity

Normalized SUHW2 expression (Gaussian)

(b)

Fig 9: Histogram of (a) unnormalized expression values for gene SUHW2, (b)
quantile normalized expression values for gene SUHW2 with standard normal dis-
tribution as reference. For both histograms, a standard normal density is overlaid.

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 15

6. Additional Figures for Breast Cancer Dataset. Here, we provide
additional figures for the analysis of the breast cancer microarray dataset in
Section 4 of the main text. Figure 10a shows the full SSLB factor matrix,
with Figure 10b showing the sparsity levels in the biclusters. The residuals
from SSLB are symmetric around zero with moderately heavy tails (Figure
11a). The fitted bY = bXbBT from SSLB generally approximates the observed
Y well; however, SSLB shrinks a number of values of Y to zero (Figure 11b).

The enrichment maps (Figure 12) were created using the R package enrichplot
(Yu, 2018) and display the top 30 biological processes (with lowest FDR q-
values satisfying threshold of 0.05) found in the gene ontology enrichment
analysis as described in Section 4.3 of the main text.

Fig 10

SSLB Factor Matrix

(a) SSLB factor matrix where each row corresponds to a patient and each column cor-
responds to a bicluster. A patient belongs to a bicluster if they have a non-zero value in
that column. Rows are ordered by clinical ER status; within ER status, rows are ordered
by factor values in biclusters 1 and 2. All 30 biclusters found by SSLB are shown.

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Bicluster

%
 n

on
−z

er
o variable

X

B

Breast Cancer Data: SSLB Sparsity Levels

(b) Percentage of non-zero elements in each bicluster found by SSLB.

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

16 G. E. MORAN ET AL.

Fig 11

0e+00

1e+06

2e+06

3e+06

−2 0 2
value

co
un

t

Breast Cancer Data: SSLB Residuals

(a) Histogram of SSLB residuals.

●● ●●●●

●

● ●
●

●

●

●

●● ● ●● ●● ●
●●

●
●●●●● ●● ●●●●●●

●

●● ● ●● ●● ●●●● ● ●●
●

●●●● ●●●● ●
●●

●

●
●● ●●

● ●
●

●

● ●
●●

●● ●●●●● ●●●
●

●● ● ●● ●●● ●● ●● ● ●●● ●●

●

●●●● ● ● ●●●

●

●● ●● ●●● ●●●● ●●● ●
●

● ● ●●● ●

●

● ●● ● ●● ●●●●●
●

●●●●
● ●

●

●
●

●
● ●●●● ●● ●● ●●●●●●●● ●● ●● ●●
●
●

●

●● ●

●

●●●
●

●● ●

●

●
●

● ●●●●

●

● ●●●● ●●
●

●

●

●●●

●
●

●● ●●● ●● ● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●●

●

●●● ● ●●● ●● ●●●
●

●
●

●●●●●●●
●
●●● ●●
●

●

● ●●●●●

●

●●●● ●●●●
●
●●●●●●●

●

●●●● ●●
●
● ●●● ●●●● ●

●
●●●●
●

●

●

●

●

●● ●● ●●●●● ● ●● ●

●

●●● ●●
●

●

●
●●

●
●●

●
● ●●● ●●●●●●

●
● ●●

●
● ●●

●

●

●

●

● ●●
●

●● ●●● ●●

●

●●● ●● ●●● ●●● ●●● ● ●●●● ●●● ●●
●

● ●●●●● ●
●●

●

●

●

●

●
●

●

●

●●●● ●●●●●
●

●

●●●●● ●● ● ●●●●●● ●● ●●●● ●●●● ●●●● ●
●
●●●

●

●●●● ●

●
●

●●●●●● ●● ● ●

●

●

●

● ●
●

●

●●
●

●●● ●●●●●●● ●● ●●● ●● ● ●● ●● ●● ●●●
●
● ●● ● ●●● ●●●●●● ●●●● ● ●●●●●● ●

●
●●

●
●●●● ●●●●

●
● ●●

● ●
●● ●●● ●●●●● ●●●● ●●●●●

●
● ●● ●

●

●●●● ●● ●●● ●●
●
●● ●

●
●

●
●●●● ● ●
●

●

●● ●●●●
●
● ●●

●
●● ●● ●●● ●

●
● ●● ●● ●●● ●●● ●● ● ●●●●●● ●●

●
●●
●
●●●● ●●● ●●●● ●●●● ●● ●●●●

●

●●●●●●●

●

● ●●● ●● ●●● ●● ●●● ●● ●●

●

● ●● ●
●

● ●

●

●

●●●●● ● ●●● ●●

●
●

●●● ●●●●●
●

●● ●●● ●●●●
●
●● ●●

●
●●● ●●●

●
●

●
●●● ●●●

●

●
●

●●
●●●

●

●●●
●

●●

●

●●● ●●● ●

●
●
●● ●●●

●
●
● ●●● ● ●● ●●●●

●
● ●

●
●

●
●

●●● ●● ●●●
●

●●●

●

●● ● ●●●●● ●

●

●●●
●

● ●●●●●●

●

●● ●●●● ●● ●● ●●●
●

● ●●●● ● ●● ●
●

●

●●●● ●
●

● ●●
●

●
●●●●● ●●● ●●●●●●

●

●●

●

●●●● ● ●● ●●● ●

●

● ● ●● ●●
●

●●

●

●● ●●
●

● ●●● ●●●●●● ●● ●●●●

●
●

●
●

●●●●● ●●●

●

●● ●● ●● ● ● ●●●●● ●● ●● ●●
●
●●●●●● ●●

●

●●● ●●●

●

●

●●●● ●●●●●●● ●●●●
●●

●

●

●●

●

● ●
● ●●●●● ●

●

●●●● ●●

●

●●● ●●●● ●●

●

●
●

●●● ●●●●●

●

●
●●●●● ●

● ●
● ● ●●●● ●●● ●● ●● ●● ●●●●●

●
●● ●●● ●●●●● ●●

●
●● ● ●● ●●●● ●● ●

●

● ●●●●
●

●

●● ●●●●●●
●

●

●●
●●

●

●● ●●●● ●●●
●
● ●●●●

●
●

● ●● ●
●

● ●● ●

●

●

●
●
● ●●

●

● ● ● ●● ● ● ●●
●

●●●●●● ●●●●● ● ●●●● ● ●● ●●●
●

●●●● ●●●●●●

●

●

●

●●● ●●●●● ● ●● ●●●●● ●
●●

● ●●●●●

●

● ●●●
●
●

●

●●
●

●●● ●● ●● ●● ● ●●●● ● ●●●●●● ●●●●● ●●●●● ●●●● ●● ●

●

● ●● ●●● ● ●●●
●

● ●●

●

●●● ●●● ●●
●

● ●●●●●●● ●● ●●● ●●●●●●● ●● ●●●●
●

●●
●●●●

●

● ●●● ● ●●● ●●●●●●● ●●

●

●●

●

●
●

●

●● ●

●

●● ●●●●●
●

●

● ●●●●●
●

●●●
●

●
●

●
●

●
●●●

●

●
●

● ●● ●●

●

●
●
●●● ●●
●

●● ●●●● ● ●●●
●
●

●

●

●●●● ●●●●●●●●● ●● ●●● ●●● ●

●

●●●● ●●● ● ●
●● ●● ●● ●● ●●● ●
●

●● ●● ●● ●●●● ●●●
● ●●

●

●●●

●

●● ●●●● ●

●

●● ●●● ●

●

●
●

●● ●●●● ●●●● ●●●● ●● ●●

●

●
●

●
●

●
●

●
●●
●●
●● ●●● ●●●

●
● ●
●
●● ●●●● ●●●● ●

●

●

●●●● ●●● ●●●●
●
●● ●●●●● ●●●●● ●

●
●

●

●
●● ●●●●●

●

●●
●

●

●● ●●●
●

● ●●●●●● ●● ●
●
●●
●

●

●● ● ●

●

●●
●

●●●

●

● ●●● ●●●● ●●●
●

●

●●
●

●●● ●●

● ●

● ●
●

●● ●●● ●●● ● ●●
●
●●●● ●●●●

●

●
●

● ●●● ●●●

●
●

●●● ●● ●●
●

●● ●●
●

●● ●

●

●●●●
●

● ●●● ●●●● ●●● ●●●●● ●

●

●
● ●●●●● ●●● ●● ●●●●

●

●
●●●●●●

●
●

●
●●●

●

●●
●

●
●

●●●

●

●

●

●●●●●●●●● ●●●●●●●

●

●●●● ●●●●●● ● ●●●●●
●

●● ●● ●● ●●● ● ●●●●●
●

● ●● ●● ● ●● ●●
●

●

●

●

●●● ●

●

●● ●
●

● ● ●●●● ● ●●● ●●●●● ●●
●
●

● ●
●●●

●

●●● ●● ●●●●●

●

●●●●●●● ●
●

●
●

●

●

●●
●

●● ● ●
●

●
●● ●●● ●●●● ●●●● ●●●●● ●●● ●
●●

●
● ●

●

●
●●● ●●●●● ●●

●

●● ●
●
●● ●●●● ●● ●

●
●

●
●

●
●● ●●● ●

●

● ●●

●

●
●

●●● ●●● ●●● ●
●●

●●● ●●● ● ●●●● ●● ●●
●

● ●●●●● ●● ●
●

●

●
●

●●● ●●● ● ●● ● ●●●
●

●● ●●●●●● ●●●●● ● ●●● ●

●

● ●

●

●● ● ●●●●●●
●

● ●●● ●●● ●●● ●●●●

●

●

●● ●●●● ●●
●

●●● ●
●

●●●●●
●
● ●●

●

● ●●●●●●● ●●●● ●●● ●●●●●●●
●

●● ●● ●●●● ●
●
●●

●
● ● ●●

●
● ● ●●●● ●

● ●

● ●
●
●
●● ● ●●●●● ●● ● ●●

●
● ●●

●

●● ● ●● ●●●

●

● ●●
●

●●●●

●

●
●

● ●

●
●

● ●●● ●

●

●●●●●● ● ●●● ●●● ●●
●

●
● ● ●● ●●

●
●●●●

●
●● ●

●
●

●● ●●●●●● ● ●●●
●

●
● ●●

●
●

●

●
●●

●

●● ●●●● ●●

●

●●● ●● ●●●●●●●● ●● ●● ●●●

●

● ●

●

● ●●● ●●
●

● ●● ● ●●●● ●
●

● ●●

●

●● ●● ●● ●● ●●

●

●

●

●●●● ●
●

●● ●●
●

●●
●
●●●

●
●

●●●

●

●● ●● ●●● ●● ●●●
●
●●

●

●● ●● ●●● ●●●●● ●● ●●
●

●●● ●●●●●●
●

●●

●

●●
●

●●
●

●

●●

●

●●
●

●●
●●●● ●●● ●●●● ●●●●

●
●● ● ●●●●● ●

●

●●● ●●●●

●

●● ●●

●
●

● ●

●

●●●● ● ●

●

●

●
●

●
●●●

●

●

●

● ● ●●● ●●●● ● ●● ●●●
●

● ●●●●● ●●

●

●
●

●●
●
●●● ●● ● ●● ●●●

●

●●●● ●●●● ●●● ● ●
● ●●● ●●●
●
●● ●●●●
●
● ●●● ●

●
●

●

●●● ●●

●

●●● ●

●

●●●
●

●● ●●●
●

● ● ●●●●●●● ●●●●
●
●●● ●●● ●●● ●● ●●● ●●

●

●●●●● ●
●●

●
● ●●●

●
●● ●●●

●

●
●

●
● ●●●●●●

●● ●●●●●● ●●● ● ●● ●●● ●●●●●●●●●● ●● ●●

●

● ●●●● ●●●
●

● ●●●● ●●

●

●●
●

●●●● ●
●

● ●●●●●● ●●●● ●
●

● ●
●

●
●

●●●●● ●●● ●● ●●
●●●● ●●

●
●● ● ●● ●●●● ●● ●●

●

●●

●

●● ●● ● ●●●●●●● ● ●● ●● ●● ●

●

● ●●●
●

●● ●
●● ●●●●● ●● ●●

●
●●●

●

●

●● ●● ●●
●

●●● ●●● ●

●

●●●

●

● ●●

●

●●● ●●● ●

●

● ●●●●

●

●●

●

●● ●●● ●● ●●● ●●

●

●
● ●●●

●

●
●

●● ●●● ●
●

●
●

●

●

● ● ●●●

●

● ●●●●●
●

●●● ●●● ●
●

●●

●

●●●●● ● ●● ●● ●●●●●●

●
●

● ● ●●●

●

● ●
●

●

●● ●●●●●●●
●

●● ●●
●

●● ●●●● ●● ●●●●●●●

●

●●● ●

●

●●●● ● ●●●●●
●

●●●● ●●

●
●●

●

●●● ●●● ●● ●
●

●
● ●
● ●● ●●●● ● ●● ●●●●

●

●●●
●

● ●

●

●
●

●● ●● ●●●●●

●

●● ●●●● ●●●●● ●● ●
●

●

● ●●● ● ●●●● ●●●● ●● ●
●

●●● ● ●●
● ●●

●●●
●

● ●● ●●● ● ●●● ●● ●● ●

●

● ●

●

●●●●● ●
●

● ●● ●● ●●● ●●● ●● ●● ●
●● ●●●● ● ●

●

●●●

●

●●●
●
●●●●●●● ● ●●●●● ●●● ●

●

●●● ●●●● ●●●● ● ●●●●● ●●●
●

●●●●● ●●●● ●●● ●● ●

●

●● ●●● ●● ●●
●

● ●●●● ●●● ●

●

●● ● ●● ●●● ●● ●● ● ●●

●

● ● ●●●●●● ● ●●● ●●●●●●●● ●●● ●● ●● ●●
●

● ●●● ● ●● ● ●●●●● ●● ●● ●●●●●●
●● ●●● ●● ●● ●

●

●
●

●
●●● ●●● ●

●
●●●● ● ● ●●●●●● ●●● ●●● ●● ● ●●●● ●● ●●

●
●● ● ●● ●●

●
●

●
● ●●

●
●● ●●●●●●●●

●

●●● ●● ●● ●
●

●● ●●● ●● ● ●● ●●●●●●●
●
●●

●

●

●●
●
●

● ●●●● ●●●● ●●●● ●●●●●●● ● ●●●● ●●●

●

● ●●●● ●
●

●●

●

●
●

●●●
●

●● ●
●

●●●● ●●
●
●● ●●●●● ●●●● ●● ●●●●

●

●

●● ●●● ●● ●
●

●●●●● ● ●●●● ●●● ●●
●

●● ●●● ● ●● ●● ●●●● ●●●●●●●
●

●

●

●● ●●

●

●● ●●●
●

●●●●
●●●●●●● ●● ●●●● ●●●●● ●●

●

●●●
●
●●●● ●●●●

●
●●●● ●● ●●● ●● ●●●●●

●

●●● ●● ●●●●● ● ●●● ● ●●● ●● ● ●●● ●● ●● ●●● ●●●●● ●●●● ●● ● ●●●●●

●

●●● ●● ● ●●●●
●●

●

●●●
●

●●

●

● ●●●●● ●● ● ●●●●●● ●●● ●● ●●

●

●●●●●●● ●●●●●
●

●● ●●●● ●●● ● ●●●

●

●

●●●● ●●● ●● ● ● ●●●● ●●●● ●●●●●● ●● ●●●

●

●● ●●●

●

●

●

● ● ●●●●●●● ●●●

●

● ●●● ● ●

●

●

●

●

●●● ●● ●●● ●
●

●●●●● ●●
●

● ●●●● ●●

●

●
●

●●●● ●●

●
●●● ●●

●
●● ●● ●●● ●

●

●

●
●●● ●●●●

●

● ●

●

● ●●● ●●●●

●

●●
● ●● ● ●● ●●●● ●●●

●

●●● ●

●

●●● ●● ●

●

● ●

●

●
●● ●●

●

●

●

●

●
●
●● ●●
●
●●

●
●● ●●●●● ●● ●●●●●●●● ●●●●●●

●

●

●●●●
●

●● ●●

●

●

●

● ●●●●● ●●●●●●
●

●●

●

●
●

● ●● ●●●●●

●

●
●●● ●●●●

●
●●● ●●

●

●● ●●● ●● ●● ●●●●●● ● ●●●● ● ●●

●

●

●●

● ●

●

●
● ●●● ●● ●●●●● ●●

●
●●

●

●

●

●

●
●

● ●●
●●

●

●● ●
●
●●● ●●●●●

●

●
●
●
●

●●●● ●●●
●

●● ●●● ●● ●

●

● ●●●● ●●●●●●●●●

●

●
● ●●●●

●

● ●●● ●●● ●●● ●● ●

●

●
●
●●
●

●
●

●●●●●● ●●

●

●●● ●●●
●
●●●●

●
●●● ●●

●

●● ●●●● ●●● ●●

●

●● ●

●

● ●●● ●●●●

●

● ●●

●

●
●

●
●

●

●●●●●●●● ●●

●

●●●●●●●

●

●● ●● ●●● ● ●● ●
●

●●● ●●
●

●●●●●● ●● ●●●● ●●●●

●

● ●● ●

●

●● ●●
●

●●●● ●●
●

●

●●●● ●●●

●

●●●● ●●●● ●●●●● ●●●● ●●● ●●●●●
●
●● ●●
●

●

●

●

●

● ●● ●●●●●● ● ●●●
●

●
●

●

●● ●●●●●
●

●
●

●

●

● ●●●●●●●
●
●● ●● ●●● ●● ●●● ●●● ● ●●● ●●●●● ●● ● ●● ●● ●

●

● ●●●●
●

●

●● ●●● ●●● ●●● ●
●

●
● ●

●

●● ●●● ●●●
●
●●

●
● ●●●● ●● ●●●

●
●

●
●● ●●●●●●● ●● ●●●

●●●
● ●●

●
●●● ●●

●
●● ●●●●● ●● ● ●●

●
● ●

●

●●●●●● ●●●● ●● ●●● ●●● ●●

●

●

●

●●●●
●

●

●

●

●●

●

●● ●●●● ●● ●● ●●● ●●

●

●●
●

●●● ●●● ● ●● ●●●●● ●●●
●

●●● ●●● ●●● ● ●● ●● ●

●●

● ●●
●

●●
●●

●

●● ●
●

●●● ●●
●

● ●●●●

●

●● ●●●● ● ●● ● ●
●

●●●●● ●● ●●● ● ●● ● ●● ● ●●●● ● ●● ●●● ●●●●●●●●●

●

●
●● ●

● ●●● ●●
●

●

●

●

●

●● ●● ●●●● ●
●
●● ●●● ●●●● ●● ●● ● ●●

●
●●●●● ●●●● ●●●● ●● ●●
●
●

●
● ●●

●
●●● ●

●

●
●●

●●●●● ●
●●●●●

●

●
●●● ● ●●●●●

●

● ●●● ●●●●

●

●●
●

●●●●
●

● ●● ●●

●

●
● ●●

●
●●● ●● ●● ●●●●●● ●●

●
●●● ●●● ●●●● ●● ●●●●●● ●●● ●

●
● ●● ● ● ●●●● ●

●

●
● ● ● ●●● ●●●

●

●●●●
●

●●● ●
●●

●●●●
●

●

●● ●●●● ●●

●

●●●● ●●●
●

●●

●

●●● ●●●● ●●●●●● ●● ●●● ●●●●●●●●

●

●
●

●
●

● ●●●
●

●

●

●●●
●

● ●●●●● ●●●● ● ●●● ●

●

●● ●● ●

●

●
●

●
●●●● ●●

●
● ●●● ●●●

●
● ●● ●●●

●● ●●●●●

●

● ●●●●
●

●● ●● ● ●
●●

●● ●●●● ●●●●● ●● ●
●

●● ● ●● ●● ●●●● ●●●●● ●●● ●●
●
●●● ●●●●●● ●●●

●
● ●● ●● ●● ●

●
● ●

●
●●
●

● ●● ●
●

●
● ●

●

●●● ●● ●●●
●

●

●

●● ●● ●
●

●

●
●

●
●

●● ●●
●
●●● ●●●
●

●

●

●●
●

● ●●●●
●

●●● ●

●

●●● ● ●●●
●

●
●●
● ●●●● ●●●
●

●

●

●

●

● ●● ●●● ●● ●●●●●● ●
●

●
●● ●

●
●●●● ● ●●●●

●
●●● ●●●●●●

●

●

●
●
●●● ●● ●● ●● ●● ●●●●● ●
●

●●● ●●●● ●●●●●●● ●● ●
●

●● ●●●●●●●●●●●
●

●●●
●

●●● ● ●
●
●●● ●●●●●

●

●
●●●●●● ●●● ●

●

●

●● ●●●●
●
●● ●

●

● ●●●●●●●● ● ●●●●● ●●
●
●● ●●● ●●● ●●● ●● ● ●● ●●

●
●●●●

●

● ●● ●

●

●●●
●

●● ●●

●

●●●● ●

●

● ●● ●●● ● ●●●●●● ● ●●

●

● ● ●●● ● ●

●

●●●
● ●● ●● ●●●●● ●●● ●●● ●● ●●● ●● ●● ● ●●●● ●

●
● ●● ●●●●●● ●● ●

●
●● ● ●●●●

●

●
●

●

●● ●●● ●●●●● ● ●●●● ●●● ●
●

● ●●
●

●● ●●● ●●
●

●● ●● ●●●
● ●●●●●●●● ● ●●●● ●● ● ●●●

●

●

●

● ●
●

● ●● ●
●●

●●●●●●●●●●●●●
●●● ●●●

●

●
●●● ●● ●●●
●
●●● ●●●●●● ●●●

●

●●
●

●●●●● ●●●●●●

●

●● ●●●●● ●●●● ●●●●●● ●●●●●

●

● ●● ●● ●● ●●● ●●
●●

●● ●●●●●●● ●● ●●● ●
●
● ●●●●●●●●●●● ●●●●

●
● ●●● ●●●● ●●●●●●●●

●
●

●●●

●

●●● ●● ●●● ● ●● ●● ●●●● ●●●
●

●● ●●● ●●● ●●● ●

●

●
●●●●●

●

● ●●●● ●●●●●●●
●

●
●

●●● ●●●●●●●●
●

●
●●

●

●

● ●●
●

●●● ●●●

●

●● ● ●●●
●

●● ● ●● ● ●●

●

●●●● ●●
●
● ●●

●

● ●●●
●

●
●

● ●
●
●●● ●●●●●

●
●● ●●●●● ●●●

●

●
●

●

●

●
●

●●●

●

● ●
●

●

●

●● ●●●● ● ●●
●

●●●●●●●● ●●●● ●●● ●● ●●● ●

●●

●● ●●●● ● ●●●● ● ●
●● ●●●● ●●● ●●●●●

●●
●●●●● ● ●
●

●● ●●

●

●
● ●

●●● ●●
●

●● ● ●● ●

●

●●●
●

●● ●●
●
●●●

●
● ●●● ●●● ●●●●● ●●● ●●●●

●
●●

●

●●●●●●●●● ●
●
● ●●●●

●

●
● ●●●● ●●●●●

●

●

●●●

●

●

●

●●●● ●●●● ●●●● ●●
●

● ●●● ●●● ●● ●●●● ●● ●● ●●●●●● ● ●
●

●● ● ●●●● ●●●●●●

●

● ●
●

● ●●● ●●● ●● ●●●●● ●●●● ●●●

●

● ●● ●●● ● ●●

●

● ● ●●●● ●●●●

●●

●
●●
●

●
●●
●
●●●●●● ●● ●●

●
●

●

●

●●●

●

● ●

●

● ● ●●●● ●●● ●●●●● ●●●●●● ●●

●

●
●

●● ●●●●● ● ●●● ●●●●
●●

● ●●
●

●●● ●
●

●● ●

●

●●●

●

●
●

●●● ●●●● ●●●● ●● ●

●

●

●

●●● ●●●●●●●● ●● ●●●

●

●
●
● ●●●●● ●●●●● ● ●● ●● ● ●●● ●

●

● ● ●● ●

●

● ●
●

● ●●● ●●● ● ●

●

●
●

● ●●●●● ●●● ●●●●●●● ●●● ●

●

●
●

●
●

● ●●● ●●●● ● ● ●● ●●● ●
●

●●●●●
●

● ●●
●

●

●●● ●●● ●● ●●●● ●●● ●●●
●

● ●●
●

●
●

●● ●●●● ●●●
●

●●●
●

●

●

●
● ●● ●

●

●● ● ●● ●●●●● ●● ●●● ●● ● ●● ●●● ●● ●● ●
●

●●
● ● ●●●●●● ●

●
●●●● ●

●

●

● ●●●●●● ●●● ●●● ●● ●●

●

●● ●●●

●
●

●●● ●●
●

● ●
●

●● ●●●●
●●

●● ●
●
●

●
● ●●

●
●●● ●● ●

●

●●●●● ● ●
●●●●● ●● ● ●●●●● ●● ●

●
● ●● ●●● ●●● ●●

●
● ●●●●●

●
● ●● ●● ●●●●● ● ●●●

●

● ●●● ●●●●
●
●

●● ●
● ●● ● ●●●●

●

●

● ●

●

●
●

●
●●●● ●● ●●●●● ●● ● ●●●●●● ●●● ●●

●

●●● ●● ●● ● ●●●●● ●●

●

● ●●●●● ●

●

● ●●●●● ●●●

●

● ●●●●●● ●● ●●● ●
●

●
●● ●●●●● ●

●

●●● ● ●● ●●● ●● ●●●
●
●●● ● ● ●●●●●● ●

●

●
●●●

●

● ● ● ●● ● ●
●

●●●●●● ●●●●●●●●
●

●●
●

●●●●●
●

●● ● ●●
●

● ●●● ●●●
●

●●

●

●
●

● ●
●

●

●

● ●●● ●● ●●● ●●● ●●● ●

●

●● ●●●●● ●●
●

●●● ●●● ●●● ●●● ●●
●

●
●

●

●

● ●●●● ●●●● ●● ●● ●●
●

●●●

●

●●

●
●

●

●
●

●● ●●

●

●●●●●● ●●●● ●●●●●●●●
●
●●● ●●●

●

●●●●
●

●●●●
●

●● ●●●●●●
●

●●
●

● ●● ●

●

●●● ●●●

●

●●●●●● ●● ●● ●●●●●
●

●● ●●●
●

●
●● ●

●

●● ●●
●

●

●

●

●

●●●● ●● ●●●
●

●●●●
●

●●
●

●● ●●●● ●●●●●
●

●● ●●● ●● ●●● ●●●●● ●
●

●●●

●
●●

●

●●●● ●●● ●
●

● ●

●

● ●
●●

● ●●● ●●●●● ●

●

● ●● ●● ●
●

● ●● ●●

●

●
●●
●

●

● ●
●

●●●
●●
●

●

●● ●

●

●●●● ● ●● ●●

●

●
●

●● ●●

●

●

●

● ●● ●●●●● ●●●●●●●
●

● ●●●● ●●●● ●● ● ●●●

●

●

●

●●●●●●●● ● ●● ●●●● ●
●

●

●

●●● ●●
●

● ●●●●● ●●● ●●
● ●●●●● ●● ●● ●● ●● ●●●

●
●

●●●●
●
●

●

● ●●●●●●● ●● ●
●

●●●
●

● ●●●
● ●●●● ●● ●●●● ●●
●
●

●
●

● ●●●●
●
●

●
●

●
●

●

● ●●●
●

●● ●● ●
●

● ●●● ●● ●●● ●●●● ●●●● ●● ●● ●●●●●
●

●● ●●

●

●
●
●●●● ● ●●●●●

●

●●● ● ●●
●
●●● ●●● ●● ●● ●●●●● ●●

● ●
●

●

●●

●

●
●

●

●

●●● ●●
●

●● ●●
●

●●●●●
●
● ●●●● ●●● ●

●
● ●● ●●
●

●●● ●●●● ●●●●●●●●●● ● ●●●●●● ●●●●

●

●●●●●●●●● ●● ● ●●●●● ●● ●● ●●● ●● ●●● ●●
●

●
●
● ●

●
●●

●
●● ●●

●
●●●● ●●●● ●●● ●● ●●●● ●●●

●
●● ●●●● ●
●

● ● ●●●● ●

●

●
●
●●● ●●● ●●●●●●●

●

●●

●

●●● ●● ●● ●●●●● ●●

●

●● ●●●● ●●● ●●●● ●

●

●●
●

●●● ●●● ●●
●
● ●●●

●

●● ●●
●

●●
●●●

●
●

●●●●● ●● ●● ● ●●

●

●●

●

●
●

●●●●

●

●●●●● ●●● ●●●●● ●● ●● ●●●● ●●

●

● ●●●●●●●●

●

● ● ●●●●● ●● ●●

●

● ●●

●

●

●

●
●●●●

●

● ●
●

●

●

●●● ●●● ●● ●●●

●●

●● ●●
●

●● ● ●● ● ●●●●●●● ●

●

●

●
●

●● ●● ●● ●●●

●

●
●

●
●●● ●● ●●●

●
●● ● ●

●

●

●

●

●

●

●

●● ● ●●●●●●● ● ●● ●●● ●●● ●●●

●

●

●

●
● ●●● ●●●●●● ●● ●●

●

●● ●
●

●

●● ●

●

●
●

●

● ●●●●● ●●● ●● ●●●●●● ●● ●●● ●

●

●● ●●● ●
●

● ●●●●●●

●

●●

●

●

●

●● ●●

●

●●●●● ●●
●

●
●●● ● ●●

●

●●●● ● ●● ●●●

●

●
●●

●

●●●●

●

●
●●● ●●● ●
●

●
● ●● ●

●
●● ● ●●●●● ●● ●● ● ●● ●● ●●● ●●●

●

●● ●●●●●● ●●●●● ●● ●● ●●●● ●●●

●

●
● ●●● ● ●● ●●
●

●●● ●●●

●

●●●●● ●● ●●●

●

●

●
●

●
●●●

●

● ●● ●● ●●●● ●●●●●● ●●

●

●●●●●●● ●●● ●●●● ●●
●● ● ●●●●● ●

●
● ●●

●
●●
●

●
●●●●●●●●●●● ● ●●

●

●● ●
●
●

●

●
●

● ● ●●●● ●● ●●

●

●● ●●
●

●● ●● ●●●●

●

● ●●● ●●●● ●●● ●●●● ●● ●● ●●●● ●●
●
●● ●● ●

●

●● ●● ● ●●

●

● ●
●

● ●●● ●●

●●

●●● ●● ●● ●●●●● ● ●●
●

●● ●●
● ●

●
●

●

●

●

●

●

● ●●●●● ●
●

●● ●
●

●● ●

●●

●●●
●

●●●● ●● ●● ●● ●● ●
●
●●●● ●●

●

●●● ●● ●● ●●● ●● ●
●

●●● ●●●●●

●

●● ●● ●●● ●
●
●● ●●●●

●

● ●●

●

● ●●
●
●●● ●● ●

●
● ●●● ● ●●●●● ●● ●●●●●
●
●

●

● ●● ●●●●●● ●● ●●
●

●● ●● ●● ●●● ●● ●●●●
●

● ● ●●●● ●●●● ●

●

●
●

●

●
● ●● ● ●● ● ●●

●
●●

●
●●●● ● ●●● ●● ● ●●

●

●●●
●

●●●
● ●● ●●● ●●●●●● ●

●
●

●

●

● ●●

●

●● ●●●●● ● ●●

●

●●● ●●
●

●●

●

●● ●●● ●●

●

●
●●● ●●● ●●●●

●
● ●● ●●● ● ●●

●
●● ●●● ●●●●● ●● ●●

●
● ●●●●

●

●●● ●●●●● ●●●●● ●●● ● ●●●●●●
● ●
●

●●● ●●● ●●● ●●● ●●

●

●●● ●●●● ●●

●

●●●
●

●● ●● ●●● ●●●●●●●
●

● ●● ●●● ●●●● ●●
●
●

●

●● ●
●

●●●
●

●● ●● ●● ●●●●

●
●●●

●● ●●● ●
●

●
● ●

●

●

●

●●●● ●●●●
●

●● ●●●●●

●

●●
●
●●

●
●● ●● ●●● ●●●● ●●●●●●● ●●● ●●● ●●● ●●

●

●●

●
●●●●●

●●

●

●

●●●● ●●● ●●
●

● ●● ●● ● ●●●● ●● ●●●●
●

●●●●

●

●
●

●

● ●● ●
●
●●● ●●● ●● ●● ●
●●

●● ●
●
●●● ●● ●● ●●● ●

●

●●
●

● ●● ●● ●●● ●● ●●●
●
● ●●● ●●

●
●

●
● ●● ● ●●● ●● ●●

●

●●● ●● ●●● ●
●

● ●

●
●

●
●

● ●● ●●●●

●

●● ●
●

●

●●●● ● ●●●●●● ● ●● ●●●●● ●●
●

●
● ●● ●●● ●●● ●●●● ●

●
●

●●●●● ●●●
●

●● ●

●

● ●
●●● ●●

●
●

●

●● ●●●

●

●●
●●
●● ●●

●

●●
●

●●

●

●

● ●●● ● ● ●
●●

●● ●●● ● ●●●● ●●● ●●● ●●●●●●● ●●●●● ●●●●●●●●● ●● ●● ●●●

●

●●●
●
●●●●●
●
●●

●

● ●● ●● ●● ●● ●● ●● ●● ●● ● ●●
●

●●

●

●
●● ●●
●
●●●● ●● ●●●●●●●●●●● ●●● ●●● ●● ●● ●●●●●●●●● ● ●● ● ●●● ●● ●●

●
●●

●

● ●● ●●●

●

●
●
●●● ●●

●

●●●●● ●●● ●●● ●
●
●●

●
●●●

●

●● ●●●●● ●● ●●
●

●● ●
●●●●●●●●●●●

●
●●● ●

●
●●●●● ●

●

●●
●

●
●
●
●●●●

●

●
●
●

●●●

●

●● ●● ●●●●●● ●
●

●
●●●● ●● ●●●●●

●

●●●● ●
●

● ●●●● ●●●● ●●
●
● ●●

●
●●●● ●

●

●

●●● ●●●● ●●●●● ●●●

●

●●
●
●●●● ●●●●●●●●● ●● ●●

●

●●
●

● ● ●●
●●
●

●
●●●● ●●● ● ●●● ●●

●

●●●●● ●●●●●

●

● ● ●●● ●●

●
●

●●●
●
● ●●

●

●● ●
●

●

●
● ●●● ●●●●

●

●
●● ●● ●●● ●● ● ●● ● ●●

●

●●●●● ●●● ●

●

●●●●● ●●
●

●

●

●● ●●

●

●
●
●●●●●● ●●●● ●

●●
●

●

●●●●●●●
●

● ●●

●
●

●

●

●●●● ●● ●● ●●● ●●●● ●●● ●●●●●●●● ●●● ●●●●●●● ●

●

● ● ●●●● ● ●● ●●
●

●● ●●●●●

●

● ●●

●

● ●● ●
●

●●
●
●●●●

●

● ●●●●
●

●

●
●

●
●

●●● ●

●

●●● ●●

●

●●●●● ●●●● ●●●●● ●● ●● ●

●●
●●●●
●

●●● ●●● ● ●●● ●

●

●● ●●● ●●

●

●
●●● ●

●

●
●

●● ● ●●●● ●
●

● ●●

●

●●●●●●●●●● ●●
●

●

●

●

●

● ●●●● ●● ●●●●● ●●
●

● ●
●

●●● ●

●

●●●● ●

●

●●
●

● ●●
● ●●● ●●●●

●
●

●

●

● ● ●●

●

●●

●

●●● ●● ●● ●●●●● ●●●●● ●●●

●

●
● ●●

●
●● ●●
●
●●●●●● ●●●● ●●●● ● ●●● ●●●●

●

●●●

●

●
●●

●
● ●

● ●

●●

●

●●
●

●● ●●● ●●
●

● ●● ● ●●●●●● ●●
●

● ●●● ●● ● ●
●
● ●●

●

●● ●●● ●● ●●●
●

●●
●
●●●● ●●●●●●● ● ●●● ●●●●●● ● ●● ●●

●
● ●

●
● ●●●●

●
●●●●● ● ●● ●● ●●● ●●

●

●● ●●● ●
●

●●●
●

● ●●●●
●

● ●● ●●●● ●●●
●
●● ●●●● ●

●

●
●

●●

●
●

● ●●

●

●
●

●●●● ●●●

●

●●●● ●●●

●

● ●●●● ●●●● ●

●

●

●

●

●

●

●

●●● ●●●●●● ●●●

●

●●●●●●● ●●●●

●

●●●●●● ●●●●●●● ●●
●
● ●●●●●●●
●
●● ●●●
●

●

●

●●

●

●●●●● ●●●● ●● ●●●● ●●● ●●
●

●

●

●●●●●● ●

●

●●●● ●● ●●●●●● ●● ●●

●

●●●●● ●● ●●

●

●●●●●● ●● ●●●●

●

●

●●
●●

●

●
● ●

●
●● ●● ●●●●●●

●

●

● ●● ●
●

● ●●●●● ●

●

●●●●

●

●●●● ●●● ●●●
●

● ●●

●
●●●●● ●
●
●●

●

●

● ●● ●● ●

●

●●●

●

●● ●● ●●●
●

● ●●●● ●

●

● ●●●●●●●●● ●● ●

●

●●●● ●●
●

●● ●●●●

●

●●

●

●

●
●
●●●

●

●●●● ●●● ●● ●●● ● ●●● ●
●

● ● ●● ●● ●● ●● ● ●●●● ●●●●●●●● ●●●● ●●● ● ●●●

●
●●

●

●

●●●● ●●●●●

●

● ●

●

●●●●
●
●

−2

−1

0

1

2

−2 −1 0 1 2
Y

Fi
tte

d
Y

Breast Cancer Data: SSLB

(b) Fitted SSLB bY = bXbBT vs. ob-
served Y for a randomly sampled subset
of 10,000 points. Red line is y = x.

7. Processing Zeisel Dataset. Here, we describe how we processed the
data in Section 5 of the main text. We followed the same pipeline as Z15
but provide the details here for completeness.

Many RNA-seq studies normalize the raw count data to the unit RPKM
(Reads Per Kilobase of transcript per Million mapped reads), which accounts
for longer genes having more transcripts mapped to them simply due to their
length (and not meaningful biological variability). This was unnecessary
for this dataset as only the 5’ end of each RNA was sequenced and thus
the read number was not proportional to gene length (Islam et al., 2014).
Additionally, many single-cell RNA-seq studies account for di↵ering cell sizes
as larger cells have more RNA. However, this normalization was not done
for this dataset as such information is informative in clustering di↵erent cell
types.

The scRNA-seq data is provided by Z15 at http://linnarssonlab.org/

cortex and consists of molecule counts for 19,972 genes in 3005 individual
cells.

Following Z15, we:

1. Removed all genes that have less than 25 molecules in total over all
cells

2. Calculated correlation matrix over the genes and define a threshold as
90th percentile of this matrix (⇢ = 0.2091). Removed all genes which
have less than 5 other genes which correlate more than this threshold.

The next step of data processing was to identify the noisiest genes. Assuming

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 17

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

RNA localization

mRNA transport

positive regulation of cell projection organization

regulation of protein modification by small protein conjugation or removal

RNA splicing

nuclear transport

ribonucleoprotein complex localization

regulation of plasma membrane bounded cell projection assembly

regulation of cell projection assembly

ribonucleoprotein complex biogenesis

protein export from nucleus

regulation of cell morphogenesis

positive regulation of neurogenesis

nucleus organization

negative regulation of mitotic cell cycle

cell cycle checkpoint

cellular response to drug

regulation of dendrite morphogenesis

transport of virus

protein−containing complex localization

G1/S transition of mitotic cell cycle

multi−organism transport

multi−organism localization

dendrite morphogenesis

response to leukemia inhibitory factor

cellular response to leukemia inhibitory factor

response to reactive oxygen species

transcription initiation from RNA polymerase II promoter
negative regulation of pri−miRNA transcription by RNA polymerase II

intrinsic apoptotic signaling pathway
size

●
●
●

20

40

60

0.012

0.008

0.004

p.adjust

(a) Enrichment map for genes up-regulated in ER-negative patients.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

gliogenesis

gland development

Wnt signaling pathway

cell−cell signaling by wnt

positive regulation of cell cycle

response to ketone

regulation of protein serine/threonine kinase activity

negative regulation of nervous system development

morphogenesis of an epithelium

epithelial cell proliferation

developmental maturation

cornification

response to testosterone

negative regulation of cell cycle process

nuclear division

stem cell proliferation
regulation of nuclear division

establishment of protein localization to membrane

regulation of neural precursor cell proliferation

DNA replication initiation

regulation of transcription from RNA polymerase II promoter in response to hypoxia

multicellular organismal homeostasis

nuclear−transcribed mRNA catabolic process, nonsense−mediated decay

mitotic nuclear division

regulation of binding

8e−04

6e−04

4e−04

2e−04

p.adjust

size

●
●
●
●
●

20

30

40

50

60

(b) Enrichment map for genes up-regulated in HER2+ patients.

Fig 12: Breast cancer data: enrichment maps for SSLB genes (a) up-regulated in
ER-negative patients, and (b) up-regulated in HER2+ patients. Nodes represent
biological processes; size of node reflects number of genes in process which were
found by the method. Edges connect genes that are active in di↵erent biological
processes.

18 G. E. MORAN ET AL.

that most of the variability of the genes across the cells can be attributed to
the underlying biological processes, these genes are the ones which are most
informative for clustering of cells. The strategy of Z15 was to search for genes
whose noise - measured by coe�cient of variation (CV, standard deviation
divided by mean) - was high compared to a Poisson distribution with inflated
CV. The rationale for this was outlined in Islam et al. (2014) which used
the same single-cell RNA-seq protocol as Z15 but for mouse embryonic stem
cells. First, Islam et al. (2014) noted that the technical noise distribution of
ERCC (External RNA Controls Consortium) spike-in molecules (which have
no biological variability) followed that of a Poisson, but its CV was inflated
by constant factor. The CVs of endogenous genes were inflated above those
of the ERCCs, suggesting that this variation is driven by biological factors
rather than the variation induced by loss of transcripts in cDNA synthesis.

Z15 implemented the same procedure to identify genes with the greatest bio-
logical variability. We followed this procedure: for the genes remaining after
the aforementioned data cleaning steps, the mean and CV was calculated.
The noise model

log
2

(CV) = log
2

(mean↵ + k)

was fit using the software ceftools1. The best fit was found to be ↵ = �0.55
and k = 0.64. Next all genes were ranked by their distance from the fit line
and the top 5000 genes with the largest distance were selected as informative
for further clustering.

Finally, we normalized the gene counts using quantile normalization (using
the R package preprocessCore (Bolstad, 2018)). Note we used the com-
monly used “average distribution” as the reference distribution to which to
project the quantiles of the raw gene expression levels. The average distri-
bution is obtained by taking the average of each quantile across the samples
(Bolstad et al., 2003).

8. Supplementary Figures for Zeisel Dataset. Here, we provide sup-
plementary figures for the analysis of the mouse single-cell RNA sequencing
dataset in Section 5 of the main text. Figure 13 displays full results from
SSLB and FABIA. Figure 15 shows residual plots from SSLB results. SSLB
residuals are very heavy tailed, but centered around zero (Figures 15a and
15b). Fitted SSLB values estimate the observed data for the most part; how-
ever, there are a number of zeroes mis-estimated as non-zero values, and vice
versa (Figures 15c and 15d).

1https://github.com/linnarsson-lab/ceftools

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 19

Enrichment maps (Figures 16 and 17) were created using the R package
enrichplot (Yu, 2018) and display the top 30 biological processes (with
lowest FDR q-values satisfying threshold of 0.05) found in the gene ontology
enrichment analysis as described in Section 5.1 of the main text.

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

20 G. E. MORAN ET AL.

Interneurons

S1 Pyramidal

CA1 Pyramidal

Oligodendrocytes

Microglia

Endothelial

Astrocytes

Ependymal
Mural

SSLB Factor Matrix

Interneurons

S1 Pyramidal

CA1 Pyramidal

Oligodendrocytes

Microglia

Endothelial

Astrocytes

Ependymal
Mural

FABIA Factor Matrix

Fig 13: Zeisel dataset: Factor matrix found by SSLB (top) and FABIA (bottom).
On the side of the factor matrix are the cell types and subtypes found by Z15,
respectively. The rows of the factor matrices have been ordered to correspond to
the Zeisel cell types. Factor values have been capped for improved visualization.imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 21

0

25

50

75

100

1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
Bicluster

%
 n

on
−z

er
o variable

X

B

Zeisel Data: SSLB Sparsity Levels

Fig 14: Percentage of non-zero elements in each bicluster found by SSLB.

Fig 15

0.0e+00

5.0e+06

1.0e+07

1.5e+07

−400 0 400 800
value

co
un

t

Zeisel Data: SSLB Residuals

(a) Histogram of SSLB residuals.

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

−20 −10 0 10 20
value

co
un

t
Zeisel Data: SSLB Residuals

(b) Histogram of SSLB residuals with
absolute values greater than 20 filtered
out (removed 0.4% of the data).

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●● ●●●●●

●

●●●
●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●● ●● ●●● ●●● ●● ●●●
●●●
●
●●●
●
●●●
●
●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●
●
●●●

●

●●●

●

●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●
●● ●● ●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●●● ●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●● ●●

●

●●●●●●

●

●●

●

●●●●●●● ●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●
●
●●

●

●●●

●

●●●●●●●●●●●●●●●●●
●
●● ●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●●● ●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●● ●●

●

●●●●●●●●●●●●●

●

●● ●● ●●●●●●●●●●●●●●●●●●
●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●
●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●
●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●

●

●
●
●●●●● ●●●●●●●●●
●
●●●
●
●●●●●●●●● ●●●●

●

●●

●

●● ●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●
●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●● ●● ●●●0

250

500

750

1000

0 200 400 600 800
Y

Y
fit

te
d

Zeisel Data: SSLB

(c) Fitted SSLB bY = bXbBT vs. ob-
served Y for a randomly sampled subset
of 10,000 points. Red line is y = x.

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●

●

●●●●●●●●●●●●●●● ●●●●

●

●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●

●● ●●●●●●●●●● ●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●● ●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●● ●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●● ●● ●

●

●●●●●●●● ●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●

●

●●●●●●●● ●●●● ●●●●

●

●● ●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●

●

●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●

●

●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●● ●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●

●

●●●●

●

●●●● ●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●● ●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●● ●●●

●

●●●●●●●

●

●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●● ●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●

●

● ●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●● ●●● ●●●●●●●●●●●●●●●

●

●

●●●●

●

● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

● ●●●●●●●●●●

●

●●●

●

●●●●●● ●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●● ●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●● ●●●●●●●●●

●

●●●●●● ●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●

●●●● ●●●●

●

●●●●●

●

●●●●●●●●● ●●●

●

●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●● ●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●● ●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●

●

●● ●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●

●

● ●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●

●●●●●

●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●● ●●● ●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●● ●●● ●●●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●

●

●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●

●

● ●●●●●

●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●● ●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●● ●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

● ●●●●●●●●●●●●● ●●●

●

●●●●●●●●

●

●●● ●●● ●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●● ●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●● ●●●●●● ●●●●●● ●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●● ● ●●●●●●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●● ●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●

●

●●●●●●●●●●●●●●● ●●●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

● ●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●● ●

●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●● ● ●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

●●

●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●

●

●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●● ●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●● ●●● ●●●●●●●●●●●●●●

●

●●●

●

●●●●● ●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●

●

●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●● ●●●●●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●

●

●●●●●●●●●●●●●●●● ●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●● ●●●●●

●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●● ●●●●●●●●●●●

●

● ●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●● ●●●●●●●●●●●●●●●● ●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●

●

●●●●●●●● ● ●●●●●●●●

●

●●●

●

●●●●● ●●●● ●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●● ●● ●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●

●

●●

●

●●●● ●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

● ●●

●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●

●

●●●●●●●●● ●●

●

●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●● ●●●●●●●

●

●

●

●●●●●●●●● ●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●● ●●●●

●

●●●●●●●●

●
●

●●●

●

●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●−12

−8

−4

0

4

−12 −8 −4 0 4
log(Y)

lo
g(

Y
fit

te
d)

Zeisel Data: SSLB

(d) Log of fitted SSLB matrix vs. log of
observed data for a randomly sampled
subset of 10,000 points. SSLB values less
than zero were set to zero. O↵set of 10�6

was added before taking the log.

22 G. E. MORAN ET AL.

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

ribonucleoside triphosphate metabolic process

cellular respiration

energy coupled proton transport, down electrochemical gradient

mitochondrion organization

NADH dehydrogenase complex assembly

mitochondrial respiratory chain complex I assembly

vesicle−mediated transport in synapsevesicle localization

intracellular transport

synaptic vesicle fusion to presynaptic active zone membrane

vesicle fusion to plasma membrane

signal release from synapse

ATP hydrolysis coupled ion transmembrane transport

ATP hydrolysis coupled cation transmembrane transport

vesicle−mediated transport

protein localization to mitochondrion

regulation of postsynaptic membrane neurotransmitter receptor levels

negative regulation of protein complex assembly

presynaptic endocytosis

protein targeting to mitochondrion

monosaccharide catabolic process

trans−synaptic signaling

protein localization to synapse

regulation of synaptic vesicle cycle

organonitrogen compound biosynthetic process

0.015

0.010

0.005

p.adjust

size

●
●
●

30

60

90

(a) SSLB Bicluster 1

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● chromatin organization

histone modification

protein ubiquitination

RNA processing

protein modification by small protein conjugation or removal

vesicle localization

intracellular transport

ribonucleoprotein complex biogenesis

vesicle−mediated transport in synapse
neuron projection morphogenesis

regulation of synapse structure or activity

plasma membrane bounded cell projection morphogenesis

cellular protein−containing complex assembly

regulation of synapse organization
synaptic signaling

anterograde trans−synaptic signaling

postsynapse organization

protein localization to mitochondrion

modification−dependent protein catabolic process

modification−dependent macromolecule catabolic process

regulation of synaptic vesicle cycle

regulation of cellular localization

protein targeting to mitochondrion

axonal transport

regulation of postsynapse organization

size

●
●
●

50

100

150

0.004

0.003

0.002

0.001

p.adjust

(b) SSLB Bicluster 2

Fig 16: Zeisel dataset: enrichment maps for SSLB genes in (a) bicluster 1 and
(b) bicluster 2. Each bicluster contains a mixture of interneurons, S1 pyramidal
neurons and CA1 pyramidal neurons. Nodes represent biological processes; size of
node reflects number of genes in process which were found by the method. Edges
connect genes that are active in di↵erent biological processes.

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

SSLB SUPPLEMENT 23

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

small molecule biosynthetic process

ensheathment of neurons

axon ensheathment

cholesterol biosynthetic process

secondary alcohol biosynthetic process

lipid biosynthetic process

sterol biosynthetic process

lipid metabolic process

cellular lipid metabolic process

fatty acid biosynthetic process

cholesterol metabolic process

secondary alcohol metabolic process

carboxylic acid biosynthetic process

organic acid biosynthetic process

sterol metabolic process

small molecule metabolic process

fatty acid metabolic process

steroid biosynthetic process

alcohol biosynthetic process

organic acid metabolic process

oligodendrocyte differentiation

glial cell development

organic hydroxy compound biosynthetic process

gliogenesis

0.04

0.03

0.02

0.01

p.adjust

size
●

●
●
●
●

10

20

30

40

50

Fig 17: Zeisel dataset: enrichment map for genes in SSLB bicluster 44. Bicluster
44 contains 17 oligodendrocyte cells. Nodes represent biological processes; size of
node reflects number of genes in process which were found by the method. Edges
connect genes that are active in di↵erent biological processes.

References.

Bolstad, B. (2018). preprocessCore: A collection of pre-processing functions R package
version 1.44.0.

Bolstad, B. M., Irizarry, R. A., Åstrand, M. and Speed, T. P. (2003). A comparison
of normalization methods for high density oligonucleotide array data based on variance
and bias. Bioinformatics 19 185-193.

Csardi, G., Kutalik, Z. and Bergmann, S. (2010). Modular analysis of gene expression
data with R. Bioinformatics 26 1376-7.

Doshi, F., Miller, K., Van Gael, J. and Teh, Y. W. (2009). Variational inference for
the Indian bu↵et process. In Artificial Intelligence and Statistics 137–144.

Gao, C., McDowell, I. C., Zhao, S., Brown, C. D. and Engelhardt, B. E. (2016).
Context Specific and Di↵erential Gene Co-expression Networks via Bayesian Bicluster-
ing. PLoS Comput Biol 12 e1004791.

Hastie, T., Tibshirani, R., Narasimhan, B. and Chu, G. (2018). impute: impute:
Imputation for microarray data R package version 1.56.0.

Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A.,
Kasim, A., Khamiakova, T., Van Sanden, S., Lin, D., Talloen, W. et al. (2010).
FABIA: factor analysis for bicluster acquisition. Bioinformatics 26 1520–1527.

Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M.,
Lönnerberg, P. and Linnarsson, S. (2014). Quantitative single-cell RNA-seq with
unique molecular identifiers. Nature Methods 11 163–166.

Kaiser, S., Santamaria, R., Khamiakova, T., Sill, M., Theron, R., Quintales, L.,

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

24 G. E. MORAN ET AL.

Leisch, F. and De Troyer. , E. (2020). biclust: BiCluster Algorithms R package
version 2.0.2.

Moran, G. E., Ročková, V. and George, E. I. (2018). Variance prior forms for high-
dimensional Bayesian variable selection. Bayesian Analysis.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5 32–38.

Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W.,
Hennig, L., Thiele, L. and Zitzler, E. (2006). A systematic comparison and evalu-
ation of biclustering methods for gene expression data. Bioinformatics 22 1122–1129.

Ročková, V. and George, E. I. (2018). The Spike-and-Slab Lasso. Journal of the Amer-

ican Statistical Association 113 431–444.
Yu, G. (2018). enrichplot: Visualization of Functional Enrichment Result R package ver-

sion 1.2.0.
Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P.,

La Manno, G., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz, C.
et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell
RNA-seq. Science 347 1138–1142.

E-mail: gm2918@columbia.edu

imsart-aoas ver. 2014/10/16 file: AOAS1385_supplement.tex date: August 28, 2020

